

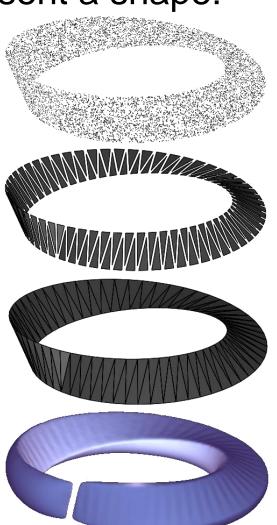
FFTs in Graphics and Vision

Surface Reconstruction

Shape Spectrum

There are many ways to represent a shape:

- Point Set
- Polygon Soup
- Polygonal Mesh
- Solid Model

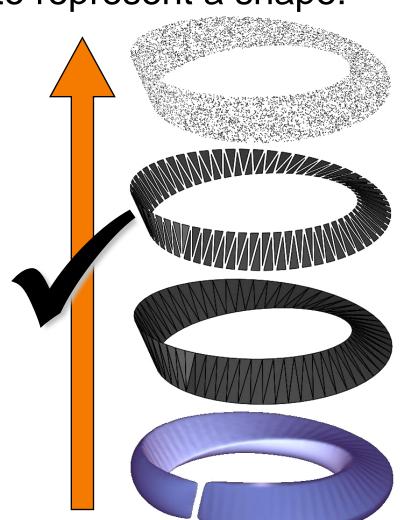


Equivalence of Representations

There are many ways to represent a shape:

- Point Set
- Polygon Soup
- Polygonal Mesh
- Solid Model

In one direction, the transition between representations is straight-forward



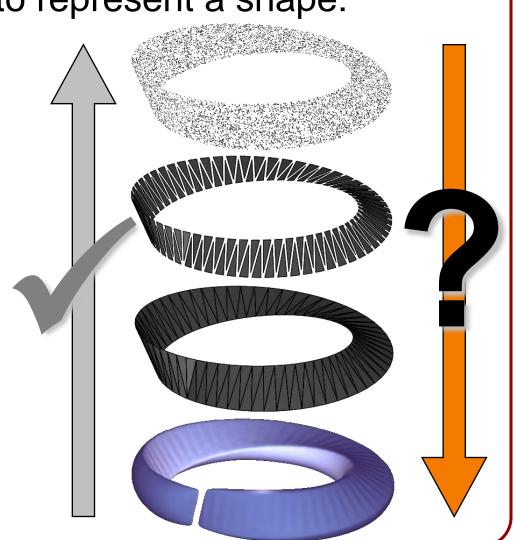
Equivalence of Representations

There are many ways to represent a shape:

- Point Set
- Polygon Soup
- Polygonal Mesh
- Solid Model

In one direction, the transition between representations is straight-forward

The challenge is to transition in the other direction

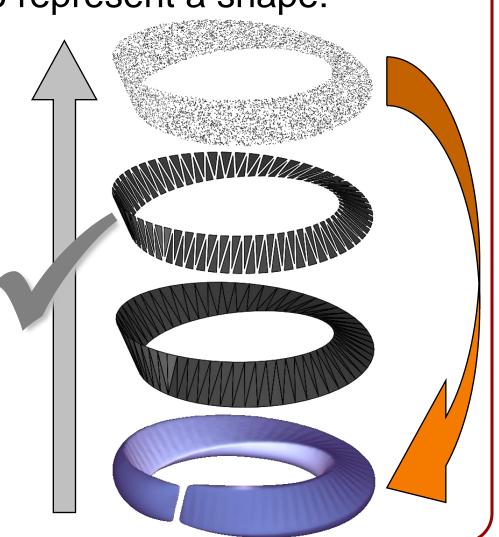


Equivalence of Representations

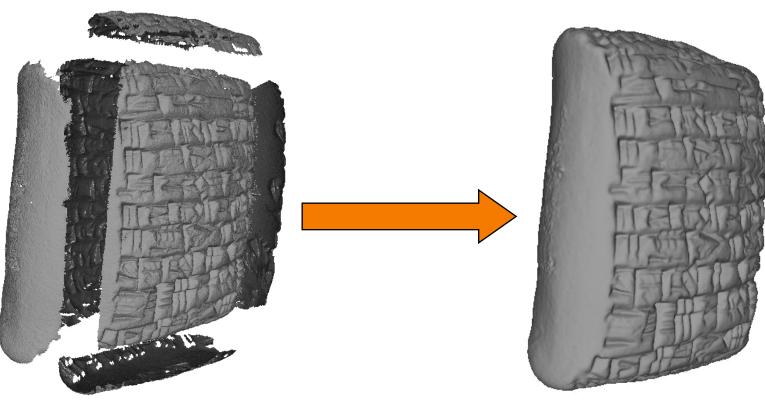
There are many ways to represent a shape:

- Point Set
- Polygon Soup
- Polygonal Mesh
- Solid Model

The goal of this work is to define a method for computing solid models from oriented point sets.



