The Ball-Pivot Algorithm for Surface Reconstruction

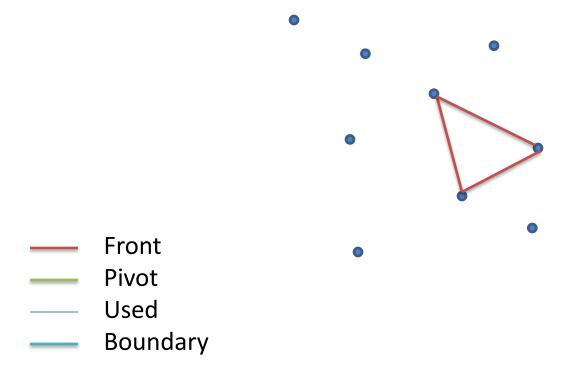
James Doverspike

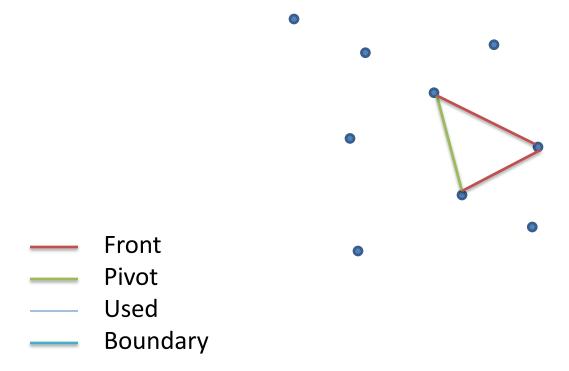
Contributions

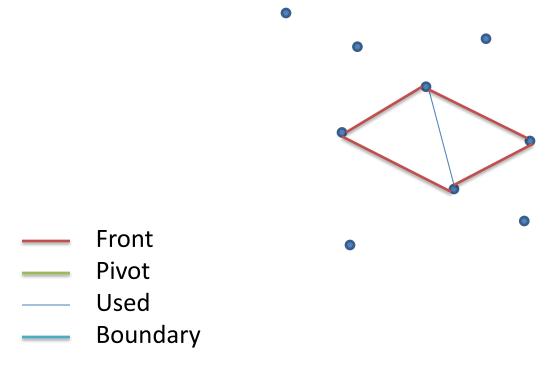
- Simple algorithm
- Manifold subset of an alpha shape
- Linear-time and space complexity
- Out-of-core
- Handles noise

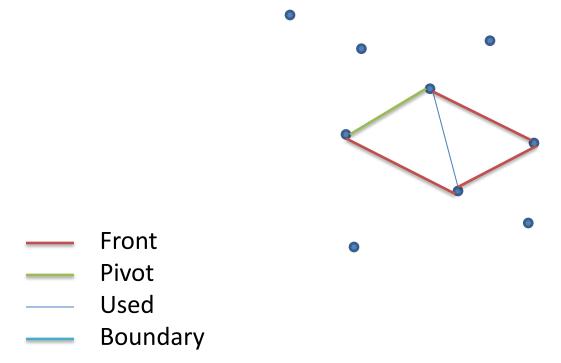
Contributions

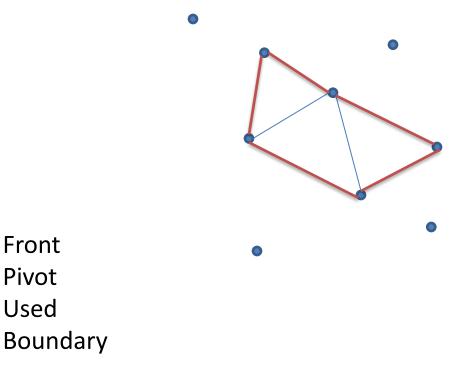
The main contribution of the paper is a geometric linear-time algorithm for surface reconstruction from noisy data.

