
119

Straight-Skeleton Based Contour Interpolation*

Gill Barequet t Michael T. Goodrich $ Aya Levi-Steiner§ Dvir Steiner ¶

Abstract
In this paper we present an efficient method for interpolating
a piecewise-linear surface between two parallel slices, each
consisting of an arbitrary number of (possibly nested) poly-
gons that define 'material' and 'nonmaterial' regions. This
problem has applications to medical imaging, geographic in-
formation systems, etc. Our method is fully automatic and
is guaranteed to produce non-self-intersecting surfaces in all
cases regardless of the number of contours in each slice, their
complexity and geometry, and the depth of their hierarchy of
nesting. The method is based on computing cells in the over-
lay of the slices, that form the symmetric difference between
them. Then~ the straight skeletons of the selected cells guide
the triangulation of these cells. Finally, the resulting trian-
gles are lifted up in space to form an interpolating surface.
We provide some experimental results on various complex
examples to show the good and robust performance of our
algorithm.

Keywords: Piecewise-linear interpolation, surface recon-
struction.

1 I n t r o d u c t i o n .

The reconstruction of a polyhedral surface from a se-
quence of parallel polygonal slices has been an intrigu-
ing problem during the last thir ty years. This problem
arises primarily in the fields of medical imaging, digiti-
zation of objects, and geographical information systems.
Data obtained by medical-imaging apparata, range sen-
sors, or elevation contours are interpolated in order
to represent, reconstruct, and visualize human organs,
CAD objects, or topographic terrains. It is assumed
that a preprocessing step has already extracted from
the raw data (usually a sequence of pixel images) the
closed two-dimensional contours, which delimit the ms-

- - - ~ W ~ k on this paper by the first author has been supported in
part by the Abraham and Jennie Fialkow Academic Lectureship.
Work by the second author has been supported by ARO MURI
Grant DAAH04-96-1-0013 and by NSF Grants CCR-9732300,
PHY-9980044, and CCR-0098068.

?Faculty of Computer Science, The Technion--Israel
Inst i tute of Technology, Halfa 32000, Israel. E-mail:
b a r e q u e t @ c s , t e c h n i o n , a c . i l

tDept, of Information and Computer Science, Univ. of Califor-
nia, Irvine, CA 92697. E-maih goodr ich@ics .uci .edu

§ Faculty of Mathematics, The Technion--Israel In-
sti tute of Technology, Haifa 32000, Israel. E-malh
saya@t2, technion, ac. il

¶Faculty of Mechanical Engineering, The Technion--Israel
Inst i tute of Technology, Halfa 32000, Israel. E-mail:
ovir@tx, t e c h n i o n , ac. i l

terial regions on each slice. Then, the goal becomes to
compute a surface that tiles between these contours and
forms a solid volume whose cross-sections at the given
heights identify with the input slices.

Various algorithms for two-dimensional based poly-
hedral surface construction have been suggested in the
literature (e.g., [Ke75, FKU77, GD82, WA86, KF88,
KSF88, SP88, WW94]). Many of the early algorithms
fail in complex instances (such as multiple branch-
ing), leave gaps between the contours, and/or generate
unacceptable solutions (e.g., self-intersecting surfaces).
Some algorithms [CS78, Sh81, ZJH87, MSS91, CP94]
reduce the more involved cases to the simple case
where each slice contains only one contour. There have
been only a few at tempts [Bo88, BG92, BS96, BCL96,
OPC96, CD99] to handle the interpolation problem in
full generality without limiting the number of contours
in the slices, their geometries, or their containment hi-
erarchies.

A practical simplification assumed in almost all
the previous works, as well as in this paper, is that
adjacent layers are independent. Thus, only a single
pair of successive parallel slices are considered and
interpolated at a time, and the reconstructed object is
the concatenation of the interpolating models computed
for all the layers. To the best of our knowledge, the only
work that avoided this assumption is [BST00].

The algorithm suggested in the current paper makes
no prior assumption about the input. It operates on any
kind and number of contours, and handles all branching
situations and hierarchical structures. It is guaranteed
to interpolate a valid surface for any possible input, and
is intuitive in the sense that it tends to minimize the
surface area of the reconstruction. This is because it
uses an offset distance function to locally decide which
contour features to bind.