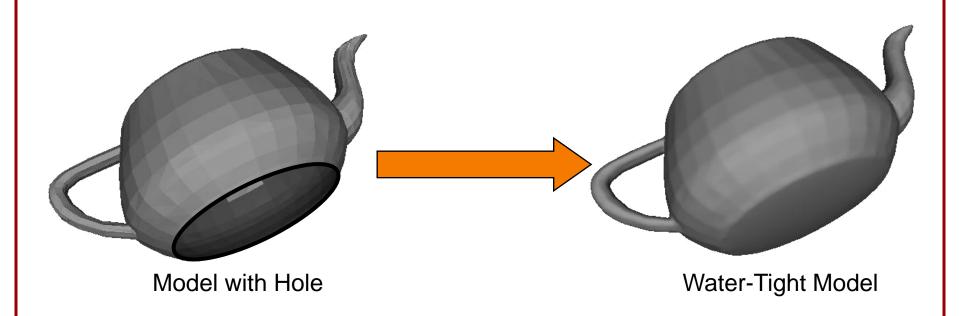
Surface Blending



Disjoint Model

"Zippered" Model

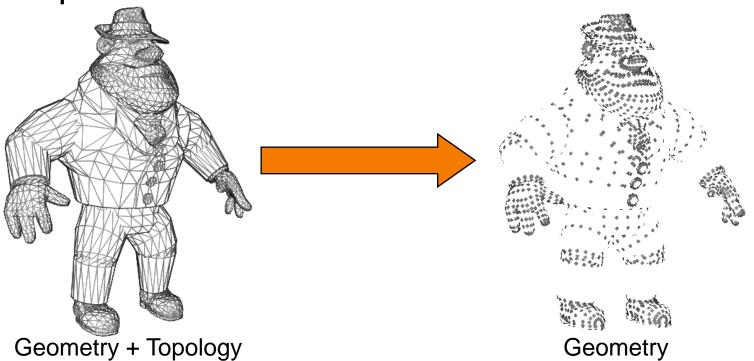
- Surface Blending
- Hole-Filling



Surface Blending

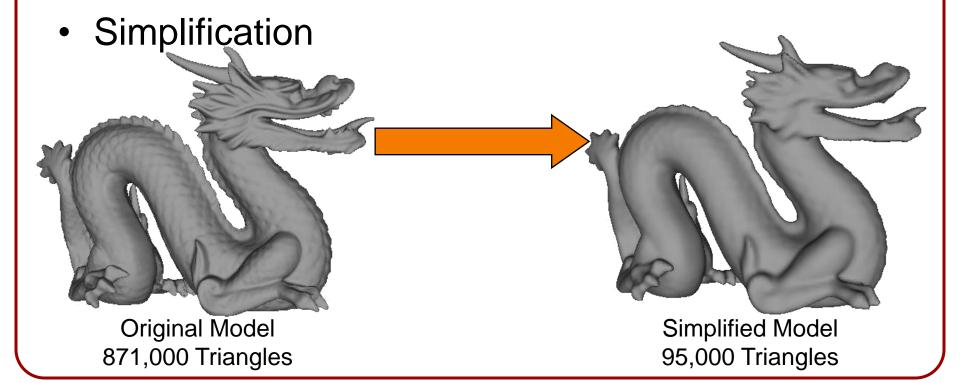
Representation

- Hole-Filling
- Compression



Representation

- Surface Blending
- Hole-Filling
- Compression

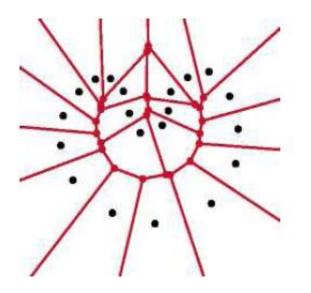


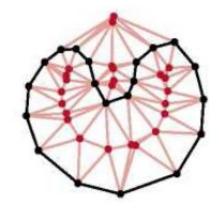
Three general approaches:

- 1. Computational Geometry
- 2. Surface Fitting
- 3. Implicit Function Fitting

Three general approaches:

- 1. Computational Geometry
 - Use the Voronoi diagram / Delaunnay triangulation to extract the surface.





Amenta, Bern and Eppstein. Graphical Models and Image Processing. (1998).

Three general approaches:

- 1. Computational Geometry
 - Use the Voronoi diagram / Delaunnay triangulation to extract the surface.

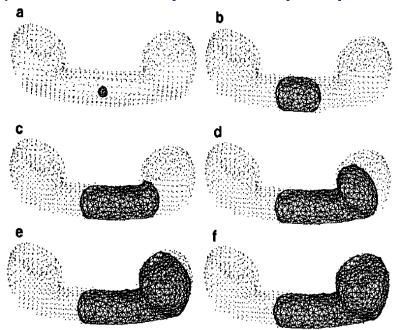
Properties:

- ✓ Complexity of the output is on the order of the complexity of the input.
- Computing the Voronoi diagram / Delaunnay triangulation can be time consuming.
- Does not perform well in the presence of noise and non-uniform sampling.

Three general approaches:

2. Surface Fitting

 Deform a base model (represented by a spring system) to fit the input sample points.



Chen and Medioni. Computer Vision and Image Understanding. (1995).

Three general approaches:

2. Surface Fitting

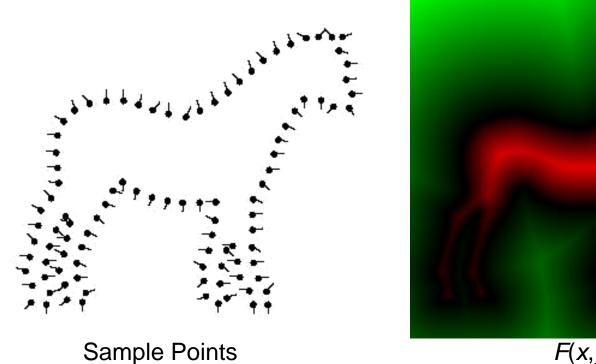
 Deform a base model (represented by a spring system) to fit the input sample points.

Properties:

- ✓ Complexity of the output is on the order of the complexity of the input.
- The reconstructed surface has to have the same topology as the base model.

3. Implicit Function Fitting

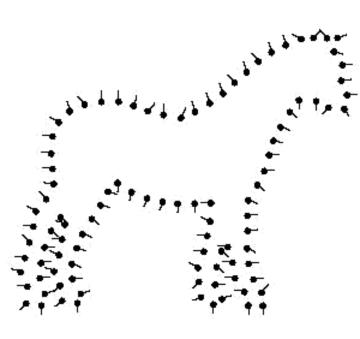
 Use the point samples to define an function whose values at the sample positions are zero.



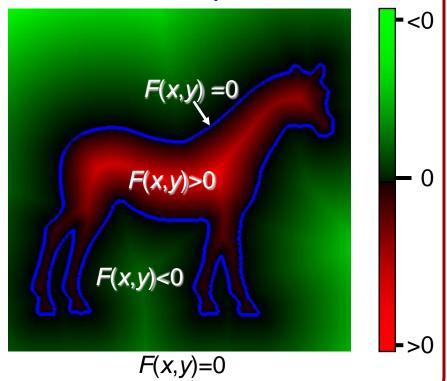
F(x,y)

3. Implicit Function Fitting

- Use the point samples to define an function whose values at the sample positions are zero.
- Extract the iso-surface with iso-value equal to zero.



Sample Points



3. Implicit Function Fitting

- Use the point samples to define an function whose values at the sample positions are zero.
- Extract the iso-surface with iso-value equal to zero.

Properties:

- ✓ No topological restrictions.
- ✓ Noise can be smoothed out.
- * The complexity of the reconstruction depends on the sampling resolution, not the number of input points.

3. Implicit Function Fitting

- Use the point samples to define an function whose values at the sample positions are zero.
- Extract the iso-surface with iso-value equal to zero.

Properties:

- ✓ No topological restrictions.
- ✓ Noise can be smoothed out.
- * The complexity of the reconstruction depends on the sampling resolution, not the number of input points.

How should we define the implicit function so that the reconstruction fits the samples?

