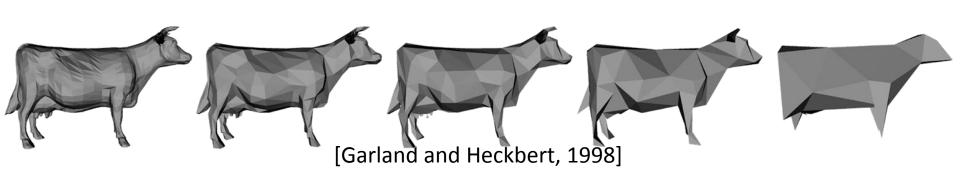
600.657: Mesh Processing

Chapter 7

Goal:

Compute lower-complexity representation(s) of a surface capturing the detail(s): $M_0 \rightarrow M_1 \rightarrow ...$

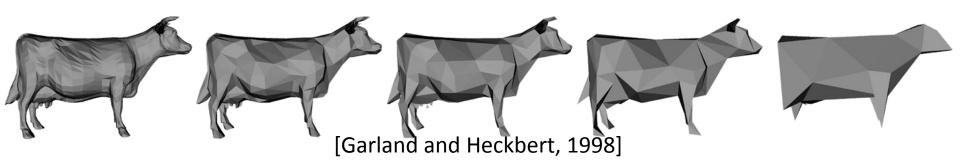


Goal:

Compute lower-complexity representation(s) of a surface capturing the detail(s): $M_0 \rightarrow M_1 \rightarrow ...$

Considerations:

- Topology preservation
- Surface accuracy



How:

- Vertex Clustering
- Iterative Contraction
 - Vertex collapse
 - Edge collapse
 - Vertex pair contraction

Vertex Clustering:

Partition space:

$$M_0 = \bigcup_i R_i$$

Vertex Clustering:

Partition space:

$$M_0 = \bigcup_i R_i$$

Merge vertices within a partition

$$\{v \in M_0 \mid v \in R_i\} \rightarrow v_i \in M_1$$

Vertex Clustering:

Partition space:

$$M_0 = \bigcup_i R_i$$

Merge vertices within a partition

$$\{v \in M_0 \mid v \in R_i\} \rightarrow v_i \in M_1$$

Add edges and triangles

$$(v_i, v_j) \in M_1$$
 if $\exists v \in R_i, w \in R_j$ s.t. $(v, w) \in M_0$

Vertex Clustering:

Partition space:

$$M_0 = \bigcup_i R_i$$

Merge vertices within a partition

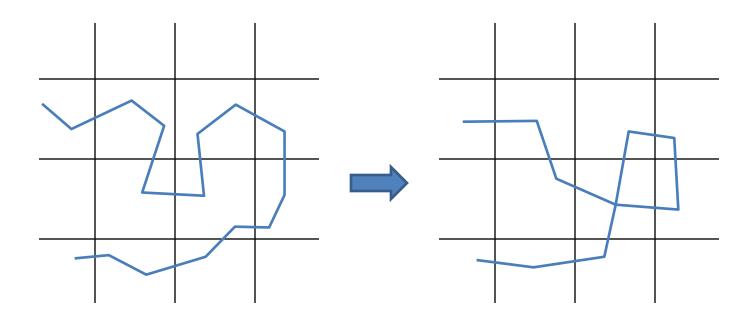
$$\{v \in M_0 \mid v \in R_i\} \rightarrow v_i \in M_1$$

Add edges and triangles

$$(v_i, v_j) \in M_1 \text{ if } \exists v \in R_i, w \in R_j \text{ s.t. } (v, w) \in M_0$$
$$(v_i, v_j, v_k) \in M_1 \text{ if } \exists u \in R_i, v \in R_j, w \in R_j \text{ s.t. } (u, v, w) \in M_0$$

Vertex Clustering:

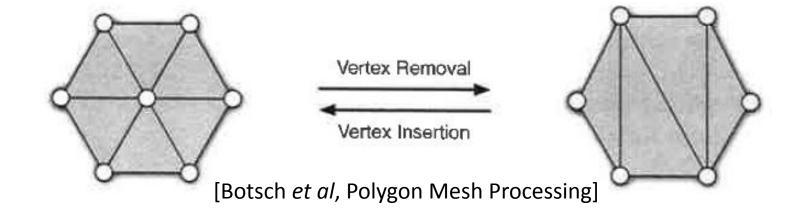
Note that this method is not guaranteed to preserve the topology of the mesh.



