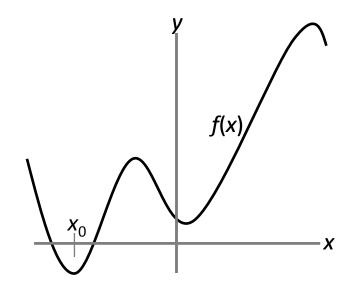
Differential Geometry: Circle Patterns (Part 1)

Recall:

Given a smooth function $f: \mathbb{R} \to \mathbb{R}$, the function f has an extremum at x_0 only if $f'(x_0)=0$.



Recall:

Given a smooth function $f: \mathbb{R} \to \mathbb{R}$, the function f has an extremum at x_0 only if $f'(x_0)=0$.

Furthermore, by the mean-value-theorem, if f' is never zero then the value x_0 is the only extremum of f.

Recall:

Given a smooth function $F: \mathbb{R}^n \to \mathbb{R}$, the *gradient* of F is the vector valued function $\nabla F: \mathbb{R}^n \to \mathbb{R}^n$ obtained by computing the partial derivatives:

$$\nabla F = \left(\frac{\partial F}{\partial x_1}, \dots, \frac{\partial F}{\partial x_n}\right)$$

Recall:

Given a smooth function $F: \mathbb{R}^n \to \mathbb{R}$, the *Hessian* of F is the (symmetric) matrix-valued function $H(F): \mathbb{R}^n \to \mathbb{R}^{n \times n}$ obtained by computing the mixed second derivatives of F:

$$H(F) = \begin{pmatrix} \frac{\partial^{2} F}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} F}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} F}{\partial x_{n} \partial x_{1}} \\ \frac{\partial^{2} F}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} F}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} F}{\partial x_{n} \partial x_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} F}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} F}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} F}{\partial x_{n} \partial x_{n}} \end{pmatrix}$$

Recall:

Given a smooth function $F: \mathbb{R}^n \to \mathbb{R}$, if we choose a position $x_0 \in \mathbb{R}^n$ and direction $v \in \mathbb{R}^n$, we can define the 1D function $f(t) = F(x_0 + tv)$.

Recall:

Given a smooth function $F: \mathbb{R}^n \to \mathbb{R}$, if we choose a position $x_0 \in \mathbb{R}^n$ and direction $v \in \mathbb{R}^n$, we can define the 1D function $f(t) = F(x_0 + tv)$.

The derivative of f(t) at t=0 is the dot-product of the direction v with the gradient of F:

$$f'(0) = \langle \nabla F(x_0), \nu \rangle$$

Recall:

Given a smooth function $F: \mathbb{R}^n \to \mathbb{R}$, if we choose a position $x_0 \in \mathbb{R}^n$ and direction $v \in \mathbb{R}^n$, we can define the 1D function $f(t) = F(x_0 + tv)$.

The second-derivative of f(t) at t=0 is the square norm of v with respect to the Hessian of F:

$$f''(0) = v^t [H(F)(x_0)]v$$

Recall:

Given a smooth function $F: \mathbb{R}^n \to \mathbb{R}$, the function F has an extremum at x_0 only if $\nabla F(x_0) = 0$.

Recall:

Given a smooth function $F: \mathbb{R}^n \to \mathbb{R}$, the function F has an extremum at x_0 only if $\nabla F(x_0) = 0$.

Furthermore, if the Hessian of F is either strictly positive definite, or strictly negative definite, x_0 is the only extremum of F.

Optimization:

Given a function $f: \mathbb{R} \to \mathbb{R}$, suppose that we would like to solve for x_0 such that $f(x_0) = a$.

Optimization:

Given a function $f: \mathbb{R} \to \mathbb{R}$, suppose that we would like to solve for x_0 such that $f(x_0) = a$.

We can try to define an energy function E(x) with derivative:

$$E'(x) = f(x) - a$$

Optimization:

Given a function $f: \mathbb{R} \to \mathbb{R}$, suppose that we would like to solve for x_0 such that $f(x_0) = a$.

We can try to define an energy function E(x) with derivative:

$$E'(x) = f(x) - a$$

Then energy minimization/maximization at x_0 implies that the derivative is zero, and hence that $f(x_0)=a$.