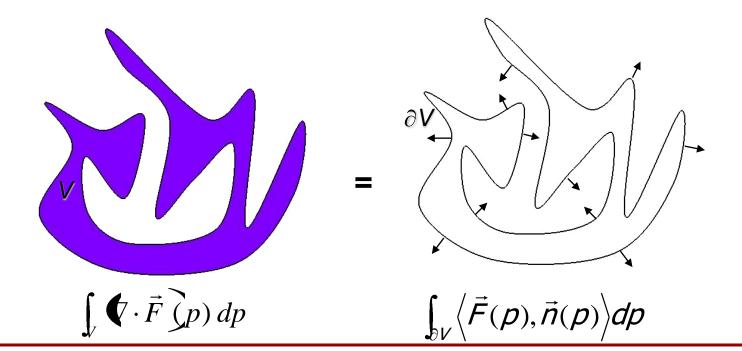
Outline

- Introduction
- Related Work
- Approach
 - The Divergence Theorem
 - Reduction to Volume Integration
 - Implementation
- Results
- Conclusion

Divergence (Gauss's) Theorem

Given a vector field \vec{F} and a region V: The volume integral of $\nabla \cdot \vec{F}$ over V and the surface integral of \vec{F} over ∂V are equal:

$$\int \nabla \cdot \vec{F}(p) dp = \int_{\partial V} \langle \vec{F}(p), \vec{n}(p) \rangle dp$$



Divergence (Gauss's) Theorem

Given a vector field \vec{F} and a region V: The volume integral of $\nabla \cdot \vec{F}$ over V and the surface integral of \vec{F} over ∂V are equal:

$$\int \nabla \cdot \vec{F}(p) \, dp = \int_{\partial V} \langle \vec{F}(p), \vec{n}(p) \rangle \, dp$$

$$\approx \frac{A}{n} \sum_{i=1}^{n} \langle F(p_i), n_i \rangle$$

$$\approx \int \nabla \cdot \vec{F}(p) \, dp$$

$$\frac{A}{n} \sum_{i=1}^{n} \langle F(p_i), n_i \rangle$$

Approach

Reduce surface reconstruction to a volume integration problem:

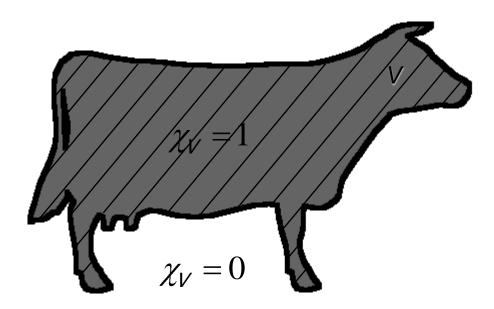
- 1. Characteristic Function
- 2. Fourier Coefficients
- 3. Volume Integrals

Reduction to Volume Integration (Step 1)

Characteristic Function:

The *characteristic function* χ_V of a solid V is the function:

$$\chi_{V}(X, Y, Z) = \begin{cases} 1 & \text{if } (X, Y, Z) \in V \\ 0 & \text{otherwise} \end{cases}$$



Reduction to Volume Integration (Step 2)

Fourier Coefficients:

The Fourier coefficients of the characteristic function give an expression of χ_V as a sum of complex exponentials:

$$\chi_V(x, y, z) = \frac{1}{\sqrt{2\pi}} \sum_{l,m,n} \hat{\chi}_V(l, m, n) e^{2\pi i(lx + my + nz)}$$

Reduction to Volume Integration (Step 3)

Volume Integration:

The Fourier coefficients of the characteristic function χ_V can be obtained by integrating:

$$\hat{\chi}_{V}(l,m,n) = \int_{[0,1]^{3}} \chi_{V}(x,y,z) \frac{1}{\sqrt{2\pi}} e^{-2\pi i (x+my+nz)} dxdydz$$

Reduction to Volume Integration (Step 3)

Volume Integration:

The Fourier coefficients of the characteristic function χ_V can be obtained by integrating:

$$\hat{\chi}_{V}(l,m,n) = \int_{[0,1]^{3}} \chi_{V}(x,y,z) \frac{1}{\sqrt{2\pi}} e^{-2\pi i \langle x+my+nz \rangle} dxdydz$$

$$= \int_{V} \frac{1}{\sqrt{2\pi}} e^{-2\pi i \langle x+my+nz \rangle} dxdydz$$

since the characteristic function is one inside of *V* and zero everywhere else.

Applying the Divergence Theorem

Surface Integration

If $\vec{F}_{lmn}(x,y,z)$ is any function whose divergence is equal to the (l,m,n)-th complex exponential:

$$\nabla \cdot \vec{F}_{lmn} \left(x, y, z \right) = \frac{1}{\sqrt{2\pi}} e^{-2\pi i \left(x + my + nz \right)}$$

applying the Divergence Theorem, the volume integral can be expressed as a surface integral:

$$\int_{V} \frac{1}{\sqrt{2\pi}} e^{-2\pi i \sqrt{x + my + nz}} dx dy dz = \int_{\partial V} \langle \vec{F}_{lmn}(p), n(p) \rangle dp$$

Reconstruction Algorithm

Given an oriented point sample $\{(p_i, n_i)\}$:

 Compute a Monte-Carlo approximation of the Fourier coefficients of the characteristic function:

$$\hat{\chi}_{V}(I,m,n) \approx \sum_{i=1}^{k} \left\langle \vec{F}_{lmn}(p_{i}), n_{i} \right\rangle$$

- Apply the inverse Fourier Transform to obtain the characteristic function.
- Extract the reconstruction an iso-surface of the characteristic function

Reconstruction Algorithm

Given an oriented point sample $\{(p_i, n_i)\}$:

 Compute a Monte-Carlo approximation of the Fourier coefficients of the characteristic function:

$$\hat{\chi}_{V}(I,m,n) \approx \sum_{i=1}^{k} \left\langle \vec{F}_{lmn}(p_{i}), n_{i} \right\rangle$$

1. To do this, we need to find a vector valued function $F_{l,m,n}(x,y,z)$ such that:

$$\nabla \cdot F_{l,m,n} \left(x, y, z \right) = \frac{1}{\sqrt{2\pi}} e^{-2\pi i \left(x + my + nz \right)}$$

Reconstruction Algorithm

Given an oriented point sample $\{(p_i, n_i)\}$:

 Compute a Monte-Carlo approximation of the Fourier coefficients of the characteristic function:

$$\hat{\chi}_{V}(I,m,n) \approx \sum_{i=1}^{k} \left\langle \vec{F}_{lmn}(p_{i}), n_{i} \right\rangle$$

1. To do this, we need to find a vector valued function $F_{l,m,n}(x,y,z)$ such that:

$$\nabla \cdot F_{l,m,n} \left(x, y, z \right) = \frac{1}{\sqrt{2\pi}} e^{-2\pi i \left(x + my + nz \right)}$$

2. Directly computing the Fourier coefficients requires summing over all point samples for each of the $O(n^3)$ coefficients.