Vertex Collapse:

Collapse the one-ring of a vertex to a point:

- Remove the vertex
- Triangulate the new face

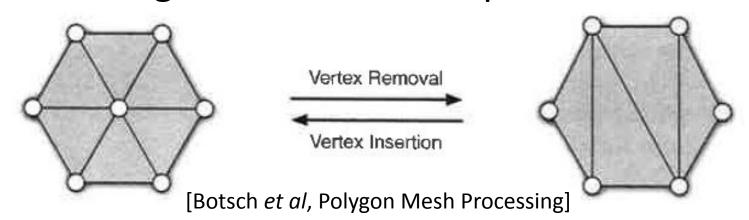


Vertex Collapse:

Collapse the one-ring of a vertex to a point:

- Remove the vertex
- Triangulate the new face

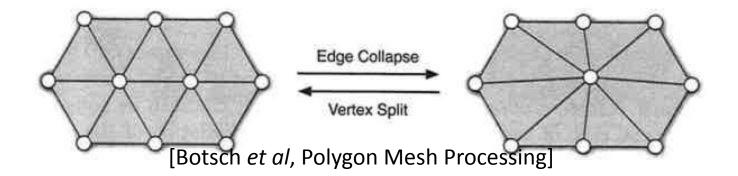
This method will not preserve topology when the one-ring is not homeomorphic to a disk.



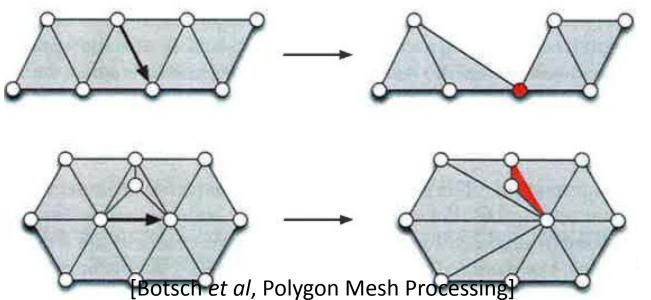
Edge Collapse:

Collapse an edge to a vertex:

- Merge the vertices
- Remove the edge
- Remove the triangles
- Merge the wing edges



Edge Collapse:

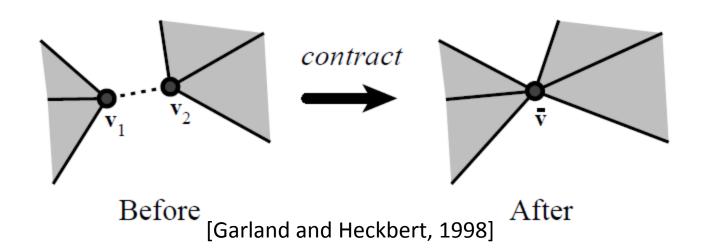


This method will not preserve topology if:

- Edges are on separate boundaries
- The one-rings intersect in more than two points

Vertex Pair Contraction:

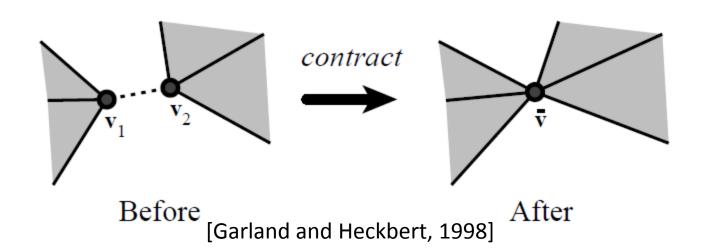
Like an edge collapse but the vertices don't have to share an edge.



Vertex Pair Contraction:

Like an edge collapse but the vertices don't have to share an edge.

(Certainly does not preserve topology.)



Accuracy:

We would like the simplified surface to be close to the original surface.