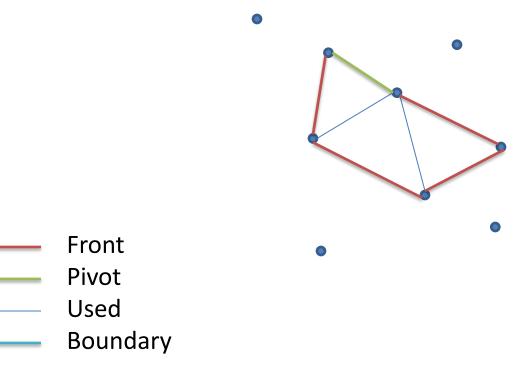


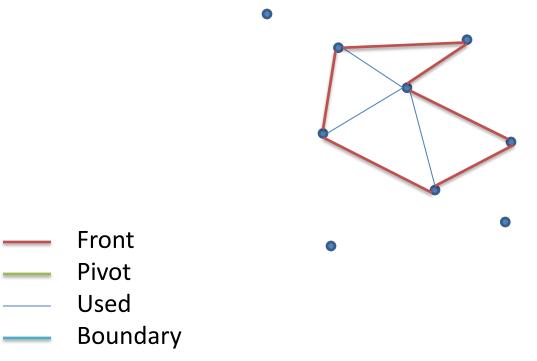


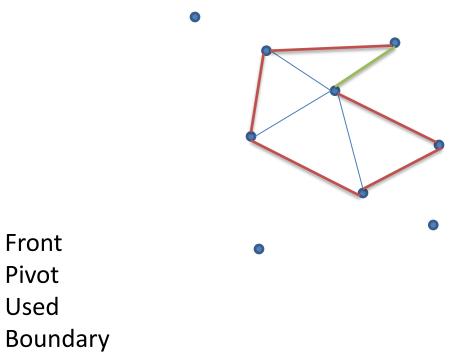




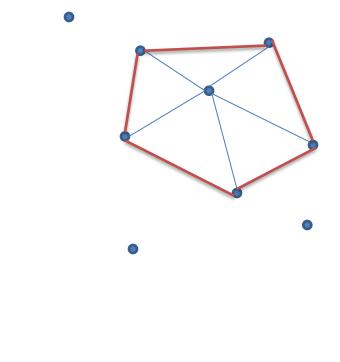








The algorithm takes in a set of oriented points and produces a mesh in linear time.

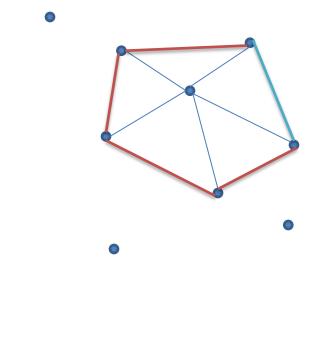


Front

Pivot

Used

The algorithm takes in a set of oriented points and produces a mesh in linear time.

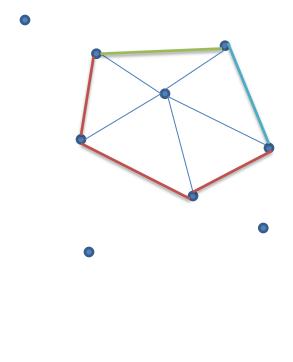


Front

Pivot

Used

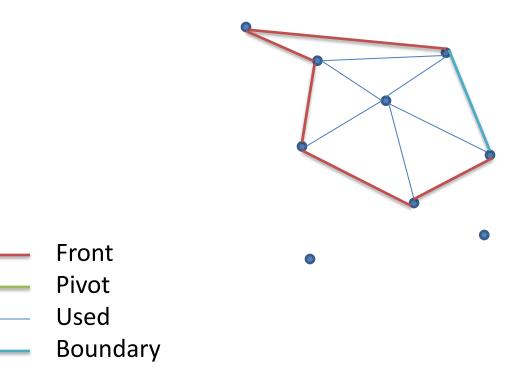
The algorithm takes in a set of oriented points and produces a mesh in linear time.

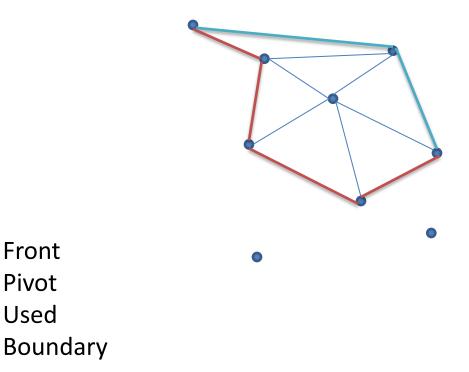


Front

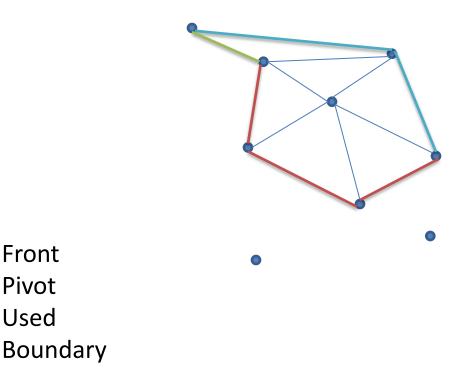
Pivot

Used





The algorithm takes in a set of oriented points and produces a mesh in linear time.