There are many solutions to the equation:

There are many solutions to the equation:

Examples:

$$F_{l,m,n}(x,y,z) = \begin{pmatrix} \frac{i}{l(2\pi)^{3/2}} e^{-2\pi i \cdot (x+my+nz)} \\ 0 \\ 0 \end{pmatrix} F_{l,m,n}(x,y,z) = \begin{pmatrix} 0 \\ \frac{i}{m(2\pi)^{3/2}} e^{-2\pi i \cdot (x+my+nz)} \\ 0 \end{pmatrix} F_{l,m,n}(x,y,z) = \begin{pmatrix} 0 \\ \frac{i}{m(2\pi)^{3/2}} e^{-2\pi i \cdot (x+my+nz)} \\ 0 \end{pmatrix}$$

There are many solutions to the equation:

$$\nabla \cdot F_{l,m,n} \left(x, y, z \right) = \frac{1}{\sqrt{2\pi}} e^{-2\pi i \left(x + my + nz \right)}$$

Examples:

$$F_{l,m,n}(x,y,z) = \begin{pmatrix} \frac{i}{l(2\pi)^{3/2}} e^{-2\pi i \mathbf{x} + my + nz} \\ 0 \\ 0 \end{pmatrix} F_{l,m,n}(x,y,z) = \begin{pmatrix} 0 \\ \frac{i}{m(2\pi)^{3/2}} e^{-2\pi i \mathbf{x} + my + nz} \\ 0 \end{pmatrix} F_{l,m,n}(x,y,z) = \begin{pmatrix} 0 \\ \frac{i}{m(2\pi)^{3/2}} e^{-2\pi i \mathbf{x} + my + nz} \\ 0 \end{pmatrix}$$

$$F_{l,m,n}(x,y,z) = \frac{1}{3(2\pi)^{3/2}} \begin{pmatrix} \frac{i}{l}e^{-2\pi i \left(x+my+nz\right)} \\ \frac{i}{m}e^{-2\pi i \left(x+my+nz\right)} \\ \frac{i}{n}e^{-2\pi i \left(x+my+nz\right)} \end{pmatrix} \qquad F_{l,m,n}(x,y,z) = \frac{1}{(2\pi)^{3/2}} \begin{pmatrix} \frac{i}{l+m+n}e^{-2\pi i \left(x+my+nz\right)} \\ \frac{i}{l+m+n}e^{-2\pi i \left(x+my+nz\right)} \\ \frac{i}{l+m+n}e^{-2\pi i \left(x+my+nz\right)} \end{pmatrix}$$

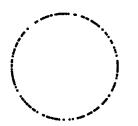
There are many solutions to the equation:

$$\nabla \cdot F_{l,m,n} \left(x, y, z \right) = \frac{1}{\sqrt{2\pi}} e^{-2\pi i \left(x + my + nz \right)}$$

In our implementation, we choose the functions $F_{l,m,n}$ to be the unique vector fields that commute with rotation:

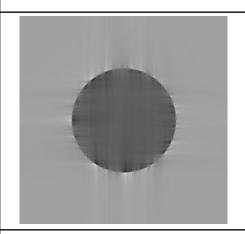
$$F_{l,m,n}(x,y,z) = \frac{1}{(2\pi)^{3/2}} \begin{cases} \frac{il}{l^2 + m^2 + n^2} e^{-2\pi i \left(x + my + nz\right)} \\ \frac{im}{l^2 + m^2 + n^2^2} e^{-2\pi i \left(x + my + nz\right)} \\ \frac{in}{l^2 + m^2 + n^2} e^{-2\pi i \left(x + my + nz\right)} \end{cases}$$

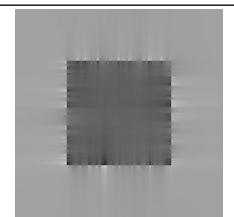
	0°	30°	45°
Does not Commute:			
$F_{l,m,n}(x, y, z) = \frac{1}{(2\pi)^{3/2}} \begin{cases} \frac{i}{l+m+n} e^{-2\pi i \cdot (x+my+nz)} \\ \frac{i}{l+m+n} e^{-2\pi i \cdot (x+my+nz)} \\ \frac{i}{l+m+n} e^{-2\pi i \cdot (x+my+nz)} \end{cases}$			
Commutes:			
$F_{l,m,n}(x,y,z) = \frac{1}{\sqrt{2\pi}} \begin{cases} \frac{il}{l^2 + m^2 + n^2} e^{-2\pi i \left(x + my + nz\right)} \\ \frac{im}{l^2 + m^2 + n^2} e^{-2\pi i \left(x + my + nz\right)} \\ \frac{in}{l^2 + m^2 + n^2} e^{-2\pi i \left(x + my + nz\right)} \end{cases}$			



Does not Commute:

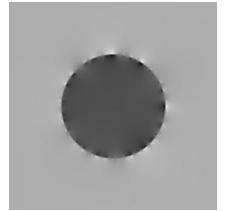
$$F_{l,m,n}(x, y, z) = \frac{1}{(2\pi)^{3/2}} \begin{cases} \frac{i}{l+m+n} e^{-2\pi i \cdot (x+my+nz)} \\ \frac{i}{l+m+n} e^{-2\pi i \cdot (x+my+nz)} \\ \frac{i}{l+m+n} e^{-2\pi i \cdot (x+my+nz)} \end{cases}$$

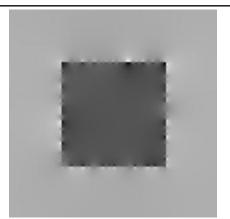




Commutes:

$$F_{l,m,n}(x,y,z) = \frac{1}{\sqrt[4]{\pi^{3/2}}} \begin{cases} \frac{il}{l^2 + m^2 + n^2} e^{-2\pi i \sqrt{x + my + nz}} \\ \frac{im}{l^2 + m^2 + n^2} e^{-2\pi i \sqrt{x + my + nz}} \\ \frac{in}{l^2 + m^2 + n^2} e^{-2\pi i \sqrt{x + my + nz}} \end{cases}$$





Convolution:

In general, to convolve with a filter *f*:

We take the sum of different <u>scales</u> of f at different <u>translations</u>:

Convolution:

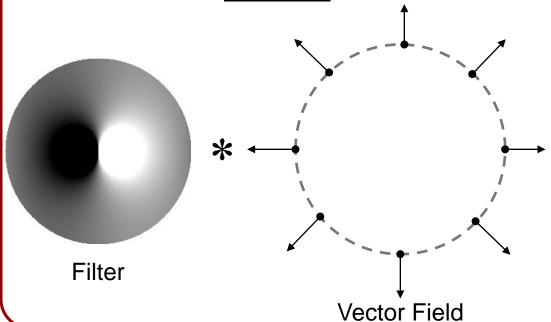
In general, to convolve with a filter f:

We take the sum of different scales of f at different translations:

When the functions $F_{l,m,n}$ commute with rotation, we extend the notion of convolution:

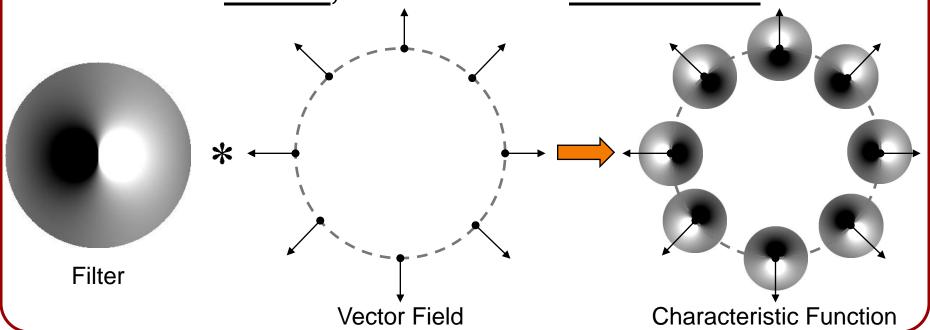
Extended Convolution:

When the functions $F_{l,m,n}$ commute with rotation, we extend the notion of convolution:



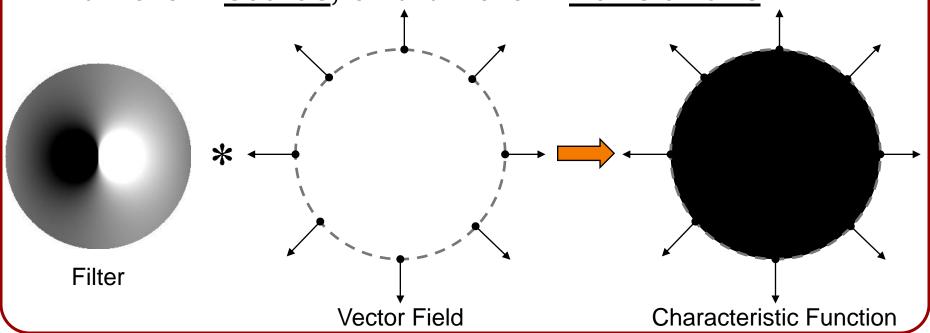
Extended Convolution:

When the functions $F_{l,m,n}$ commute with rotation, we extend the notion of convolution:



Extended Convolution:

When the functions $F_{l,m,n}$ commute with rotation, we extend the notion of convolution:



Extended Convolution:

When the functions $F_{l,m,n}$ commute with rotation, we extend the notion of convolution:

By turning the surface integral into a convolution, we can compute the characteristic function efficiently:

$$\{p_i, n_i\} \rightarrow \hat{\chi}_V(l, m, n) \approx \sum_{i=1}^k \left\langle \vec{F}_{lmn}(p_i), n_i \right\rangle \rightarrow \chi_V(x, y, z)$$

Vector Field

Characteristic Function

Outline

- Introduction
- Related Work
- Approach
 - The Divergence Theorem
 - Reduction to Volume Integration
 - Implementation
 - Defining the vector fields
 - Weighting non-uniform samples
- Results
- Conclusion

Challenge:

In a direct implementation of Monte-Carlo integration, it is assumed that the samples are uniformly distributed: $\int f(x)dx \approx \frac{1}{n} \sum_{i=1}^{n} f(X_i)$

Challenge:

In a direct implementation of Monte-Carlo integration, it is assumed that the samples are uniformly distributed:

$$\int f(x) dx \approx \frac{1}{n} \sum_{i=1}^{n} f(X_i)$$

However, often the oriented point samples may not be uniformly distributed over the surface:

- Parts of scans may overlap
- Faces parallel to the view plane may be more densely sampled
- Compressed representations may store fewer points in regions of low curvature

Challenge:

If we have a sampling density ρ_i associated to each sample x_i , we can modify the summation:

$$\int f(x)dx \approx \frac{1}{\sum_{i=1}^{n} \rho_{i}} \sum_{j=1}^{n} f(x_{i}) \rho_{i}$$

Challenge:

If we have a sampling density ρ_i associated to each sample x_i , we can modify the summation:

$$\int f(x)dx \approx \frac{1}{\sum_{i=1}^{n} \rho_{i}} \sum_{j=1}^{n} f(x_{i}) \rho_{i}$$

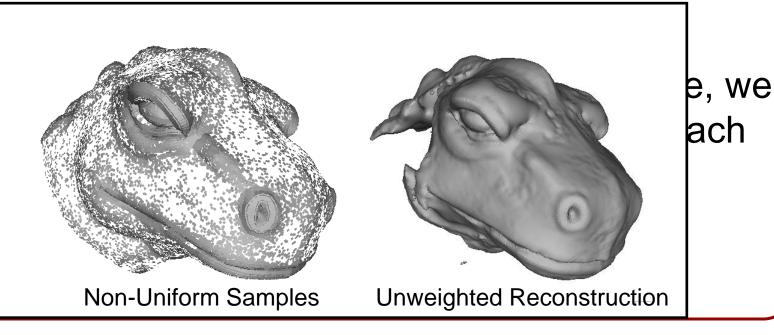
However, when we get an oriented point sample, we usually aren't given the sampling density at each sample.

Challenge:

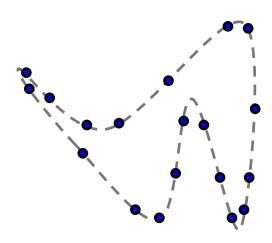
If we have a sampling density ρ_i associated to each sample x_i , we can modify the summation:

$$\int f(x)dx \approx \frac{1}{\sum_{i=1}^{n} \rho_{i}} \sum_{j=1}^{n} f(x_{i}) \rho_{i}$$

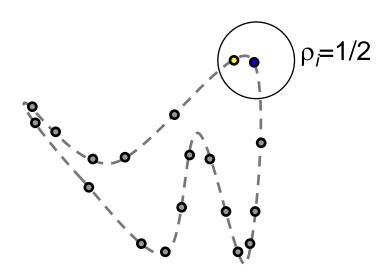
Howus sa



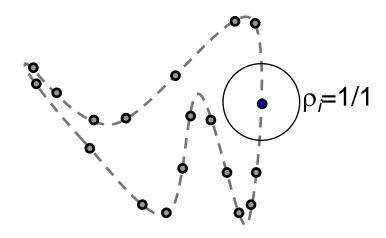
Approach:



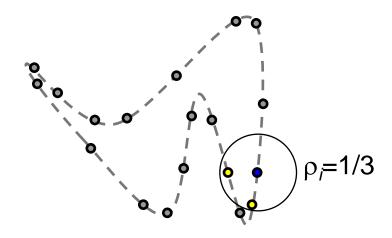
Approach:



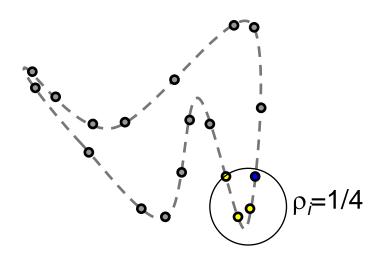
Approach:



Approach:



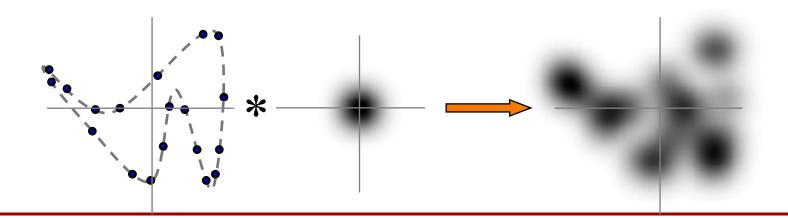
Approach:



Approach:

Compute the sampling density at each sample by counting the number of samples around it.

To do this efficiently, we "splat" the points into a voxel grid and convolve with a low-pass filter.

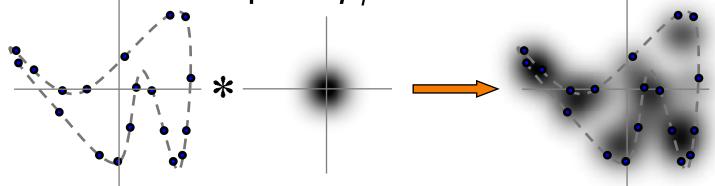


Approach:

Compute the sampling density at each sample by counting the number of samples around it.

To do this efficiently, we "splat" the points into a voxel grid and convolve with a low-pass filter.

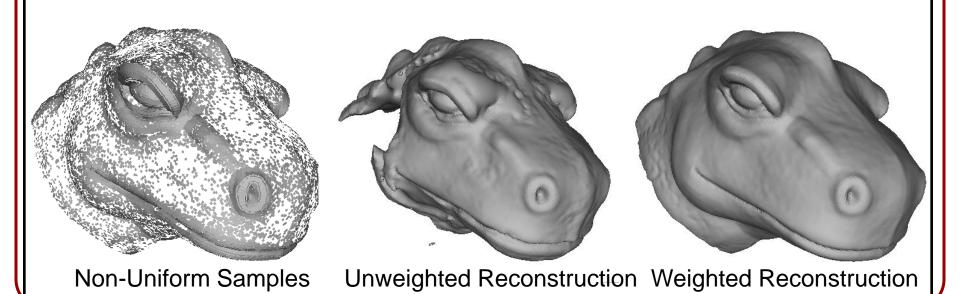
We set ρ_i equal to the reciprocal of the value convolution at point p_i .



Approach:

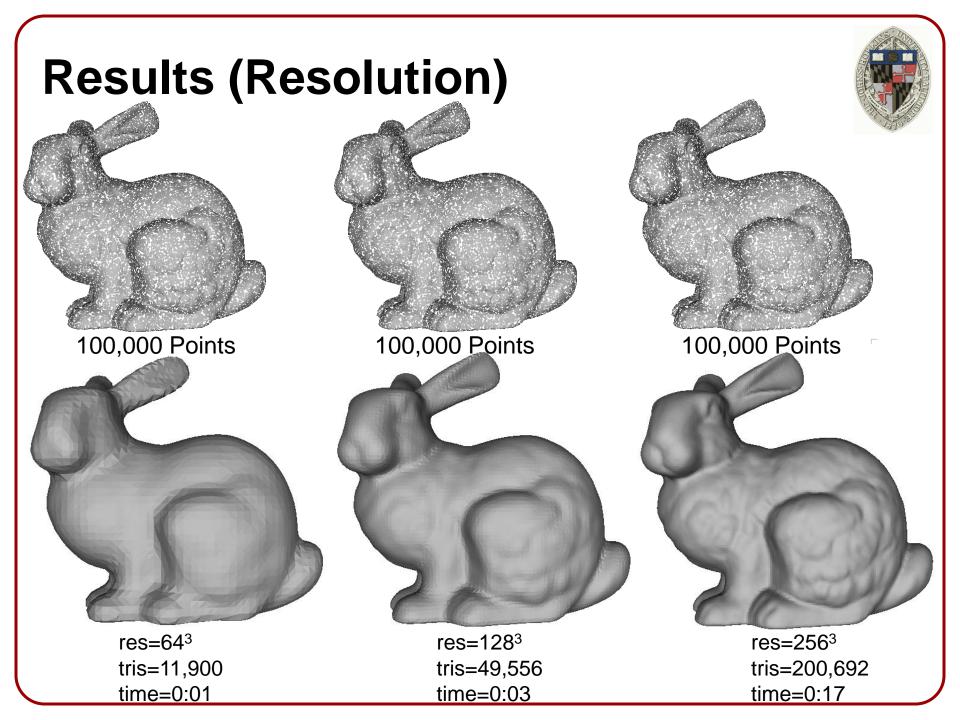
Compute the sampling density at each sample by counting the number of samples around it.

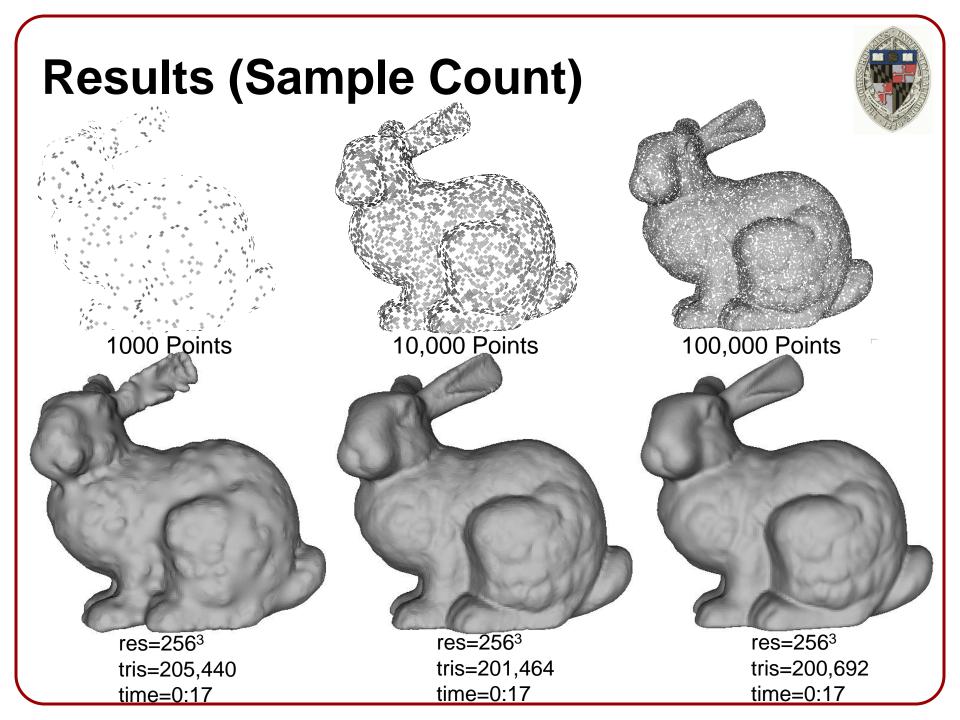
To do this efficiently, we "splat" the points into a

