600.657: Mesh Processing

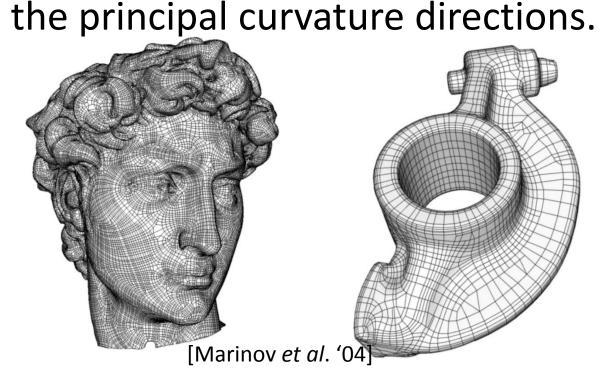
Chapter 6

Quad-Dominant Remeshing

Goal:

Generate a remeshing of the surface that consists mostly of quads whose edges align with

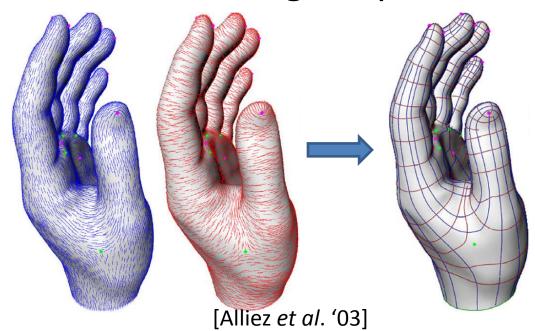
[Alliez et al. '03]



Quad-Dominant Remeshing

Approach:

Where we can, trace lines of minimal/maximal curvature. Since these are orthogonal, their intersections should give quads.



Quad-Dominant Remeshing

Challenges:

- 1. What are the principal curvature directions?
- 2. What are the principal curvature lines?
- 3. Where do we place the lines and how long should they be?
- 4. What happens when principal directions are not well-defined?

Recall:

We can define curvatures at an edge e in terms of the angle $\beta(e)$ between curve segments*:

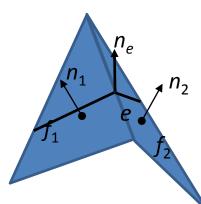
- The min/max curvature is 0, with principal curvature direction along e.
- The max/min curvature is equal to the dihedral angle ($\beta(e) = \angle n_1 n_2$), with principal curvature direction along $n_e \times e$.

*This definition follows the definition of H_{ν} rather than \widetilde{H}_{ν} in [Cohen-Steiner et al. '03]

Recall:

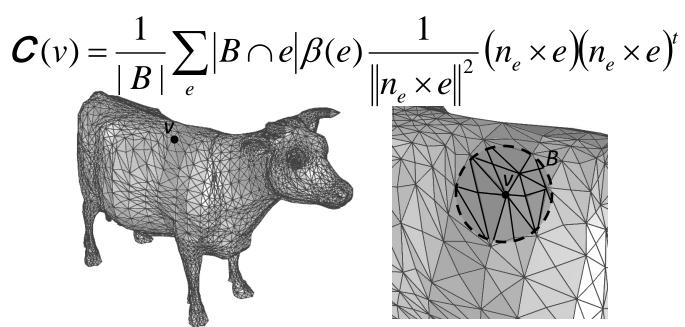
This allows us to define a 3x3 curvature tensor along the edge e as the symmetric matrix with eigenvalue $\beta(e)$ in the direction across e and eignvalues of 0 in perpendicular directions:

$$C(p \in e) = \beta(e) \frac{1}{\|n_e \times e\|^2} (n_e \times e) (n_e \times e)^t$$



Recall:

This, in turn, allows us to define the curvature tensor around a vertex v, average over a neighborhood B around v:



$$\boldsymbol{C}(v) = \frac{1}{|B|} \sum_{e} |B \cap e| \beta(e) \frac{1}{\|n_e \times e\|^2} (n_e \times e) (n_e \times e)^t$$

Recall:

Computing the eigen-decomposition of the curvature tensor we get an estimate of:

- The normal: The eigenvector with smallest absolute eigenvalue.
- The principal directions and values: The other two eigenvectors and their associated eigenvalues.

$$\boldsymbol{C}(v) = \frac{1}{|B|} \sum_{e} |B \cap e| \beta(e) \frac{1}{\|n_e \times e\|^2} (n_e \times e) (n_e \times e)^t$$

Note:

When the two principal directions have the same principal curvature values, the principal directions are not well defined.

$$\boldsymbol{C}(v) = \frac{1}{|B|} \sum_{e} |B \cap e| \beta(e) \frac{1}{\|n_e \times e\|^2} (n_e \times e) (n_e \times e)^t$$

Note:

When the two principal directions have the same principal curvature values, the principal directions are not well defined.

Such points are called <u>umbilical</u> points.

What are the principal curvature lines?