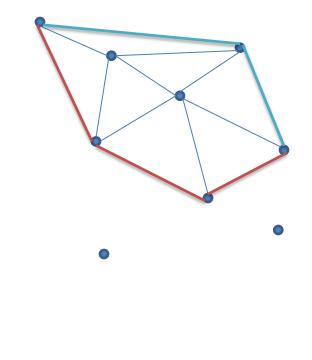


Front

Pivot

Used

The algorithm takes in a set of oriented points and produces a mesh in linear time.

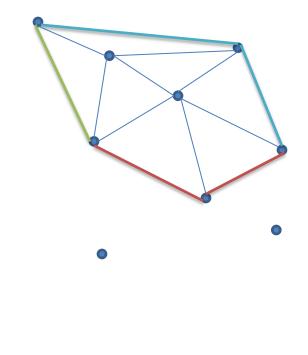


Front

Pivot

Used

The algorithm takes in a set of oriented points and produces a mesh in linear time.

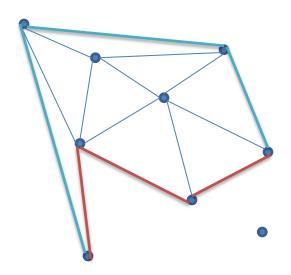


Front

Pivot

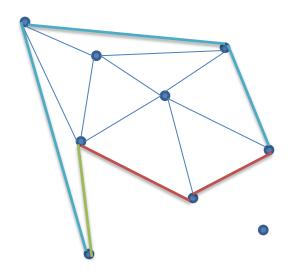
Used

The algorithm takes in a set of oriented points and produces a mesh in linear time.



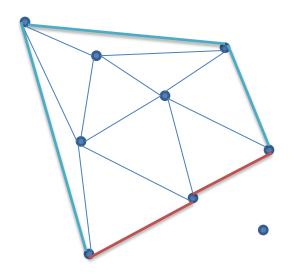
FrontPivotUsedBoundary

The algorithm takes in a set of oriented points and produces a mesh in linear time.



FrontPivotUsedBoundary

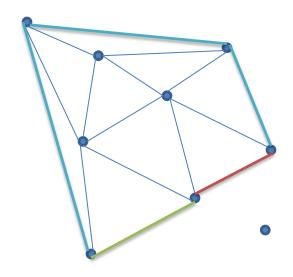
The algorithm takes in a set of oriented points and produces a mesh in linear time.



— Front
— Pivot

— Used

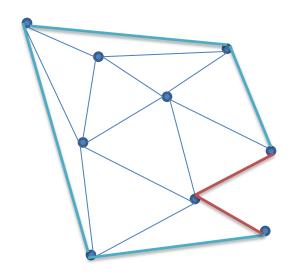
The algorithm takes in a set of oriented points and produces a mesh in linear time.



— Front
— Pivot

— Used

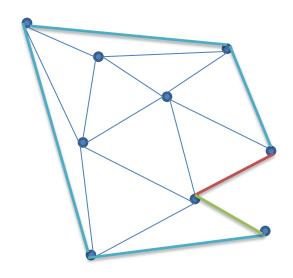
The algorithm takes in a set of oriented points and produces a mesh in linear time.



— Front
— Pivot

— Used

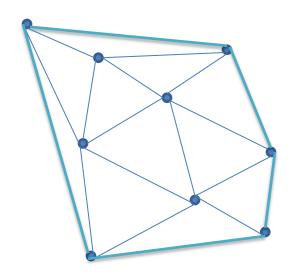
The algorithm takes in a set of oriented points and produces a mesh in linear time.



— Front
— Pivot

— Used

The algorithm takes in a set of oriented points and produces a mesh in linear time.