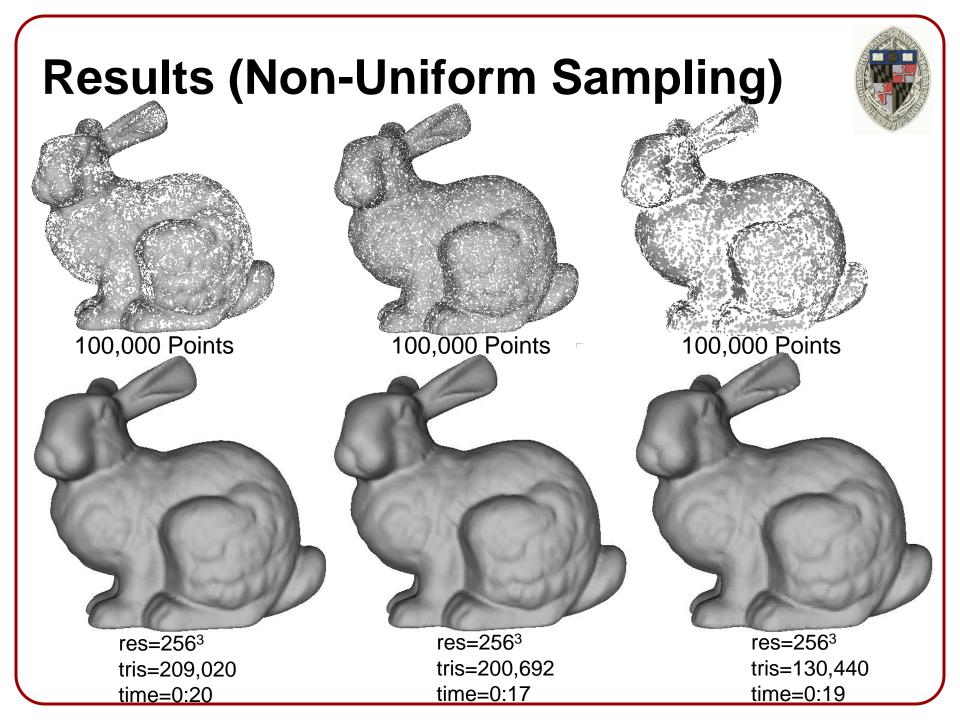


Outline

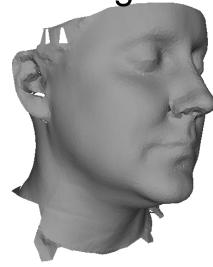
- Introduction
- Related Work
- Approach
- Results
- Conclusion

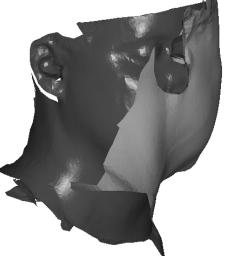




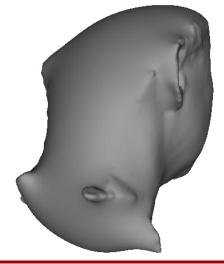


Results (Holes)



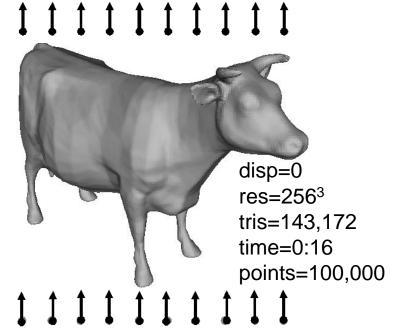


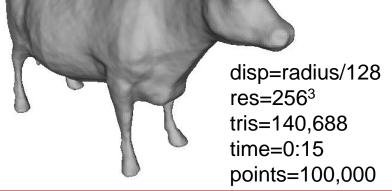
Reconstruction

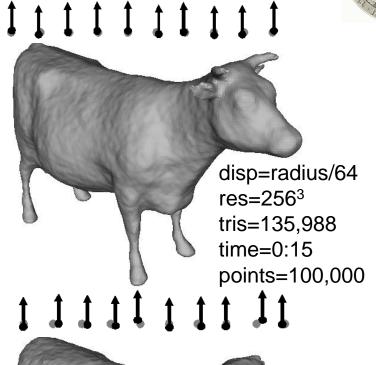


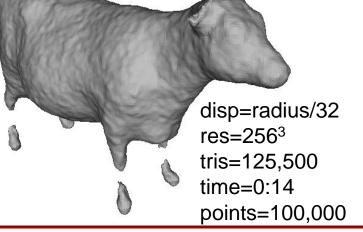
res=256³ tris=267,736 time=0:07 points=25,000

Results (Positional Noise)

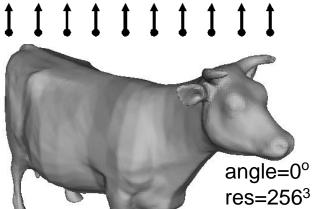




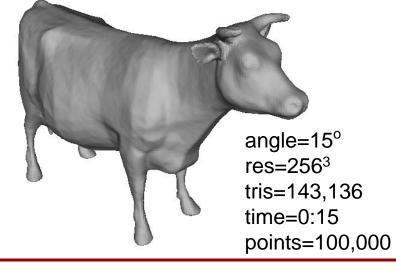


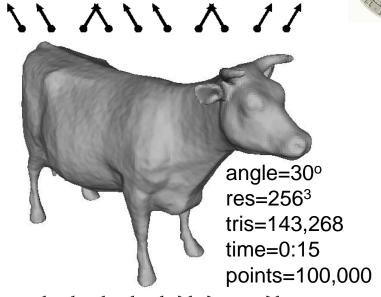


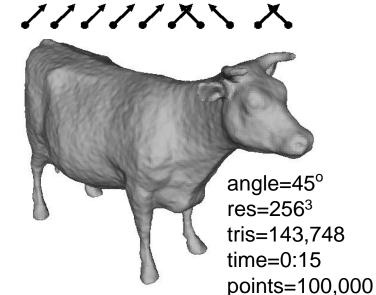
Results (Normal Noise)