Optimization:

Given a function $f: \mathbb{R} \to \mathbb{R}$, suppose that we would like to solve for x_0 such that $f(x_0) = a$.

To get at such an energy, we can simply set:

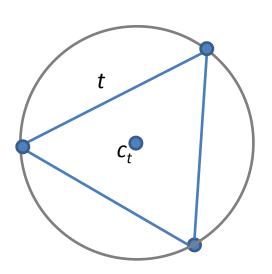
$$E(x) = F(x) - ax$$

where *F* is the integral of *f*:

$$F(x) = \int_{-\infty}^{\infty} f(s) ds$$

Circumcircles and Kites:

Given a triangle t, the *circumcircle* of the triangle is the circle, centered at c_t , intersecting the triangle's vertices.



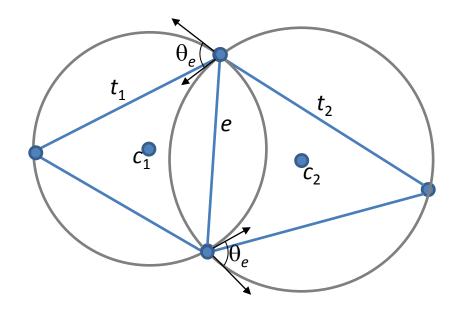
Circumcircles and Kites:

Given a triangle t, the *circumcircle* of the triangle is the circle, centered at c_t , intersecting the triangle's vertices.

If e is an edge of the triangle and α is the angle opposite e, then the made by c_t and the edge e is 2α .

Circumcircles and Kites:

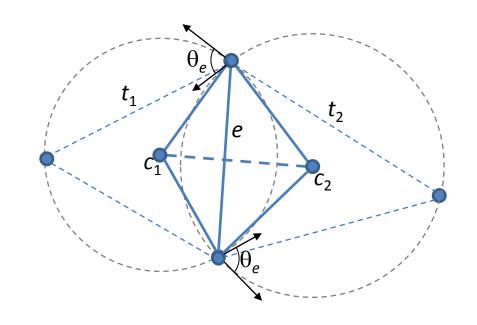
Given two triangles t_1 , and t_2 sharing an edge e, we denote by θ_e the (exterior) intersection angle of the circumcircles.



Circumcircles and Kites:

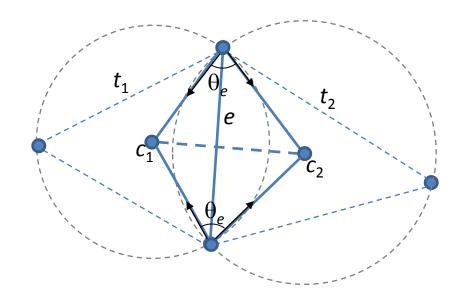
Given two triangles t_1 , and t_2 sharing an edge e, we denote by θ_e the (exterior) intersection angle of the circumcircles.

And we refer to the triangles defined by the edge *e* and the circumcenters as the kite of *e*.



Circumcircles and Kites:

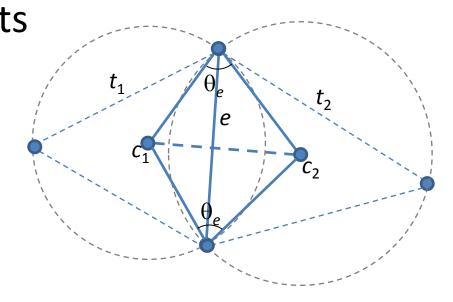
If we rotate the tangents at the end-points of the edge e by $\pi/2$, they will point towards the circumcenters.



Circumcircles and Kites:

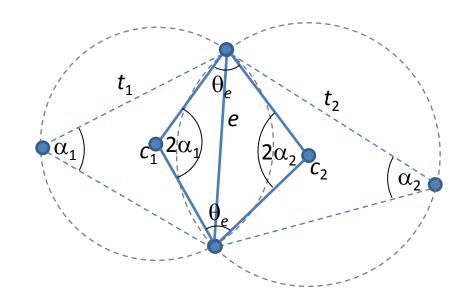
If we rotate the tangents at the end-points of the edge e by $\pi/2$, they will point towards the circumcenters.

Since the rotated tangents align with the kite sides, the angles of the kite at end-points of e are e_{θ} .



Circumcircles and Kites:

We also know that the angles at the circumcenters are twice the angles opposite *e*.



