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Straight-Skeleton Based Contour Interpolation* 

Gill Barequet t Michael T. Goodrich $ Aya Levi-Steiner§ Dvir Steiner ¶ 

Abstract  
In this paper we present an efficient method for interpolating 
a piecewise-linear surface between two parallel slices, each 
consisting of an arbitrary number of (possibly nested) poly- 
gons that define 'material' and 'nonmaterial' regions. This 
problem has applications to medical imaging, geographic in- 
formation systems, etc. Our method is fully automatic and 
is guaranteed to produce non-self-intersecting surfaces in all 
cases regardless of the number of contours in each slice, their 
complexity and geometry, and the depth of their hierarchy of 
nesting. The method is based on computing cells in the over- 
lay of the slices, that form the symmetric difference between 
them. Then~ the straight skeletons of the selected cells guide 
the triangulation of these cells. Finally, the resulting trian- 
gles are lifted up in space to form an interpolating surface. 
We provide some experimental results on various complex 
examples to show the good and robust performance of our 
algorithm. 

Keywords: Piecewise-linear interpolation, surface recon- 
struction. 

1 I n t r o d u c t i o n .  

The reconstruction of a polyhedral surface from a se- 
quence of parallel polygonal slices has been an intrigu- 
ing problem during the last thir ty years. This problem 
arises primarily in the fields of medical imaging, digiti- 
zation of objects, and geographical information systems. 
Data obtained by medical-imaging apparata,  range sen- 
sors, or elevation contours are interpolated in order 
to represent, reconstruct, and visualize human organs, 
CAD objects, or topographic terrains. It is assumed 
that  a preprocessing step has already extracted from 
the raw data  (usually a sequence of pixel images) the 
closed two-dimensional contours, which delimit the ms- 
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terial regions on each slice. Then, the goal becomes to 
compute a surface that  tiles between these contours and 
forms a solid volume whose cross-sections at the given 
heights identify with the input slices. 

Various algorithms for two-dimensional based poly- 
hedral surface construction have been suggested in the 
literature (e.g., [Ke75, FKU77, GD82, WA86, KF88, 
KSF88, SP88, WW94]). Many of the early algorithms 
fail in complex instances (such as multiple branch- 
ing), leave gaps between the contours, and/or  generate 
unacceptable solutions (e.g., self-intersecting surfaces). 
Some algorithms [CS78, Sh81, ZJH87, MSS91, CP94] 
reduce the more involved cases to the simple case 
where each slice contains only one contour. There have 
been only a few at tempts [Bo88, BG92, BS96, BCL96, 
OPC96, CD99] to handle the interpolation problem in 
full generality without limiting the number of contours 
in the slices, their geometries, or their containment hi- 
erarchies. 

A practical simplification assumed in almost all 
the previous works, as well as in this paper, is that  
adjacent layers are independent. Thus, only a single 
pair of successive parallel slices are considered and 
interpolated at a time, and the reconstructed object is 
the concatenation of the interpolating models computed 
for all the layers. To the best of our knowledge, the only 
work that  avoided this assumption is [BST00]. 

The algorithm suggested in the current paper makes 
no prior assumption about the input. It operates on any 
kind and number of contours, and handles all branching 
situations and hierarchical structures. It is guaranteed 
to interpolate a valid surface for any possible input, and 
is intuitive in the sense that  it tends to minimize the 
surface area of the reconstruction. This is because it 
uses an offset distance function to locally decide which 
contour features to bind. 

In a nutshell, the algorithm analyzes the overlay of a 
pair of slices in order to identify sets of contour portions 
(bounding a subset of the set of cells of the arrangement 
of contours) which are to be bound together. Then, 
the straight skeleton (a linearized version of the medial 
axis [AAAG95]) of each one of these cells is computed 
and used to guide a Steiner triangulation of the cell. 
Finally, the topology of the skeleton is used again 
for lifting the triangulation up to three dimensions. 
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The union of the lifted-up triangulations of all the 
chosen cells is the output  surface. We emphasize that  
the algorithm :is fully automatic without any tuning 
parameters, which are a major disadvantage of some 
previously-suggested algorithms. 