Assuming that we are away from the umbilical points, we can define two vector fields:

- 1. v_{\min} : Aligns with the min. curvature
- 2. v_{max} : Aligns with the max. curvature

What are the principal curvature lines?

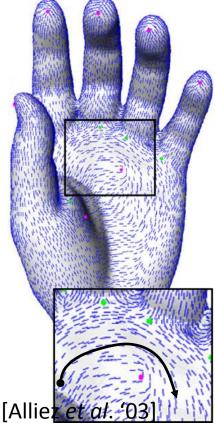
Assuming that we are away from the umbilical

points, we can define two vector fields:

- 1. v_{\min} : Aligns with the min. curvature
- 2. v_{max} : Aligns with the max. curvature

Given a starting p, solve the diff. eq.:

$$\gamma_{\min/\max}'(t) = v_{\min/\max}(\gamma(t))$$
 s.t. $\gamma(0) = p$



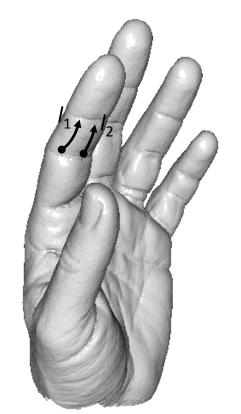
How far should we integrate?

We should integrate the min/max curves until they are within a prescribed density:

- 1. Accuracy of the remesh
- 2. Local curvature

Q: If the user wants the remeshed surface to be within a distance of ϵ from the original surface, how far should the minimal/maximal curvature lines be from each other?

A: Consider the surface between two lines of minimal/maximal curvature:



A: Consider the surface between two lines of minimal/maximal curvature:

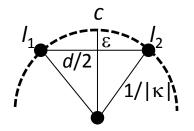
The curve between them will follow the maximal/minimal curvature direction.

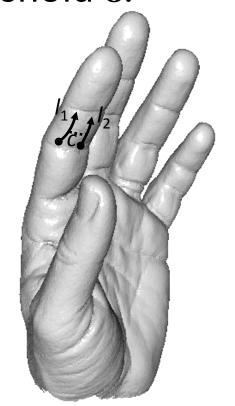
A: Consider the surface between two lines of minimal/maximal curvature:

The curve between them will follow the maximal/minimal curvature direction.

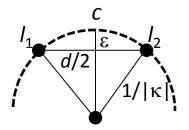
The curve will be, roughly, a circular arc with radius equal to one over the maximal/minimal curvature.

Looking at this in cross section, we choose the distance d between the curves so that the distance to the surface is below a threshold ϵ .



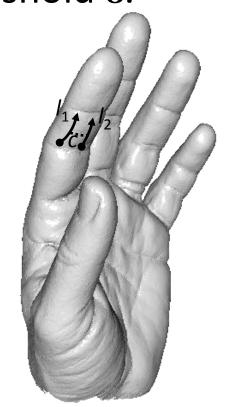


Looking at this in cross section, we choose the distance d between the curves so that the distance to the surface is below a threshold ϵ .

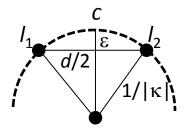


Denoting the distance by ϵ we get:

$$\left(\frac{d}{2}\right)^{2} + \left(\frac{1}{|\kappa|} - \varepsilon\right)^{2} = \left(\frac{1}{|\kappa|}\right)^{2}$$



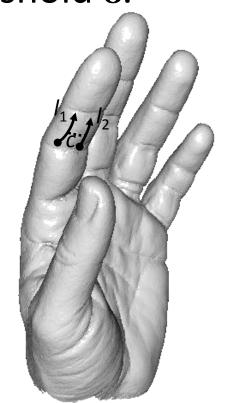
Looking at this in cross section, we choose the distance d between the curves so that the distance to the surface is below a threshold ϵ .



Denoting the distance by ε we get:

$$\left(\frac{d}{2}\right)^{2} + \left(\frac{1}{|\kappa|} - \varepsilon\right)^{2} = \left(\frac{1}{|\kappa|}\right)^{2}$$

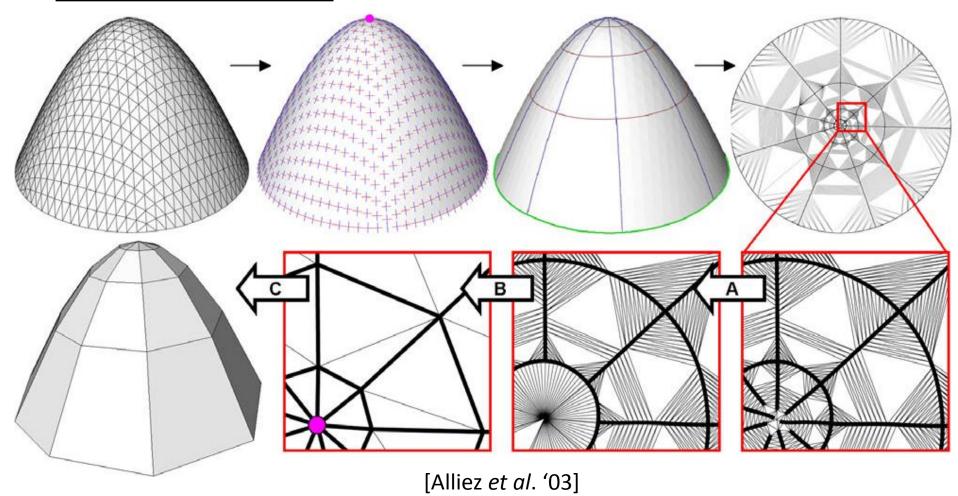
$$d = 2\sqrt{\varepsilon \left(\frac{2}{|\kappa|} - \varepsilon\right)}$$