Circumcircles and Kites:

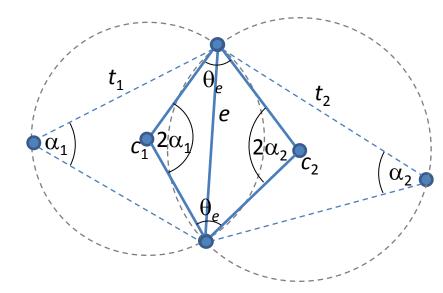
We also know that the angles at the circumcenters are twice the angles opposite e.

Since the total angle inside the kite is 2π , we

must have:

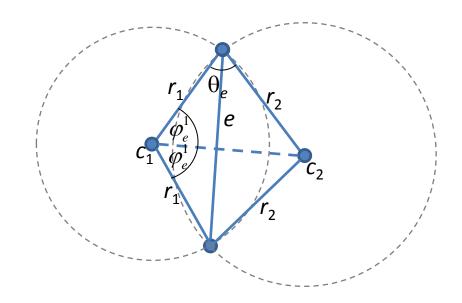
$$2\theta_e + 2\alpha_1 + 2\alpha_2 = 2\pi$$

$$\theta_e = \pi - \alpha_1 - \alpha_2$$



Circumcircles and Kites:

If we know the angle θ_e and we know the radii of the circumcircles, we can figure out the other half-angles of the kite.



Circumcircles and Kites:

If we know the angle θ_e and we know the radii of the circumcircles, we can figure out the other half-angles of the kite:

$$\tan\left(\phi_{e}^{1}\right) = \frac{\sin(\pi - \theta_{e})r_{2}}{r_{1} + \cos(\pi - \theta_{e})r_{2}} = \frac{\sin\theta_{e}}{r_{1}/r_{2} - \cos\theta_{e}}$$

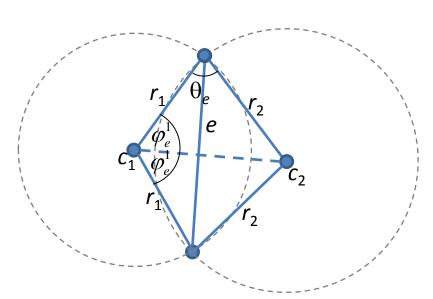
Circumcircles and Kites:

If we know the angle θ_e and we know the radii of the circumcircles, we can figure out the other half-angles of the kite:

$$\tan(\phi_e^1) = \frac{\sin \theta_e}{r_1 / r_2 - \cos \theta_e}$$

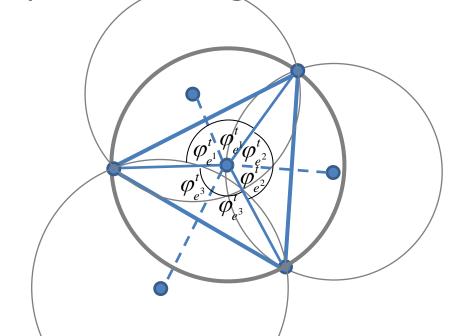
and from that we can get the lengths of the edges:

$$\mid e \mid = 2r_1 \sin(\phi_e^1)$$



Circumcircles and Kites:

Although any assignment of radii allows us to compute the half-angles of the kite from the angles θ_e , not all give planar triangulations.

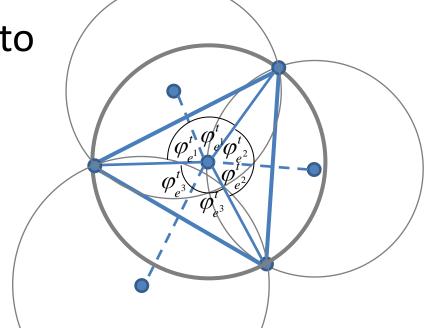


Circumcircles and Kites:

Although any assignment of radii allows us to compute the half-angles of the kite from the angles θ_e , not all give planar triangulations.