— Front

Pivot

Used

Data structures

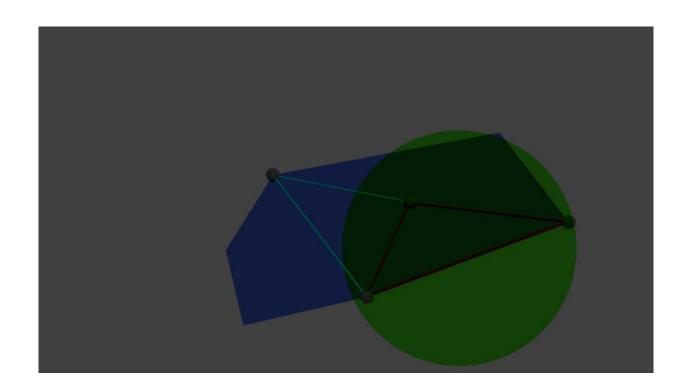
- List of edges on front F
- List of computed triangles
- Voxel grid of unused vertices
- List of frozen edges (for out-of-core)

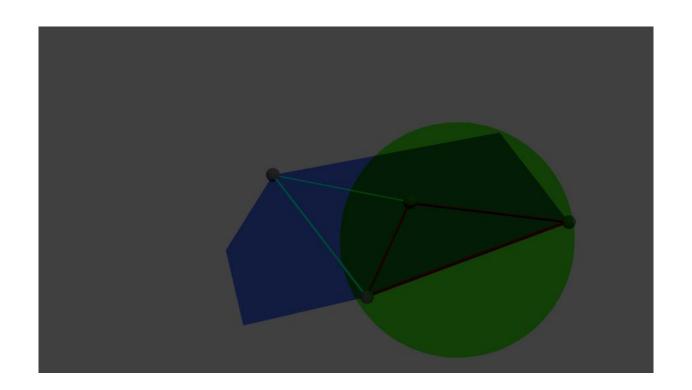
Definitions

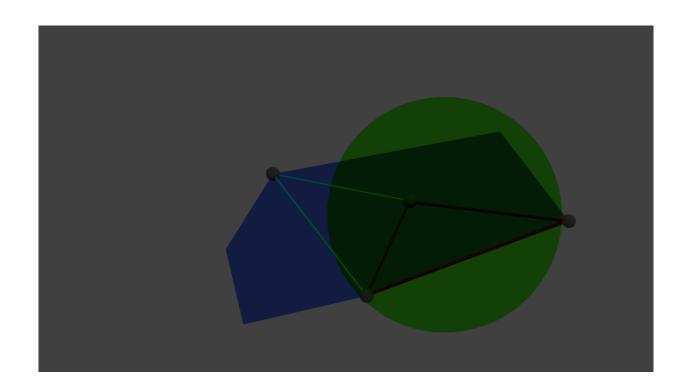
- ρ the radius of the ball
- y the circle about which the center of the ball moves
- σ_i , σ_i , σ_k the three vertices of triangle τ
- c_{ijo} the center of the ball touching σ_i , σ_j , σ_k
- *n* the normal of triangle τ
- e_{ij} the edge between vertices σ_i and σ_j
- m the midpoint of e_{ij}