Our algorithm is somewhat similar to that  of Oliva 
et al. [OPC96]. The latter algorithm also computes 
the symmetric difference of the slices as ours does, and 
computes straight skeletons of some cells of the ar- 
rangement of contours of the two slices. The differ- 
ences between the two approaches are in the other steps 
of the algorithms: (1) Oliva et al. classify the active 
cells differently from us; (2) We apply a different tri- 
angulation scheme, which avoids overhanging construc- 
tions that  may be created by the algorithm of Oliva 
et al. (partial remedies were later proposed by Felkel 
and Obdr ~ l e k  [FO99]); and (3) We apply a different 
method for assigning heights for intermediate vertices: 
while Oliva et al. use Euclidean distance, we use offset 
distance. 

The paper is organized as follows. In Section 2 
we give an overview of the algorithm. Section 3 
describes the data-acquisition phase, Section 4 describes 
the analysis of the overlay of two slices, and Section 5 
describes the computation of surface patch out of the 
straight skeleton of one cell of the slices' overlay. In 
Section 6 we analyze the complexity of the algorithm, 
and in Section 7 we present some experimental results. 

2 Overview of  the Algorithm. 

Our proposed algorithm consists of the following steps: 

. Data acquisition. Orient all the contours in each 
slice in consistent directions. If the input does 
not include this information, compute the contour 
nesting hierarchy in each slice, and use it to obtain 
the desired orientations. 

2. Analyzing the contour over lay .  Compute the 
overlay of the two slices. For each cell in the ar- 
rangement of polygons, attach a tag that  identifies 
whether the cell lies in the material or the nonma- 
terial regions of each slice. Discard all the cells that  
either belong to the material or to the nonmaterial 
regions in both slices. 

3. Surface interpolation. Compute the straight 
skeletons of all the remaining cells, separately 
triangulate each region in the maps induced by the 
skeletons, and lift the triangulations up to three 
dimensions. 

The following three sections describe the algorithm 
steps in detail. 

3 Data Acquisition. 

The data  consist of a sequence of slices, all in the same 
file. Each slice consists of a hierarchy of contours, that  
is, a forest of closed simple polygons with nonintersect- 
ing boundaries, where a parent polygon fully encloses 
all its children, and no other contour is enclosed in the 
parent polygon and encloses one of its children. Each 
slice is also marked by its height along the z axis; thus 
every vertex is specified by its three coordinates. In 
what follows we restrict our attention to a single pair 
of successive slices, and describe the interpolation of a 
solid within the layer delimited by the slices. 

Contours of the root level (not contained in any 
other contour) are assigned level 0, their holes are as- 
signed level 1, etc. Thus, every even level consists of 
contours whose interior, in a sufficiently-small neigh- 
borhood of the contour, is the "material," and every 
odd level consists of contours whose interior, sufficiently 
near them, is the "nonmaterial." We orient the con- 
tours consistently, for example, so that  for each contour, 
when viewed from above, the material lies to its right. 
Thus all even-level contours are oriented in a clockwise 
direction, when viewed from above, and all odd-level 
contours are oriented in a counterclockwise direction. 
If the containment hierarchy of the contours is omit- 
ted, we compute it ourselves. The construction of the 
hierarchy and of the contour orientations is easily per- 
formed using a standard line-sweep procedure in each 
slice (see [BS96]). 

The internal representation of the contours tha t  our 
system uses is the quad-edge data  structure. This is 
done for maintaining efficiently the constructed polyhe- 
dral boundary of the interpolating solid object. 

4 Analyzing the Contour Overlay. 

We compute a representation of the arrangement of 
the contours of the two slices, obtained by projecting 
one slice onto the other (along the z direction). This 
can easily be done by applying a second line-sweep 
procedure on the overlay of the two slices. In fact, 
this step and the preceding step (the computation of 
contour hierarchy and orientation) can be performed at 
once. As part  of sweeping the plane, each cell of the 
arrangement is a t t r ibuted with indications whether it 
lies in the material or the nonmaterial regions of each 
of the slices. 