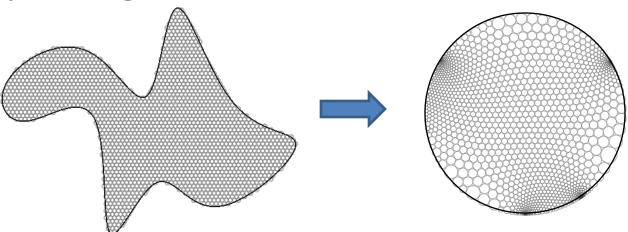
For the triangulation to be planar, we require that the sum of the kite angles about a circumcenter is 2π :

$$2\pi = \sum 2\phi_e^t \qquad \forall t \in T$$



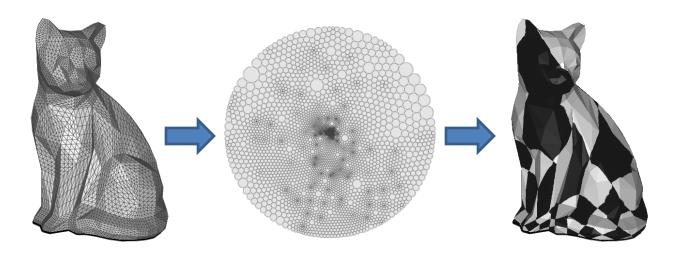
Recall:

We can get a conformal map (in the limit) by using a regular hexagonal lattice to pack the inside of curve with circles and then mapping the packing into the disk.



Recall:

However, this method only took the combinatorics of the triangulation into account and ignored geometry, so it cannot be used to generate a conformal map for meshes.



Questions:

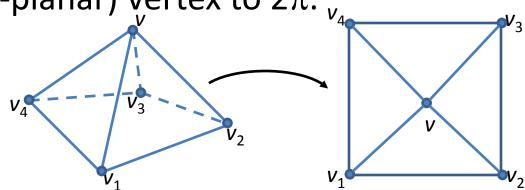
- Can we use circle packings to conformally map triangulations of the plane into the plane?
- In general, can we preserve angles when mapping a mesh to the plane?

Questions:

- Can we use circle packings to conformally map triangulations of the plane into the plane?
 - ─No, since we would still be ignoring the geometry.
- In general, can we preserve angles when mapping a mesh to the plane?

Questions:

- Can we use circle packings to conformally map triangulations of the plane into the plane?
- In general, can we preserve angles when mapping a mesh to the plane?
 - -No since we would have to map the angles at a (non-planar) vertex to 2π .



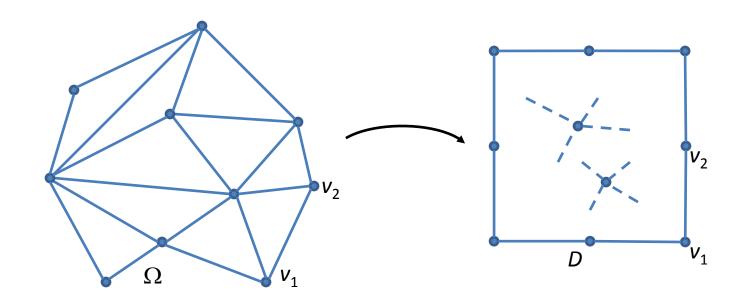
Approach:

- 1. We will incorporate geometric information to generate conformal mappings of planar triangulation into the plane.
- 2. We will minimize the non-conformal angular distortion arising from mapping meshes into the plane.

Planar Triangulation

Goal:

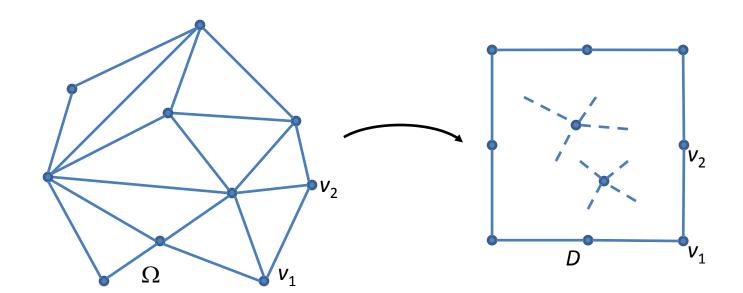
Given a planar triangulation of a (non-convex) domain Ω , and given a target domain D, we want to find a conformal map sending Ω to D.