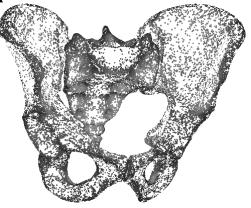
res=2563 tris=143,172 time=0:16 points=100,000





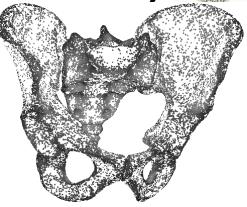


Results (Non-Uniform Sampling / Related Work)

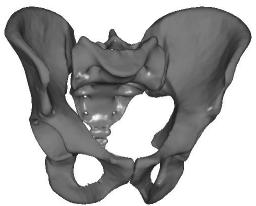


100,000 Points

100,000 Points

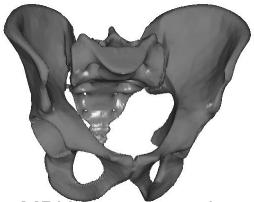


100,000 Points



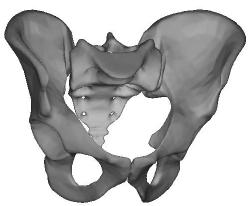
RBF Reconstruction

res=256³ tris=302,000 time=5:23



MPU Reconstruction

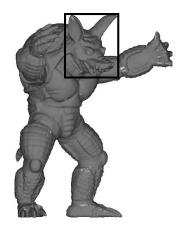
res=256³ tris=288,000 time=0:39

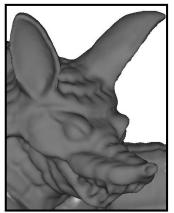


Our Reconstruction

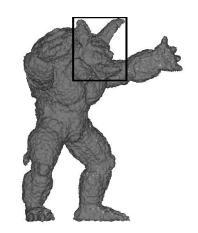
res=256³ tris=314,000 time=0:17

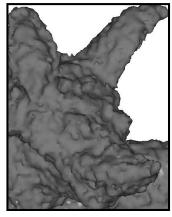
Results (Noise / Related Work)





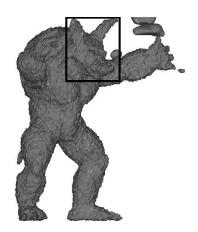
Original

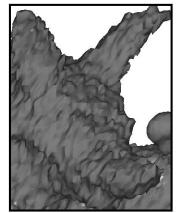




RBF Reconstruction

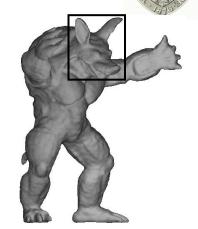
res=256³ tris=200,000 time=24:10 points=100,000

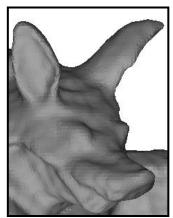




MPU Reconstruction

res=256³ tris=205,000 time=2:14 points=100,000





Our Reconstruction

res=256³ tris=177,000 time=0:16 points=100,000

Outline

- Introduction
- Related Work
- Approach
- Results
- Conclusion

Properties:

- ✓ Fast and simple to compute
- ✓ Independent of topology
- ✓ Robust to non-uniform sampling
- ✓ Robust to noise
- \times O(R^3) memory footprint for O(R^2) reconstruction

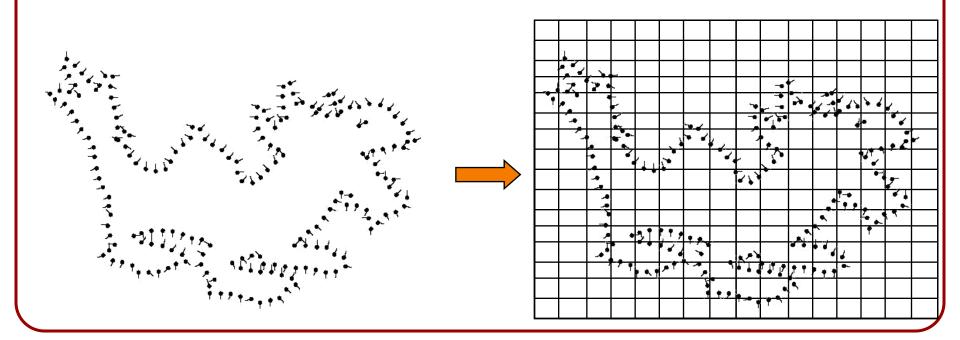
Theoretical Contribution:

- Transformed the surface reconstruction problem into a Volume integral
- Used the Divergence Theorem to express the integral as a surface integral
- Used Monte-Carlo integration to approximate the surface integral as a summation over an oriented point sample

We presented an algorithm for reconstruction that proceeds in three simple steps:

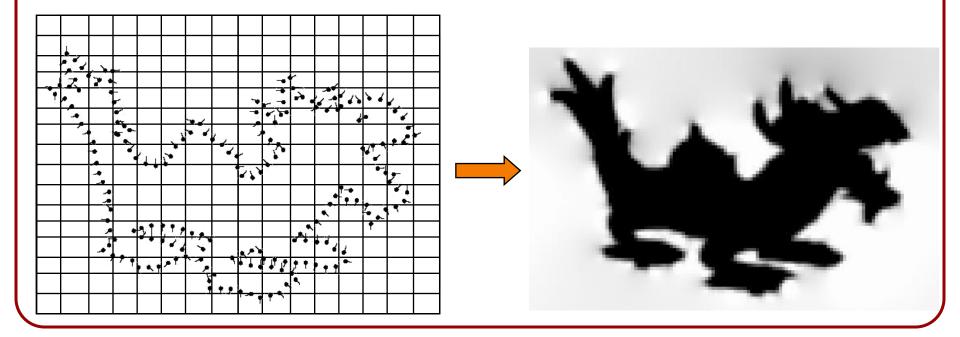
We presented an algorithm for reconstruction that proceeds in three simple steps:

1. Splat the oriented points into a voxel grid



We presented an algorithm for reconstruction that proceeds in three simple steps:

- 1. Splat the oriented points into a voxel grid
- 2. Convolve with a fixed filter



We presented an algorithm for reconstruction that proceeds in three simple steps:

- 1. Splat the oriented points into a voxel grid
- 2. Convolve with a fixed filter
- 3. Extract the iso-surface