In a nutshell, the algorithm analyzes the overlay of a
pair of slices in order to identify sets of contour portions
(bounding a subset of the set of cells of the arrangement
of contours) which are to be bound together. Then,
the straight skeleton (a linearized version of the medial
axis [AAAG95]) of each one of these cells is computed
and used to guide a Steiner triangulation of the cell.
Finally, the topology of the skeleton is used again
for lifting the triangulation up to three dimensions.

120

The union of the lifted-up triangulations of all the
chosen cells is the output surface. We emphasize that
the algorithm :is fully automatic without any tuning
parameters, which are a major disadvantage of some
previously-suggested algorithms.

Our algorithm is somewhat similar to that of Oliva
et al. [OPC96]. The latter algorithm also computes
the symmetric difference of the slices as ours does, and
computes straight skeletons of some cells of the ar-
rangement of contours of the two slices. The differ-
ences between the two approaches are in the other steps
of the algorithms: (1) Oliva et al. classify the active
cells differently from us; (2) We apply a different tri-
angulation scheme, which avoids overhanging construc-
tions that may be created by the algorithm of Oliva
et al. (partial remedies were later proposed by Felkel
and Obdr ~ l e k [FO99]); and (3) We apply a different
method for assigning heights for intermediate vertices:
while Oliva et al. use Euclidean distance, we use offset
distance.

The paper is organized as follows. In Section 2
we give an overview of the algorithm. Section 3
describes the data-acquisition phase, Section 4 describes
the analysis of the overlay of two slices, and Section 5
describes the computation of surface patch out of the
straight skeleton of one cell of the slices' overlay. In
Section 6 we analyze the complexity of the algorithm,
and in Section 7 we present some experimental results.

2 Overview of the Algorithm.

Our proposed algorithm consists of the following steps:

. Data acquisition. Orient all the contours in each
slice in consistent directions. If the input does
not include this information, compute the contour
nesting hierarchy in each slice, and use it to obtain
the desired orientations.

2. Analyzing the contour over lay . Compute the
overlay of the two slices. For each cell in the ar-
rangement of polygons, attach a tag that identifies
whether the cell lies in the material or the nonma-
terial regions of each slice. Discard all the cells that
either belong to the material or to the nonmaterial
regions in both slices.

3. Surface interpolation. Compute the straight
skeletons of all the remaining cells, separately
triangulate each region in the maps induced by the
skeletons, and lift the triangulations up to three
dimensions.

The following three sections describe the algorithm
steps in detail.

3 Data Acquisition.

The data consist of a sequence of slices, all in the same
file. Each slice consists of a hierarchy of contours, that
is, a forest of closed simple polygons with nonintersect-
ing boundaries, where a parent polygon fully encloses
all its children, and no other contour is enclosed in the
parent polygon and encloses one of its children. Each
slice is also marked by its height along the z axis; thus
every vertex is specified by its three coordinates. In
what follows we restrict our attention to a single pair
of successive slices, and describe the interpolation of a
solid within the layer delimited by the slices.

Contours of the root level (not contained in any
other contour) are assigned level 0, their holes are as-
signed level 1, etc. Thus, every even level consists of
contours whose interior, in a sufficiently-small neigh-
borhood of the contour, is the "material," and every
odd level consists of contours whose interior, sufficiently
near them, is the "nonmaterial." We orient the con-
tours consistently, for example, so that for each contour,
when viewed from above, the material lies to its right.
Thus all even-level contours are oriented in a clockwise
direction, when viewed from above, and all odd-level
contours are oriented in a counterclockwise direction.
If the containment hierarchy of the contours is omit-
ted, we compute it ourselves. The construction of the
hierarchy and of the contour orientations is easily per-
formed using a standard line-sweep procedure in each
slice (see [BS96]).

The internal representation of the contours tha t our
system uses is the quad-edge data structure. This is
done for maintaining efficiently the constructed polyhe-
dral boundary of the interpolating solid object.

4 Analyzing the Contour Overlay.

We compute a representation of the arrangement of
the contours of the two slices, obtained by projecting
one slice onto the other (along the z direction). This
can easily be done by applying a second line-sweep
procedure on the overlay of the two slices. In fact,
this step and the preceding step (the computation of
contour hierarchy and orientation) can be performed at
once. As part of sweeping the plane, each cell of the
arrangement is a t t r ibuted with indications whether it
lies in the material or the nonmaterial regions of each
of the slices.