Planar Triangulation

Aside:

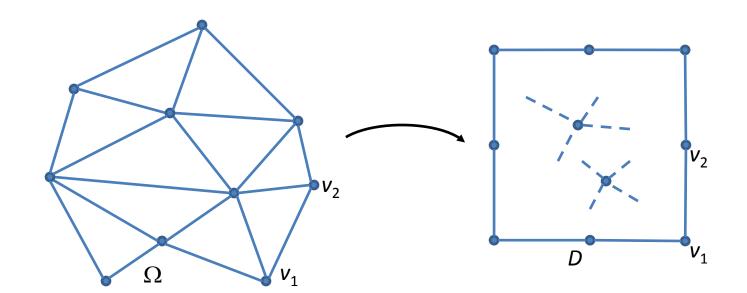
Since Ω need not be convex, we cannot assume that the triangulation is Delaunay, but we will require that it is locally Delaunay.



Planar Triangulation

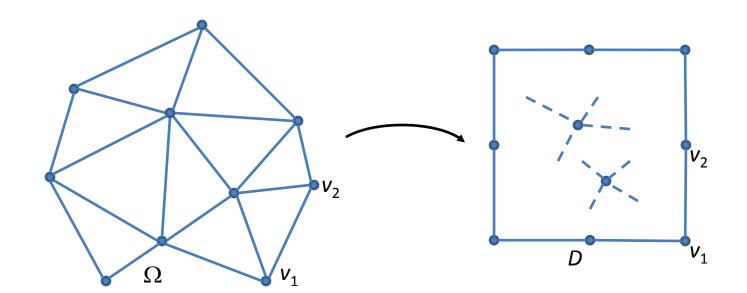
Aside:

Since Ω need not be convex, we cannot assume that the triangulation is Delaunay, but we will require that it is locally Delaunay.



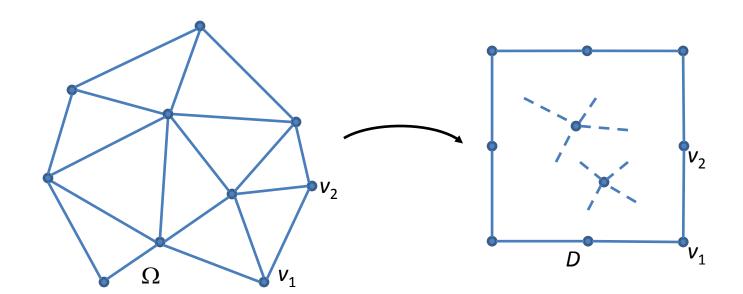
Aside:

Since Ω need not be convex, we cannot assume that the triangulation is Delaunay, but we will require that it is locally Delaunay.



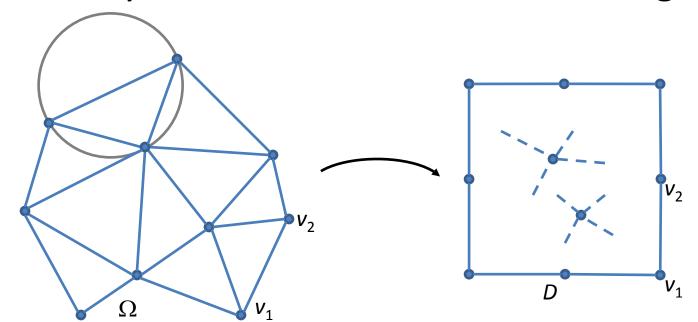
Elements of Conformality:

For the study of conformality, our principal building blocks will be *circles*.



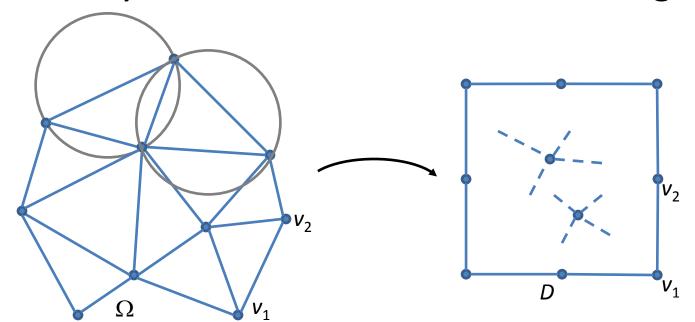
Elements of Conformality:

For the study of conformality, our principal building blocks will be *circles*.