Definition:

The *Hausdorff distance* from set *S* to *T* is the maximum of the distances of points on *S* to the nearest points on *T*:

$$H(S,T) = \sup_{p \in S} \inf_{q \in T} ||p - q||$$

Definition:

The *Hausdorff distance* from set *S* to *T* is the maximum of the distances of points on *S* to the nearest points on *T*:

$$H(S,T) = \sup_{p \in S} \inf_{q \in T} ||p - q||$$

Although we would like to use this distance to guide how we simplify, it tends to be too inefficient in practice.

Key Idea:

Instead of searching for the closest point on the original surface, track the original surface through the simplification.

Key Idea:

Instead of searching for the closest point on the original surface, track the original surface through the simplification.

For each $t \in M_i$, maintain a list of vertices:

$$V_i^t \subset M_0$$

that are closest to t.

Key Idea:

Instead of searching for the closest point on the original surface, track the original surface through the simplification.

For each $t \in M_i$, maintain a list of vertices:

$$V_i^t \subset M_0$$

that are closest to t.

If edge (u,v) is contracted, redistribute the vertices tied to the triangles containing (u,v).

Key Idea:

Instead of searching for the closest point on the original surface, track the original surface through the simplification.

Challenge:

Keeping track of everything can be difficult to do correctly/quickly.

Using homogenous coordinates, points on the plane $P=\{(x,y,z) \mid ax+by+cz+d=0\}$ can be represented by the vector (a,b,c,d).

Using homogenous coordinates, points on the plane $P=\{(x,y,z) | ax+by+cz+d=0\}$ can be represented by the vector (a,b,c,d).

For a point q=(x,y,z), the square distance from q to the plane P is*:

$$d(P,q) = ||ax + by + cz + d||^{2}$$
$$= ||(a,b,c,d)^{t}(x, y, z, 1)||^{2}$$

^{*}Assuming that (a,b,c) is a unit-vector.

Using homogenous coordinates, points on the plane $P=\{(x,y,z) | ax+by+cz+d=0\}$ can be represented by the vector (a,b,c,d).

For a point q=(x,y,z), the square distance from q to the plane P is*:

$$d(P,q) = ||(a,b,c,d)^{t}(x,y,z,1)||^{2}$$

Setting \bar{p} =(a,b,c,d) and \bar{q} =(x,y,z,1) gives:

$$d(P,q) = \left\| \overline{p}^{t} \overline{q} \right\|^{2} = \overline{q}^{t} \overline{p} \overline{p}^{t} \overline{q}$$

^{*}Assuming that (a,b,c) is a unit-vector.

More generally, if $\bar{p}_i = (a_i, b_i, c_i, d_i)$ are the coordinates of a set of planes $\{P_i\}$, the sum-of-squared distances from q to the planes is:

$$d(\lbrace P_i \rbrace, q) = \sum_i \overline{q}^t \overline{p}_i \overline{p}_i^t \overline{q} = \overline{q}^t \left(\sum_i \overline{p}_i \overline{p}_i^t \right) \overline{q}$$

Observation:

For vertex *v* in a mesh, *v* is in the intersection of the planes containing the neighboring triangles.

Observation:

For vertex *v* in a mesh, *v* is in the intersection of the planes containing the neighboring triangles.

That is, if \bar{p}_i are the coordinates of the planes containing the triangles, then:

$$\overline{v}^t \left(\sum_i \overline{p}_i \overline{p}_i^t \right) \overline{v} = 0$$

Observation:

For vertex *v* in a mesh, *v* is in the intersection of the planes containing the neighboring triangles.

That is, if \bar{p}_i are the coordinates of the planes containing the triangles, then:

$$\overline{v}^t \left(\sum_i \overline{p}_i \overline{p}_i^t \right) \overline{v} = 0$$

Thus, we can represent the support planes of *v* by the symmetric 4x4 matrix:

$$Q_{v} = \sum_{i} \overline{p}_{i} \overline{p}_{i}^{t}$$

Note:

Given a vertex pair (u,v) and a target position for contraction, w, we can measure the quadric error of the contraction as:

$$E((u,v) \to w) = \overline{w}^t Q_u \overline{w} + \overline{w}^t Q_v \overline{w}$$
$$= \overline{w}^t (Q_u + Q_v) \overline{w}$$

Note:

Given a vertex pair (u,v) and a target position for contraction, w, we can measure the quadric error of the contraction as:

$$E((u,v) \to w) = \overline{w}^t Q_u \overline{w} + \overline{w}^t Q_v \overline{w}$$
$$= \overline{w}^t (Q_u + Q_v) \overline{w}$$

So, when *u* and *v* are collapsed into *w*, we can track the support planes by associating the unions of the support planes to *w*:

$$Q_w = Q_u + Q_v$$

Note:

Given a vertex pair (u,v) and a target position for contraction, w, we can measure the quadric error of the contraction as:

$$E((u,v) \to w) = \overline{w}^t Q_u \overline{w} + \overline{w}^t Q_v \overline{w}$$
$$= \overline{w}^t (Q_u + Q_v) \overline{w}$$

Moreover, given a vertex pair (u,v), we can solve for the position of w minimizing the error.

Approach:

– Initialize by assigning the symmetric 4x4 matrix:

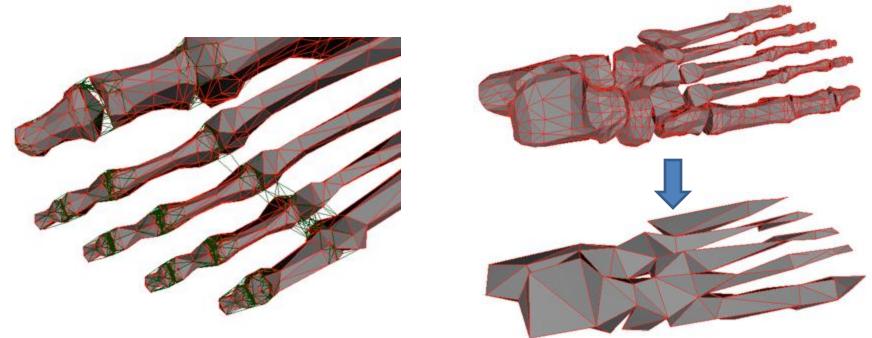
$$Q_{v} = \sum_{i} \overline{p}_{i} \overline{p}_{i}^{t}$$

to each vertex v.

- Compute candidate vertex contraction pairs.
- While not done:
 - For each (u,v) compute w minimizing contraction error.
 - Choose $(u,v) \rightarrow w$ with minimal contraction error.
 - Contract, setting $Q_w = Q_u + Q_v$.
 - Update candidate vertex contraction pairs.

How do we choose candidate contraction pairs?

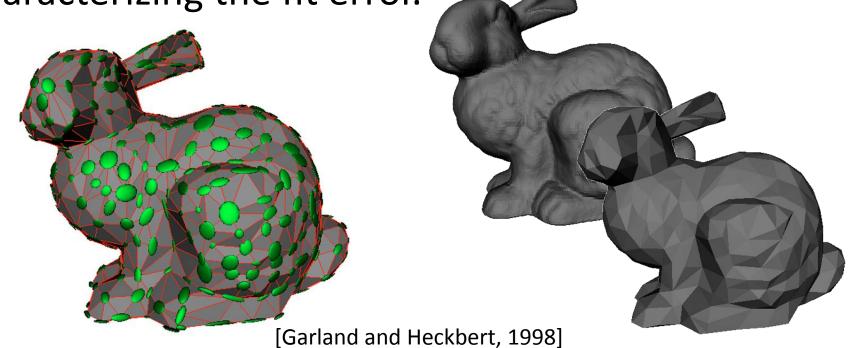
- Add all edges of the mesh.
- Add all pairs (u,v) with $|u-v|<\epsilon$.



[Garland and Heckbert, 1998]

Note:

At a given step in the algorithm, every vertex in the simplified mesh is associated with a quadric characterizing the fit error.



Advantages:

- Tracking of support planes is easy.
- Closed-form solution for best contraction position.
- Topology is not preserved.

Advantages:

- Tracking of support planes is easy.
- Closed-form solution for best contraction position.
- Topology is not preserved.

<u>Disadvantages</u>:

- Tracking vertex contraction pairs may be messy.
- Point-to-plane is not point-to-triangle.
- Support planes may be double/triple counted.
- Topology is not preserved.