We then discard all the cells that belong either to
the material or to the nonmaterial regions of both slices.
Thus we remain with only cells that correspond to
material in one slice and nonmaterial in the other slice.
Denote these as the active cells. Figure 1 shows two
slices, their overlay, and the active cells of the overlay.

For the moment ignore the original polygon vertices

121

(a) Upper slice (b) Lower slice

Q
(c) Slices overlay (d) Active cells

Figure 1: Active cells in the overlay of two slices

and consider only the vertices of the arrangement of the
polygons (intersection points of two polygons, one of
each slice). By 'contour portion' we mean a subpolygon
whose endpoints two such vertices (intersections of the
original polygons) and whose interior is free of other
vertices. The endpoints of contour portions are seen in
Figure l(c).

THEOREM 4.1. Each contour portion belongs to exactly
one active cell.

Proof. Consider any contour portion A B , where A and
B are vertices of the arrangement of contours (inter-
section points of contours of the two slices). Assume
without loss of generality that A B belongs to a contour
of the first slice. Thus, it is shared by two cells of the ar-
rangement, exactly one of which is material in the first
slice. In the second slice, A B is fully contained in either
the material or the nonmaterial region. In either case,
by definition, A B bounds exactly one active cell.

Since we will use the boundaries of only the active
cells for interpolating a surface between the two slices,
we are now guaranteed that every contour portion will
be used exactly once as a boundary of that surface.
Together with the original contours, we will have a
closed surface bounding a solid model.

5 Surface Interpolation.

5.1 Skele tons a n d Tr i angu la t ions . At this point
we have already found the boundaries of the interpo-
lated surface. Our current goal is to construct a col-
lection of pairwise-disjoint non-self-intersecting surface
patches with known boundaries (the active cells). This

is easy to achieve by forming a surface whose xy pro-
jection is simple, that is, every vertical line intersects
the surface in at most one point. For ease of exposition
we first describe the computation of the xy projection
of the surface, and only then, its lifting up to three di-
mensions.

The xy projection of the interpolated surface is sim-
ply the union of all the active cells in the arrangement of
all the contours, as is shown in Figure l(d). We explain
in detail how to create the triangulations of these cells
(which after lifting up to three dimensions will contain
the facets of the meshed surface).

We begin with computing the straight skeletons of
all the active cells. Obviously, by construction, ev-
ery face in the subdivision induced by the straight
skeleton of a cell contains exactly one original polygon
edge, and the face is monotone with respect to that
edge [AAAG95, Lemma 3]. Then, among all possible
triangulations of the face, we choose a triangulation that
is as monotone as possible with respect to the polygon
edge (see [BKOS97, pp. 55-58]). Figure 2 shows two
examples of an overlay of two contours (shown with
regular and thick lines), the straight skeletons of the
active cells (shown with dashed lines), and their respec-
tive triangulations (shown with dotted lines). We chose
this triangulation because it guides an intuitive recon-
struction of a surface. However, any other triangulation
will do. The union of the triangulations of all the ac-
tive cells (guided by the respective skeletons) is the xy
projection of the sought triangulated surface.

5.2 L i f t ing Up. We assume without loss of general-
ity that the lower and the upper slices are at heights 0
and 1, respectively. In order to perform our final s tep--
that is, to lift the surface up to three dimensions--all
we have to do is to assign z coordinates to all the ver-
tices of the straight skeletons. The following theorem
will help us in doing so.

THEOREM 5.1. The straight skeleton of every cell is the
union of edge-disjoint trees whose roots are interior ver-
tices of the straight skeleton which are equidistant ~ om
points on contours of both slices (with one exception: a
cell bounded by a complete contour of one slice).

This claim is shown in Figure 3. The portions of
two contours which bound one cell are shown in regular
and thick lines. The straight skeleton of the interior of
the cell is divided into trees by vertices equidistant from
the two contours. Two nontrivial trees are shown with
dotted lines. The trivial trees (line segments) are shown
with dashed lines.

Proof. Follows from the definition of the straight skele-
ton of a simple polygon.