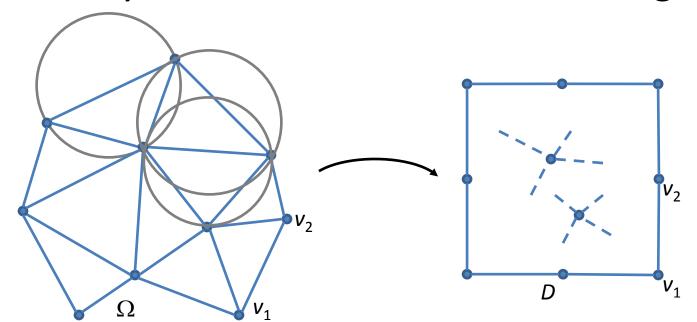
Elements of Conformality:

For the study of conformality, our principal building blocks will be *circles*.



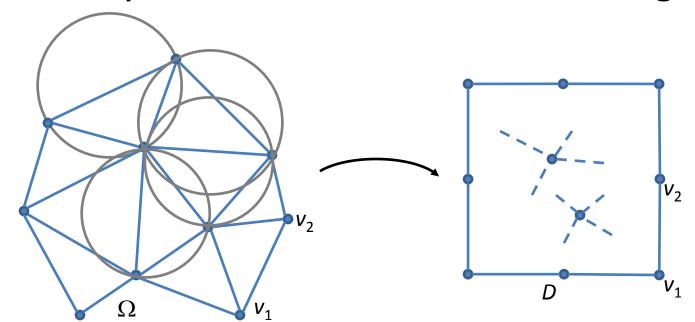
Elements of Conformality:

For the study of conformality, our principal building blocks will be *circles*.



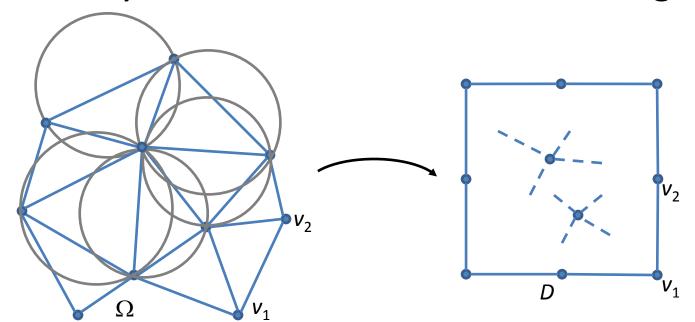
Elements of Conformality:

For the study of conformality, our principal building blocks will be *circles*.



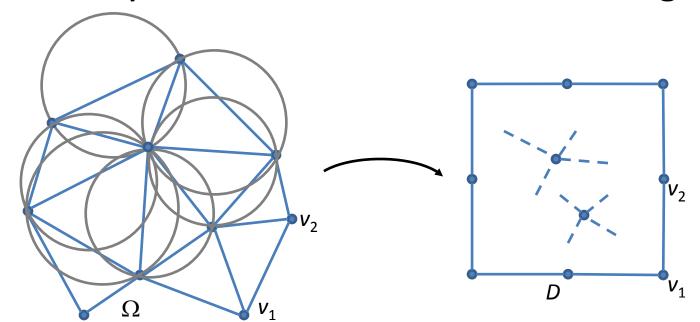
Elements of Conformality:

For the study of conformality, our principal building blocks will be *circles*.



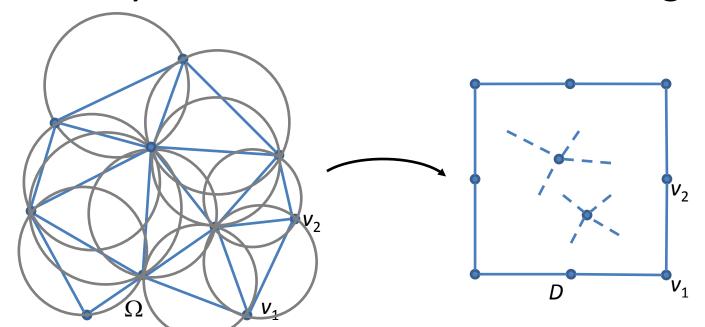
Elements of Conformality:

For the study of conformality, our principal building blocks will be *circles*.