[Alliez *et al*. '03]:

- 1. Compute a conformal parameterization of the surface.
- 2. Identify high curvature umbilicals and start growing curvature lines, adding candidate seed points into queue as the lines are grown.
- 3. Uniformly sample umbilicals in isotropic areas.
- 4. Use the quads in the anisotropic areas and use the edges of a constrained Delaunay triangulation to triangulate the isotropic points.

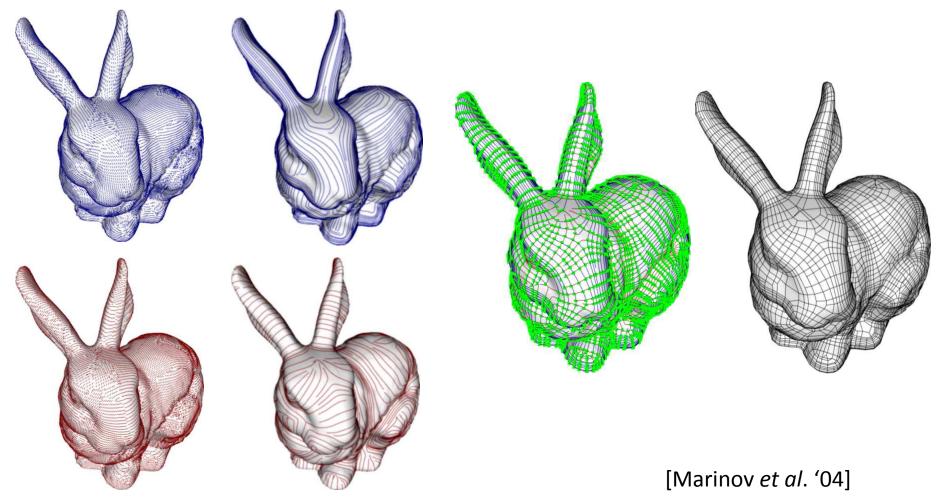
[Alliez et al. '03]:



[Marinov et al. '04]:

- 1. Work directly on the mesh
- 2. Estimate per-triangle confidences for the curvature tensors by looking at the consistency of the minimal curvature directions over the three vertices.
- 3. Grow curves from regions of high confidence, using the principal curvature direction in confident areas and continuing on along a straight line in regions of low confidence.
- 4. Compute intersections and polygonize.

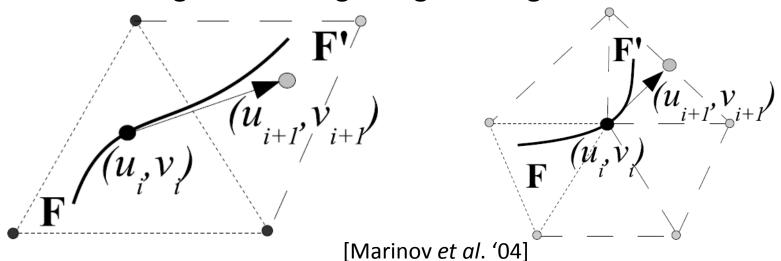
[Marinov *et al.* '04]:



- Parameterization
 - [Alliez et al. '03]: Conformal parameterization, limiting the approach to either disk-like objects or patching.
 - [Marinov et al. '04]: None

- Smoothing
 - [Alliez et al. '03]: Gaussian smoothing with spatially varying radius.
 - [Marinov et al. '04]: Confidence-weighted Laplacian smoothing.

- Integration
 - [Alliez et al. '03]: Performed in the 2D parameterization domain.
 - [Marinov et al. '04]: Performed on mesh by locally flattening and walking along a "straight" line.



- Proximity Queries
 - [Alliez et al. '03]: Maintain (and update) a 2D Constrained Delaunay Triangulation as new edge segments are introduced.
 - [Marinov et al. '04]: Hash curve edges with associated triangles, find adjacent triangles and exhaustively test edges.

- Isotropic Regions
 - [Alliez et al. '03]: Change from quadrangulation to triangulation.
 - [Marinov et al. '04]: Attempt to continue going in the same direction (may switch curves from minimal to maximal).