122

(a) (b)

Figure 2: Active cells: Their straight skeletons and triangulations

. . . . : . . . ' . - . - . . -: : . " . ; . • :

Figure 4: Setting vertex heights according to their
offsets

Figure 3: Trees in the skeleton, rooted at points
equidistant from contours of the two slices

In assigning z coordinates to vertices we distinguish
between three cases:

1. Original polygon vertices. Here we natural ly assign
to the vertices the height of their respective slice,
tha t is, either 0 or 1.

2. Internal vertices of the straight skeleton. Here we
have three subcases:

(a) Skeleton vertices which are equidistant from
points on contours of both slices. We set the
height of these vertices to 0.5.

(b) Skeleton vertices which are not equidistant
from points on contours of the two slices.
According to Theorem 5.1, these are internal
vertices of trees, the heights of whose roots
were already set to 0.5, and whose leaves are
all at height either 0 or 1. Any monotone
function can be used for setting the heights
of the internal vertices of the trees. To reflect
the relation to the straight skeleton, we use the
offset distance function (see [BDG97]) from
the contour, and normalize it so tha t its value
is 0 or 1 on the contour and 0.5 at the root

(c)

of the tree. Figure 4 shows a close-up of
the skeleton tree at the bot tom-r ight corner
of Figure 3. The height of the vertices u, v,
and w is 0 since they belong to the lower slice.
The height of the root r is set to 0.5, whereas
the heights of the internal tree vertices s and
t are set to 93--0.5 = ~ and ~ - 0 . 5 = 8 ,
respectively. 1 This choice of the z function
fits our application due to the strong relation
between the offset of a shape and its straight
skeleton.

The special case of an active cell bounded
completely by a contour of one slice indicates
the vanishing or appearing of a feature of the
three-dimensional object. Assume without
loss of generality tha t the active cell is defined
by a contour of the lower slice. Then, all the
leaves of the skeleton are already assigned the
height 0. We set the height of the skeleton
vertex (or vertices) offset-wise furthest from
the contour to 1, and use, as in the previous

V ~ i o u s l y we mus t take care tha t the height of isolated
branches of the tree does not exceed 1. For example, if the vertex
t in Figure 4 was twice as far as r (offset-wise) f rom the boundary
of the lower slice, which is possible since the contours are not
necessarily convex, then its height would be more than 1. In this
case we apply a secondary scaling on every isolated subtree.

123

(a) Top view

(b) Isometric view

Figure 5: Triangles sharing a contour-intersection point

case, the skeleton to guide the setting of the
intermediate heights. We believe that setting
the "vanishing height" to 1 is better than
setting it to 0.5 (or to any other intermediate
value in the open interval (0, 1)), since this
gives a smooth and continuous interpolation
between the two slices, morphing a feature in
one slice to its absence in the other slice. The
other case (active cell modeled by a contour
in the upper slice) is completely symmetric.

3. Intersection points of pairs of contours, one of each
slice. In fact, such a point is actually three points
whose xy projections identify with each other. Two
of the points lie on the original contours, and
thus have their original heights (0 and 1). The
third point is a skeleton point which is set to be
at height 0.5. Note that the two points on the
original contours are not necessarily vertices of the
input polygons, but only the intersection point of
their xy projections. Figure 5(a) shows the xy
projection of two slices, with a contour-intersection
point v. Figure 5(b) shows the same scene from
a lower viewpoint. The point v is actually the xy
projection of three points v, v ~, and v" (at heights
0.5, 1, and 0, respectively). The two supposed
triangles in Figure 5(a) that share the vertex u are
actually quadrangles, as is seen in Figure 5(b). We
therefore triangulate them by adding two diagonals.
In addition, the skeleton edge that coincides with
the skeleton vertex v (uv in the figure) is deleted
so as to form one triangle containing the edge v~v"
(z~uv~v" in the figure).

After assigning the z values (heights) to all the ver-
tices of the skeletons, we lift the collection of triangu-
lated patches up to three dimensions. The result is the
desired interpolation.

6 Complex i ty Analysis.

We measure the complexity of the algorithm as a
function of n, the total complexity (number of vertices)
of the two slices. We also denote by k the complexity of
the overlay of the two slices. In the worst case k can be
as high as O(n2), but in most practical cases it is O(n).