We then discard all the cells that  belong either to 
the material or to the nonmaterial  regions of both slices. 
Thus we remain with only cells that  correspond to 
material in one slice and nonmaterial in the other slice. 
Denote these as the active cells. Figure 1 shows two 
slices, their overlay, and the active cells of the overlay. 

For the moment ignore the original polygon vertices 
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(a) Upper slice (b) Lower slice 

Q 
(c) Slices overlay (d) Active cells 

Figure 1: Active cells in the overlay of two slices 

and consider only the vertices of the arrangement of the 
polygons (intersection points of two polygons, one of 
each slice). By 'contour portion' we mean a subpolygon 
whose endpoints two such vertices (intersections of the 
original polygons) and whose interior is free of other 
vertices. The endpoints of contour portions are seen in 
Figure l(c). 

THEOREM 4.1. Each contour portion belongs to exactly 
one active cell. 

Proof. Consider any contour portion A B ,  where A and 
B are vertices of the arrangement of contours (inter- 
section points of contours of the two slices). Assume 
without loss of generality that  A B  belongs to a contour 
of the first slice. Thus, it is shared by two cells of the ar- 
rangement, exactly one of which is material in the first 
slice. In the second slice, A B  is fully contained in either 
the material or the nonmaterial region. In either case, 
by definition, A B  bounds exactly one active cell. 

Since we will use the boundaries of only the active 
cells for interpolating a surface between the two slices, 
we are now guaranteed that  every contour portion will 
be used exactly once as a boundary of that  surface. 
Together with the original contours, we will have a 
closed surface bounding a solid model. 

5 Surface Interpolation. 

5.1 Skele tons  a n d  Tr i angu la t ions .  At this point 
we have already found the boundaries of the interpo- 
lated surface. Our current goal is to construct a col- 
lection of pairwise-disjoint non-self-intersecting surface 
patches with known boundaries (the active cells). This 

is easy to achieve by forming a surface whose xy pro- 
jection is simple, that  is, every vertical line intersects 
the surface in at most one point. For ease of exposition 
we first describe the computation of the xy  projection 
of the surface, and only then, its lifting up to three di- 
mensions. 

The xy projection of the interpolated surface is sim- 
ply the union of all the active cells in the arrangement of 
all the contours, as is shown in Figure l(d). We explain 
in detail how to create the triangulations of these cells 
(which after lifting up to three dimensions will contain 
the facets of the meshed surface). 

We begin with computing the straight skeletons of 
all the active cells. Obviously, by construction, ev- 
ery face in the subdivision induced by the straight 
skeleton of a cell contains exactly one original polygon 
edge, and the face is monotone with respect to that  
edge [AAAG95, Lemma 3]. Then, among all possible 
triangulations of the face, we choose a triangulation that 
is as monotone as possible with respect to the polygon 
edge (see [BKOS97, pp. 55-58]). Figure 2 shows two 
examples of an overlay of two contours (shown with 
regular and thick lines), the straight skeletons of the 
active cells (shown with dashed lines), and their respec- 
tive triangulations (shown with dotted lines). We chose 
this triangulation because it guides an intuitive recon- 
struction of a surface. However, any other triangulation 
will do. The union of the triangulations of all the ac- 
tive cells (guided by the respective skeletons) is the xy 
projection of the sought triangulated surface. 

5.2 L i f t ing  Up.  We assume without loss of general- 
ity that  the lower and the upper slices are at heights 0 
and 1, respectively. In order to perform our final s tep--  
that  is, to lift the surface up to three dimensions--all 
we have to do is to assign z coordinates to all the ver- 
tices of the straight skeletons. The following theorem 
will help us in doing so. 

THEOREM 5.1. The straight skeleton of every cell is the 
union of edge-disjoint trees whose roots are interior ver- 
tices of the straight skeleton which are equidistant ~ om 
points on contours of both slices (with one exception: a 
cell bounded by a complete contour of one slice). 