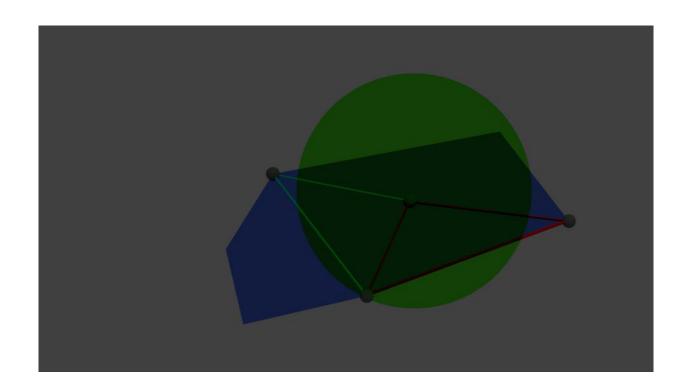
Finding seed triangles

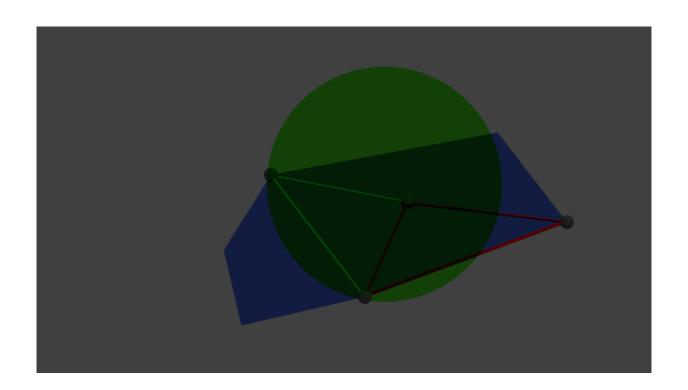
- 1. Pick an unused vertex σ
- 2. Consider all pairs of points σ_a , σ_b in a ρ neighborhood in order of distance from σ
- 3. Build potential seed triangles $\tau(\sigma, \sigma_a, \sigma_b)$
- 4. Verify that the triangle normal matches the vertex normals
- 5. Test that a *p*-ball with center in the outward halfspace touches all three vertices and contains no other points

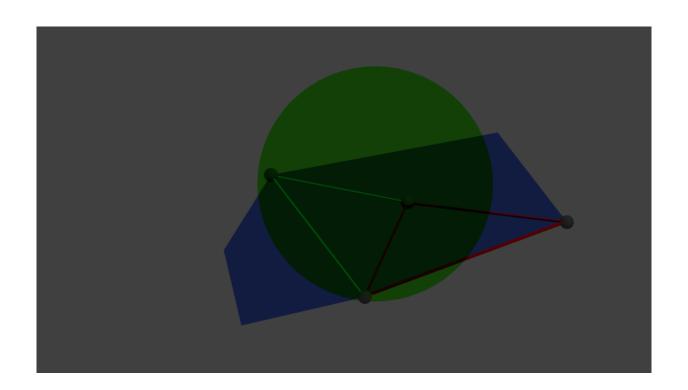












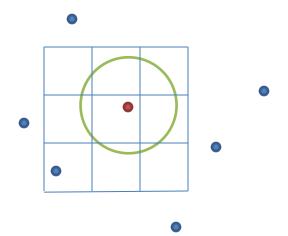
Intersection

Finding σ_k :

- For each vertex in a 2ρ -neighborhood of m compute the center c_x of a ball touching σ_i , σ_j , and σ_x
- Each c_x lies on γ and can be computed by intersecting a ρ -sphere centered at σ_x with γ
- Select the first point c_x on the trajectory γ

Intersection

- The vertices are stored in a voxel grid
 - Each voxel covers ρ^{d} ($\rho x \rho x \rho$ for \mathbb{R}^{3})
- Only 9 voxels need to be checked



- 1. Find seed triangle
- 2. Pivot to closest point
- 3. Add triangle to mesh
- 4. Add edges to front F
- 5. Pivot around both edges

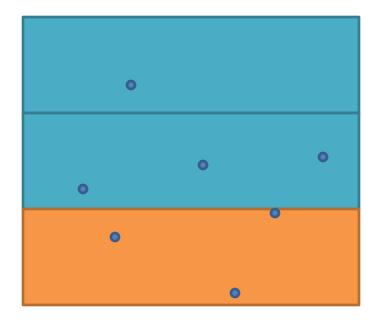
Limitations

- The size of ρ changes the surface
 - Small ρ can pass through the surface
 - Large ρ can miss finer triangles

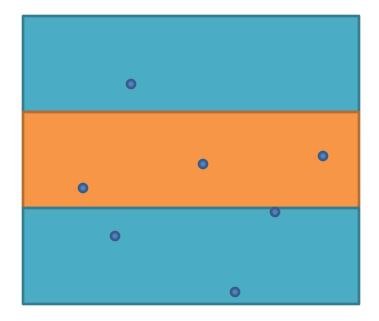
Alpha shapes

- The algorithm is similar to alpha shapes except that no edges or vertices are produced
- The size of ρ needs to be chosen carefully

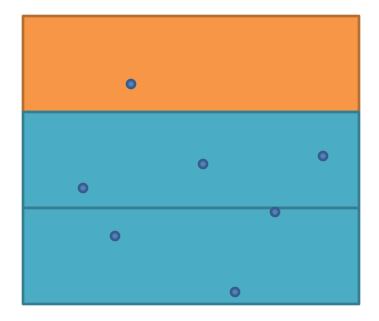
- Algorithm easily amenable to low memory
- Break into sections



- Algorithm easily amenable to low memory
- Break into sections



- Algorithm easily amenable to low memory
- Break into sections



 Edges that cross boundary are marked as frozen and used in the next section