Computing the contour nesting hierarchy in each
slice and orienting the contours in the correct directions
takes O(nlogn) time. This is performed by invoking a
simple line-sweep procedure. If the input contours are
guaranteed to be oriented well, we can skip this step of
the algorithm.

Computing and analyzing the overlay of the two
slices takes O(n log n + k) time. This already includes
the selection of the active cells of the overlay. Com-
puting the straight skeletons of all the active cells can
theoretically be done in O(k 17/11+~) time, for every

> 0 [EE99], 2 by using a sophisticated data-structure
for ray-shooting queries, or even slightly better (in non-
degenerate cases and on the average) in O(k 3/~ log k)
expected time [CV02]. Instead, we implemented the
algorithm of [FO98] whose running time is O(k 2) in
the worst case, and in practice, much less than that.
(Our experiments suggest that this step requires about
O(n 1"6) time.) Triangulating the monotone subcells in-
duced by the skeletons, as well as lifting the triangula-
tions up to three dimensions to form the interpolating
surfaces, take O(k) time.

To conclude, the entire algorithm runs in O(k 2)
time. In the worst case this is O(n4), but for most cases
(in which the complexity of the slice overlay is linear
in that of the original slices) the running time of the
algorithm is theoretically O(n2), and in practice even
less than that (around O(n 1"6) time in our experiments).

7 Exper imenta l Results .

We implemented the entire algorithm in C++ on an
HP Omnibook 6000 (a laptop). The computer was
equipped with a Pentium III 850 MHz processor, 128
megabytes of memory, and an ATI Rage M1 AGP
Mach 64 graphics card with 32 megabytes of memory.
The implementation, performed by the third and fourth
authors, took about two months, and the software
consisted of about 8,500 noncomment lines of code. We
experimented with the algorithm on several data files

2In fact, the precise running time is O(k 1+~ +kS/ll+er9/11+~),
where r is the number of reflex contour vertices.

124

/ / i \

i ; ..~'

(a) Skeleton (b) Triangulated cell

Figure 6: A simple interpolation case

obtained by medical scanners, and obtained very good
results in practically all cases.

Here are some specific examples of the performance
of the algorithm:

Figure 6(a) shows the overlay of two contours
belonging to two successive slices (in black and grey).
Since the two contours are nested, the single active cell
is the ring bounded by the two contours. Its straight
skeleton is shown with thick black lines. Figure 6(b)
shows the triangulated ring.

Figure 7(a) shows an overlay of two complex slices
(one in black and the other in grey) taken from a lungs
data file. Note the almost-horizontal line that appears
at the bot tom of the figure. This is the swept line at
the last discrete event that it handles. A close-up of the
area in the middle of the overlay is seen in Figure 7(b).
Figure 7(c) shows in thick black lines the straight
skeletons of all the active cells in the arrangements of
contours of the two slices. Similarly, Figure 7(d) is a
close-up of Figure 7(c). Figure 7(e) shows a top-down
view of the triangulated skeletons. A close-up of their
middle area is shown in Figure 7(f). Figures 7(g,h)
show a perspective view and a close-up of the surface
interpolated between the two slices.

Figures 8(a,b) show a wire-frame and a shaded dis-
play of the fully-reconstructed pair of lungs. These data
contained thir ty slices, thus we invoked our algorithm 29
times. Table 1 displays statistics of these experiments.
The running times of some stages were negligible and
are thus omitted in the table. The experimental results
show clearly that the most time-consuming step was the
computation of the straight skeleton. In our implemen-
tation it indeed required time which was asymptotically
quadratic in the size of the input, while all the other
steps required time linear in the input size. This is
clearly demonstrated in Figure 9, which shows a few re-
lations between running times and output size to com-
plexities of the input. (The displayed functions were ap-
proximated by the curve-fitting tool of Microsoft's Ex-
cel.) Overall, every layer was interpolated on average in
less than one second.

(a) Wire-frame

(b) Shaded

Figure 8: A fully reconstructed pair of lungs

Figure 10 shows a reconstruction of part of a human
pelvis. In the full paper we provide more examples and
their statistics.