This claim is shown in Figure 3. The portions of 
two contours which bound one cell are shown in regular 
and thick lines. The straight skeleton of the interior of 
the cell is divided into trees by vertices equidistant from 
the two contours. Two nontrivial trees are shown with 
dotted lines. The trivial trees (line segments) are shown 
with dashed lines. 

Proof. Follows from the definition of the straight skele- 
ton of a simple polygon. 
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(a) (b) 

Figure 2: Active cells: Their  straight skeletons and triangulations 

. . . .  : . . . ' .  - . -  . . -: : . " . ; .  • : 

Figure 4: Setting vertex heights according to their 
offsets 

Figure 3: Trees in the skeleton, rooted at  points 
equidistant from contours of the two slices 

In assigning z coordinates to vertices we distinguish 
between three cases: 

1. Original polygon vertices. Here we natural ly assign 
to the vertices the height of their respective slice, 
tha t  is, either 0 or 1. 

2. Internal vertices of the straight skeleton. Here we 
have three subcases: 

(a) Skeleton vertices which are equidistant from 
points on contours of both  slices. We set the 
height of these vertices to 0.5. 

(b) Skeleton vertices which are not equidistant 
from points on contours of the two slices. 
According to Theorem 5.1, these are internal 
vertices of trees, the heights of whose roots 
were already set to 0.5, and whose leaves are 
all at  height either 0 or 1. Any monotone 
function can be used for setting the heights 
of the internal vertices of the trees. To reflect 
the relation to the straight skeleton, we use the 
offset distance function (see [BDG97]) from 
the contour, and normalize it so tha t  its value 
is 0 or 1 on the contour and 0.5 at  the root 

(c) 

of the tree. Figure 4 shows a close-up of 
the skeleton tree at the bot tom-r ight  corner 
of Figure 3. The height of the vertices u, v, 
and w is 0 since they belong to the lower slice. 
The height of the root r is set to 0.5, whereas 
the heights of the internal tree vertices s and 
t are set to 93--0.5 = ~ and ~ - 0 . 5  = 8 ,  
respectively. 1 This choice of the z function 
fits our application due to the strong relation 
between the offset of a shape and its straight 
skeleton. 

The special case of an active cell bounded 
completely by a contour of one slice indicates 
the vanishing or appearing of a feature of the 
three-dimensional object. Assume without 
loss of generality tha t  the active cell is defined 
by a contour of the lower slice. Then,  all the 
leaves of the skeleton are already assigned the 
height 0. We set the height of the skeleton 
vertex (or vertices) offset-wise furthest  from 
the contour to 1, and use, as in the previous 

V ~ i o u s l y  we mus t  take care tha t  the height of isolated 
branches of the tree does not  exceed 1. For example, if the vertex 
t in Figure 4 was twice as far as r (offset-wise) f rom the boundary  
of the lower slice, which is possible since the contours are not  
necessarily convex, then its height would be more  than  1. In this 
case we apply a secondary scaling on every isolated subtree.  
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(a) Top view 

(b) Isometric view 

Figure 5: Triangles sharing a contour-intersection point 

case, the skeleton to guide the setting of the 
intermediate heights. We believe that setting 
the "vanishing height" to 1 is better than 
setting it to 0.5 (or to any other intermediate 
value in the open interval (0, 1)), since this 
gives a smooth and continuous interpolation 
between the two slices, morphing a feature in 
one slice to its absence in the other slice. The 
other case (active cell modeled by a contour 
in the upper slice) is completely symmetric. 

3. Intersection points of pairs of contours, one of each 
slice. In fact, such a point is actually three points 
whose xy projections identify with each other. Two 
of the points lie on the original contours, and 
thus have their original heights (0 and 1). The 
third point is a skeleton point which is set to be 
at height 0.5. Note that the two points on the 
original contours are not necessarily vertices of the 
input polygons, but only the intersection point of 
their xy projections. Figure 5(a) shows the xy 
projection of two slices, with a contour-intersection 
point v. Figure 5(b) shows the same scene from 
a lower viewpoint. The point v is actually the xy 
projection of three points v, v ~, and v" (at heights 
0.5, 1, and 0, respectively). The two supposed 
triangles in Figure 5(a) that share the vertex u are 
actually quadrangles, as is seen in Figure 5(b). We 
therefore triangulate them by adding two diagonals. 
In addition, the skeleton edge that coincides with 
the skeleton vertex v (uv in the figure) is deleted 
so as to form one triangle containing the edge v~v" 
(z~uv~v" in the figure). 