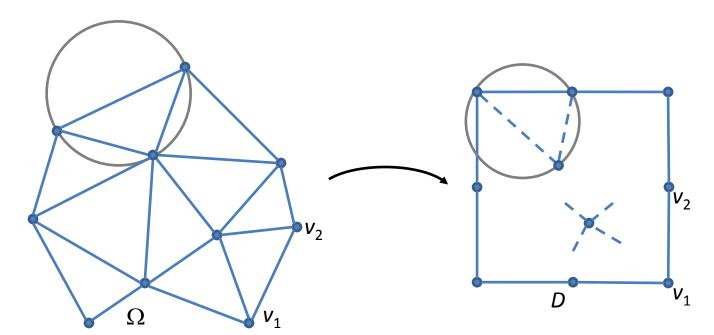
Elements of Conformality:

For the study of conformality, our principal building blocks will be *circles*.



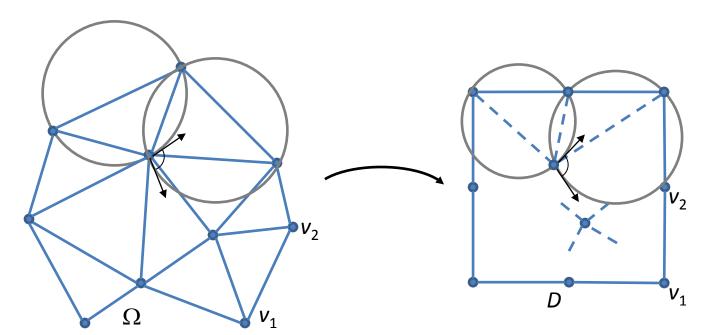
Elements of Conformality:

The mapping of Ω to D will automatically take circumcircles of triangles in Ω to circumcircles of triangles in D.



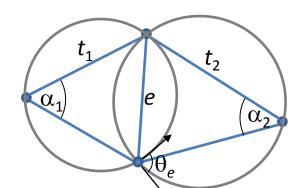
Elements of Conformality:

For the map to be conformal, we want it to preserve the angles between the circumcircles of edge-adjacent triangles.



Elements of Conformality:

For triangles t_1 and t_2 meeting at edge e, the angle θ_e between the circumcircles is π - α_1 - α_2 .



Elements of Conformality:

For triangles t_1 and t_2 meeting at edge e, the angle θ_e between the circumcircles is π - α_1 - α_2 .

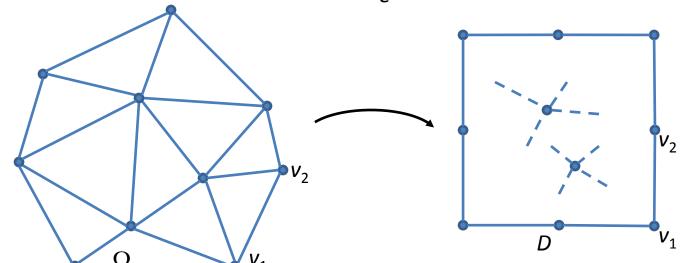
For a boundary triangle, we think of it as being adjacent to a triangle with a vertex at infinity.

Then the angle associated to the boundary edge becomes π - α .

Goal:

To find a mapping of the triangulation of Ω into a new triangulation that:

- 1. Satisfies the desired boundary constraints.
- 2. Preserves the angles θ_e .



Defining a Mapping:

Q: What do we need to know in order to define a mapping?

Defining a Mapping:

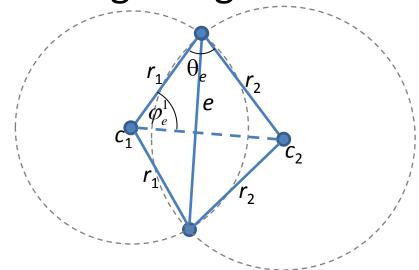
A: It suffices to know the radius of each circumcircle in the image.

Defining a Mapping:

A: It suffices to know the radius of each circumcircle in the image.

If we know the radii and the angles θ_e , we can compute kite half-angles and edge lengths:

$$|e| = 2r_1 \sin(\phi_e^1)$$



Defining a Mapping:

A: It suffices to know the radius of each circumcircle in the image.

If we know the radii and the angles θ_e , we can compute kite half-angles and edge lengths:

$$|e| = 2r_1 \sin(\phi_e^1)$$

So we can layout the triangulation by placing the first edge down along the *x*-axis and then successively placing down the vertices across from the edge.