R e f e r e n c e s

[AAAG95] O. AICHHOLZER, D. ALBERTS, F. AURENHAMMER, AND
B. GARTNER, A novel type of skeleton for polygons, J. o s
Universal Computer Science, 1 (1995), 752-761.

[BCL96] C.L. BAJAJ, E.J. COYLE, AND K.N. LIN, Arbitrary
topology shape reconstruction from planar cross sections,
Graphical Models and Image Processing, 58 (1996), 524-
543.

[BDG97] G. BAREQUET, M.T. DICKERSON, AND M.T. GOODRICH,
Voronoi diagrams for polygon-offset distance functions, Dis-
crete £4 Computational Geometry, 25 (2001), 271-291.

[BST00] G. BAREQUET, D. SHAPmO, AND A. TAL, Multilevel
sensitive reconstruction of polyhedral surfaces from parallel
slices, The Visual Computer, 16 (2000), 116-133.

[BS96] G. BAREQUET AND M. SHARIR, Piecewise-linear interpola-
tion between polygonal slices, Computer Vision and Image
Understanding, 63 (1996), 251-272.

[BKOS97] M. DE BERG, M. VAN KREVELD, M. OVERMARS, AND
O. SCHWARZKOPF, Computational Geometry: Algorithms
and Applications, Springer-Verlag, Germany, 1997.

125

(a) Overlay of two slices

(c) Straight skeletons of active cells

(e) Triangulated skeletons

(b) Close-up of (a)

i , /

(d) Close-up of (c)

(f) Close-up of (e)

(g) A perspective view of the interpolation (h) Close-up of (g)

Figure 7: A complex branching example

126

Numbers of
Slice Contour Skeleton Surface

Number Edges Edges Triangles
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

34
30
26
58

101
128
149
149
162
164
162
174
189
229
238
233
257
263
265
259
228
210
212
230
245
242
234
230
249

80
72
68
64

252
318
386
378
414
430
413
430
466
579
588
588
628
681
681
664
56O
522
54O
578
6O8
6O8
594
586
615

Total 5,350 13,391 18,812

Time (Seconds)
Line Symm. Height

Sweep Diff. Skeleton Setting Triang. Total
110 0.05 0.05
98 0.06 0.06
96 0.05 0.05
86 0.06 0.06

337 0.22 0.05 0.27
401 0.44 0.06 0.50
481 0.49 0.49
471 0.05 0.55 0.60
523 0.05 0.66 0.05 0.76
532 0.77 0.06 0.83
512 0.66 0.05 0.71
577 0.77 0.05 0.82
632 0.06 0.77 0.83
769 1.27 0.05 1.32
850 0.06 1.15 0.05 1.26
826 0.06 1.32 0.05 1.43
940 0.06 1.43 0.05 0.06 1.60

1,028 0.05 1.76 0.05 1.86
963 0.06 1.43 0.05 1.54
961 0.06 1.48 0.05 1.59
815 0.06 1.21 0.05 0.06 1.38
776 0.88 0.05 0.93
784 0.93 0.05 0.98
835 0.06 1.10 0.05 1.21
956 0.06 1.37 0.06 1.49
889 0,05 1.32 0.05 1.42
864 0,06 1.15 0.06 1.27
801 0.05 1.16 0.05 1.26
899 0.06 1.26 0.05 0.06 1.43

0.33 0.58 25.77 0.20 1.12 28.00

Table 1: Performance of the algorithm (empty entries are practically 0)

2 .

14

12

1

0.8

06

04

02

0

..____ > ' 9

(a)

4r~

,y = 7.,588g1¢ ~ 15~3 7

(b)

1000 ° ; , 2_

y~ L~4X - 44.13G

.o~

(c) (d)

F i g u r e 9: (a , b , c) S k e l e t o n c r e a t i o n t i m e , n u m b e r of s k e l e t o n e d g e s , a n d n u m b e r o f o u t p u t t r i a n g l e s , r e s p e c t i v e l y

(in t h e l u n g s m o d e l) , as f u n c t i o n s o f t h e n u m b e r of i n p u t c o n t o u r edges ; (d) N u m b e r of o u t p u t t r i a n g l e s as a

f u n c t i o n of i n t e r m e d i a t e s k e l e t o n edges .