After assigning the z values (heights) to all the ver- 
tices of the skeletons, we lift the collection of triangu- 
lated patches up to three dimensions. The result is the 
desired interpolation. 

6 Complex i ty  Analysis.  

We measure the complexity of the algorithm as a 
function of n, the total complexity (number of vertices) 
of the two slices. We also denote by k the complexity of 
the overlay of the two slices. In the worst case k can be 
as high as O(n2), but in most practical cases it is O(n). 

Computing the contour nesting hierarchy in each 
slice and orienting the contours in the correct directions 
takes O(nlogn) time. This is performed by invoking a 
simple line-sweep procedure. If the input contours are 
guaranteed to be oriented well, we can skip this step of 
the algorithm. 

Computing and analyzing the overlay of the two 
slices takes O(n log n + k) time. This already includes 
the selection of the active cells of the overlay. Com- 
puting the straight skeletons of all the active cells can 
theoretically be done in O(k 17/11+~) time, for every 

> 0 [EE99], 2 by using a sophisticated data-structure 
for ray-shooting queries, or even slightly better (in non- 
degenerate cases and on the average) in O(k 3/~ log k) 
expected time [CV02]. Instead, we implemented the 
algorithm of [FO98] whose running time is O(k 2) in 
the worst case, and in practice, much less than that. 
(Our experiments suggest that this step requires about 
O(n 1"6) time.) Triangulating the monotone subcells in- 
duced by the skeletons, as well as lifting the triangula- 
tions up to three dimensions to form the interpolating 
surfaces, take O(k) time. 

To conclude, the entire algorithm runs in O(k 2) 
time. In the worst case this is O(n4), but for most cases 
(in which the complexity of the slice overlay is linear 
in that of the original slices) the running time of the 
algorithm is theoretically O(n2), and in practice even 
less than that (around O(n 1"6) time in our experiments). 

7 Exper imenta l  Results .  

We implemented the entire algorithm in C++ on an 
HP Omnibook 6000 (a laptop). The computer was 
equipped with a Pentium III 850 MHz processor, 128 
megabytes of memory, and an ATI Rage M1 AGP 
Mach 64 graphics card with 32 megabytes of memory. 
The implementation, performed by the third and fourth 
authors, took about two months, and the software 
consisted of about 8,500 noncomment lines of code. We 
experimented with the algorithm on several data files 

2In fact, the precise running time is O(k 1+~ +kS/ll+er9/11+~), 
where r is the number of reflex contour vertices. 
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(a) Skeleton (b) Triangulated cell 

Figure 6: A simple interpolation case 

obtained by medical scanners, and obtained very good 
results in practically all cases. 

Here are some specific examples of the performance 
of the algorithm: 

Figure 6(a) shows the overlay of two contours 
belonging to two successive slices (in black and grey). 
Since the two contours are nested, the single active cell 
is the ring bounded by the two contours. Its straight 
skeleton is shown with thick black lines. Figure 6(b) 
shows the triangulated ring. 

Figure 7(a) shows an overlay of two complex slices 
(one in black and the other in grey) taken from a lungs 
data  file. Note the almost-horizontal line that  appears 
at the bot tom of the figure. This is the swept line at 
the last discrete event that  it handles. A close-up of the 
area in the middle of the overlay is seen in Figure 7(b). 
Figure 7(c) shows in thick black lines the straight 
skeletons of all the active cells in the arrangements of 
contours of the two slices. Similarly, Figure 7(d) is a 
close-up of Figure 7(c). Figure 7(e) shows a top-down 
view of the triangulated skeletons. A close-up of their 
middle area is shown in Figure 7(f). Figures 7(g,h) 
show a perspective view and a close-up of the surface 
interpolated between the two slices. 