127

Figure 10: A reconstructed pelvis

[Bo88] J.D. BOISSONNAT, Shape reconstruction from planar cross
sections, Computer Vision, Graphics and Image Processing,
44 (1988), 1-29.

[BG92] J.D. BOISSONNAT AND B. GEIGER, Three dimensional re-
construction of complex shapes based on the Delaunay tri-
angulation, Technical Report 1697, Inria-Sophia Antipolis,
1992.

[CD99] S.W. CHENG AND T.K. DEY, Improved construction of
Delaunay based contour surfaceR, Proc. ACM Syrup. on
Solid Modeling and Applications, 322-323, 1999.

ICY02] S.-W. CHENG AND A. VIGNERON, Motorcycle graphs
and straight skeletons, Proc. 13th ACM/SIAM Syrup. on
Discrete Algorithms, 156-165, 2002.

[CP94] Y.K. CHOI AND K.H. PARK, A heuristic triangulation al-
gorithm for multiple planar contours using an extended dou-
ble branching procedure, The Visual Computer, 10 (1994),
372-387.

[CS78] H.N. CHRISTIANSEN AND T.W. SEDERBERG, Conversion
of complex contour line definitions into polygonal element
mosaics, Computer Graphics, 13 (1978), 187-192.

[FO98] P. FELKEL AND S. OBDRZALEK, Straight skeleton com-
putation, Spring Conf. on Computer Graphics, Budmerice,
Slovakia, 210-218, 1998.

[FO99] P. FELKEL AND S. OBDRZALEK, Improvement of Oliva's
algorithm for surface reconstruction from contours, Spring
Conf. on Computer Graphics, Budmerice, Slovakia, 254-
263, 1999.

lEE99] D. EPPSTEIN AND J. ERICKSON, Raising roofs, crashing
cycles, and playing pool: Applications of a data structure
for finding pairwise interactions, Disc. ~4 Comp. Geometry,
22 (1999), 569-592.

[FKU77] H. FUCHS, Z.M. KEDEM, AND S.P. USELTON, Optimal
surface reconstruction from planar contours, Communica-
tions of the ACM, 20 (1977), 693-702.

[GD82] S. GANAPATHY AND T.G. DENNEHY, A new general
triangulation method for planar contours, A CM Trans. on
Computer Graphics, 16 (1982), 69-75.

[KF88] N. KEHTARNAVAZ AND R.J.P. DE FIGUEIREDO, A frame-
work for surface reconstruction from 3D contours, Computer
Vision, Graphics and Image Processing, 42 (1988), 32-47.

[KSF88] N. KEttTARNAVAZ, L.R. SIMAR, AND R.J.P. DE
FIGUEIREDO, A syntactic/semantic technique for surface re-
construction from cross-sectional contours, Computer Vi-
sion, Graphics and Image Processing, 42 (1988), 399-409.

[Ke75] E. KEPPEL, Approximating complex surfaces by triangu-
lation of contour lines, IBM Journal of Research and De-
velopment, 19 (1975), 2-11.

[MSS91] D. MEYERS, S. SKINNER, AND K. SLOAN, Surfaces from
contours: The correspondence and branching problems,
Proc. Graphics Interface, 246-254, 1991.

[OPC96] J.-M. OLIVA, M. PERRIN, AND S. COQUILLART, 3D
reconstruction of complex polyhedral shapes from contours
using a simplified generalized Voronoi diagram, Computer
Graphics Forum, 15 (1996), C397-408.

[Sh81] M. SHANTZ, Surface definition for branching contour-
defined objects, Computer Graphics, 15 (1981), 242-270.

[SP88] K.R. SLOAN AND J. PAINTER, Pessimal guesses may be
optimal: A counterintuitive search result, IEEE T-PAMI,
10 (1988), 949-955.

[WA86] Y.F. WANG AND J.K. AGGARWAL, Surface reconstruction
and representation of 3-D scenes, Pattern Recognition,
19 (1986), 197-207.

[WW94] E. WELZL AND B. WOLFERS, Surface reconstruction
between simple polygons via angle criteria, J. of Symbolic
Computation, 17 (1994), 351-369.

[ZJH87] M.J. ZYDA, A.R. JONES, AND P.G. HOGAN, Surface con-
struction from planar contours, Computers and Graphics,
11 (1987), 393-408.