Figures 8(a,b) show a wire-frame and a shaded dis- 
play of the fully-reconstructed pair of lungs. These data  
contained thir ty slices, thus we invoked our algorithm 29 
times. Table 1 displays statistics of these experiments. 
The running times of some stages were negligible and 
are thus omitted in the table. The experimental results 
show clearly that  the most time-consuming step was the 
computation of the straight skeleton. In our implemen- 
tation it indeed required time which was asymptotically 
quadratic in the size of the input, while all the other 
steps required time linear in the input size. This is 
clearly demonstrated in Figure 9, which shows a few re- 
lations between running times and output  size to com- 
plexities of the input. (The displayed functions were ap- 
proximated by the curve-fitting tool of Microsoft's Ex- 
cel.) Overall, every layer was interpolated on average in 
less than one second. 

(a) Wire-frame 

(b) Shaded 

Figure 8: A fully reconstructed pair of lungs 

Figure 10 shows a reconstruction of part  of a human 
pelvis. In the full paper we provide more examples and 
their statistics. 
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(a) Overlay of two slices 

(c) Straight skeletons of active cells 

(e) Triangulated skeletons 

(b) Close-up of (a) 

i , /  

(d) Close-up of (c) 

(f) Close-up of (e) 

(g) A perspective view of the interpolation (h) Close-up of (g) 

Figure 7: A complex branching example 
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Numbers of 
Slice Contour Skeleton Surface 

Number Edges Edges Triangles 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

34 
30 
26 
58 

101 
128 
149 
149 
162 
164 
162 
174 
189 
229 
238 
233 
257 
263 
265 
259 
228 
210 
212 
230 
245 
242 
234 
230 
249 

80 
72 
68 
64 

252 
318 
386 
378 
414 
430 
413 
430 
466 
579 
588 
588 
628 
681 
681 
664 
56O 
522 
54O 
578 
6O8 
6O8 
594 
586 
615 

Total 5,350 13,391 18,812 

Time (Seconds) 
Line Symm. Height 

Sweep Diff. Skeleton Setting Triang. Total 
110 0.05 0.05 
98 0.06 0.06 
96 0.05 0.05 
86 0.06 0.06 

337 0.22 0.05 0.27 
401 0.44 0.06 0.50 
481 0.49 0.49 
471 0.05 0.55 0.60 
523 0.05 0.66 0.05 0.76 
532 0.77 0.06 0.83 
512 0.66 0.05 0.71 
577 0.77 0.05 0.82 
632 0.06 0.77 0.83 
769 1.27 0.05 1.32 
850 0.06 1.15 0.05 1.26 
826 0.06 1.32 0.05 1.43 
940 0.06 1.43 0.05 0.06 1.60 

1,028 0.05 1.76 0.05 1.86 
963 0.06 1.43 0.05 1.54 
961 0.06 1.48 0.05 1.59 
815 0.06 1.21 0.05 0.06 1.38 
776 0.88 0.05 0.93 
784 0.93 0.05 0.98 
835 0.06 1.10 0.05 1.21 
956 0.06 1.37 0.06 1.49 
889 0,05 1.32 0.05 1.42 
864 0,06 1.15 0.06 1.27 
801 0.05 1.16 0.05 1.26 
899 0.06 1.26 0.05 0.06 1.43 

0.33 0.58 25.77 0.20 1.12 28.00 

Table 1: Performance of the algorithm (empty entries are practically 0) 

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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F i g u r e  9: ( a , b , c )  S k e l e t o n  c r e a t i o n  t i m e ,  n u m b e r  of  s k e l e t o n  e d g e s ,  a n d  n u m b e r  o f  o u t p u t  t r i a n g l e s ,  r e s p e c t i v e l y  

( in  t h e  l u n g s  m o d e l ) ,  as  f u n c t i o n s  o f  t h e  n u m b e r  of  i n p u t  c o n t o u r  edges ;  (d)  N u m b e r  of  o u t p u t  t r i a n g l e s  as  a 

f u n c t i o n  of  i n t e r m e d i a t e  s k e l e t o n  edges .  
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Figure 10: A reconstructed pelvis 
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