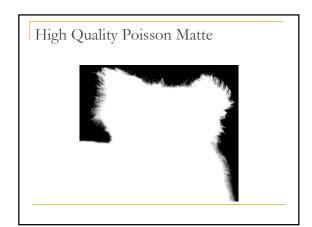
Possion Matting

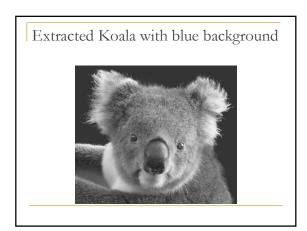
Jian Sun¹, Jiaya Jia², Chi-Keung Tang², Heung-Yeung Shum¹ ¹Microsoft Research Asia ²Hong Kong University of Science and Technology

Presented by Robert Jacques on 9/24/2007

Outline

- What is Image Matting?
- Related Work
- Poisson Matting
 - □ Global Matting
 - □ Local Matting
- Results





What is Image Matting?

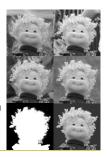
- Model an Image as a blend of foreground and background
 - $\Box I_{x,y} = \alpha_{x,y} F_{x,y} + (1 \alpha_{x,y}) B_{x,y}$
 - \Box Finding α , F and B from I is the pulling of the matte problem
 - Under constained
 - Trimap
 - Definite foreground
 - Definite background
 - □ Unkown

Related Work

- Color statistics
 - Ruzon and Tomasi 2000
 - Un-oriented Gaussians
 - □ Berman et al. 2000, Knockout
 - Weighted average of perimeter pixels.
 - □ Hillman et al. 2001
 - PCA
 - Chuang et al. 2001, Bayesian Matting
 - Maximum a posterior on oriented Gaussian clusters
 - Previous best

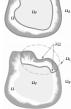
Related Work

- Other Techniques
 - Smith and Blinn 1996
 - Triangulation using 2 images with different known backgrounds
 - Qian and Sezan 1999, Difference Matting
 - 2 images, one with and one without the background
 - Chuang et al. 2002, Video matting
 - Bayesian matting using optical flow to propagate the trimap between frames



Related Work

- Lessons learned
- A human needs to be in the loop
 - Manual tweaking key to matting performance
 - □ Rich set of controls required
- Color Statistics
 - Error-prone in complex scenes
 - No local/manual refinement



Poisson Matting

Estimate the gradient of the matte [Mitsunaga et al. 1995] $I = \alpha F + (1-\alpha)B$

 $\nabla I = (F - B)\nabla \alpha + \alpha \nabla F + (1 - \alpha)\nabla B$

If F and B are smooth, i.e $\nabla F \& \nabla B$ are small, then

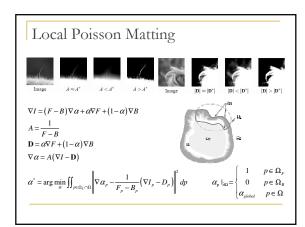
 $(F-B)\nabla\alpha >> \alpha\nabla F + (1-\alpha)\nabla B$

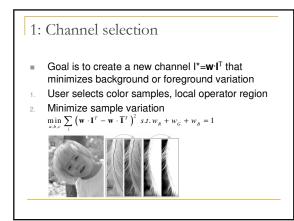
$$\begin{split} \alpha' &= \arg\min_{\alpha} \iint_{p\in\Omega} \left\| \nabla \alpha_p - \frac{1}{F_p - B_p} \nabla I_p \right\|^2 dp \qquad \alpha_p \mid_{\partial\Omega} = \begin{cases} 1 \\ 0 \end{cases} \\ &\text{Solve the associated Poisson equation.} \end{split}$$

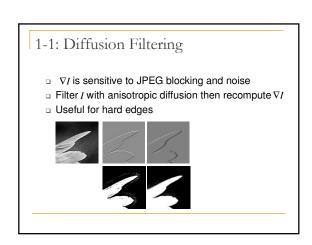
 $\Delta \alpha = div \left(\frac{\nabla I}{F - B} \right)$

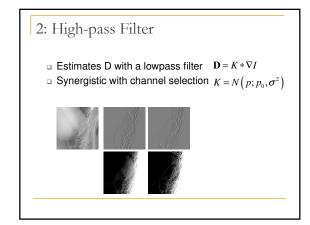
Global Poisson Matching

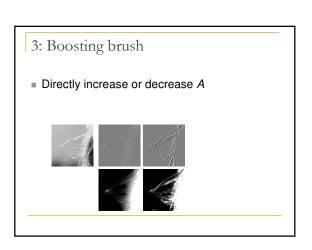
- Approximate (*F-B*) using nearest Ω_F and Ω_B
- Gaussian smooth the (F-B) image
- Reconstruct α using the Poisson equation
- Add all pixels with $\alpha > 0.95$ to Ω_F
- Add all pixels with α < 0.05 to Ω_B
- Repeat until
- Convergence of a
- No pixels added to Ω_F or Ω_B



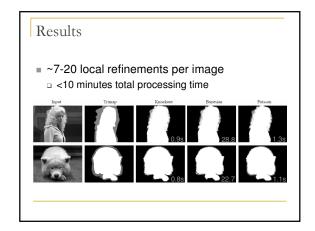


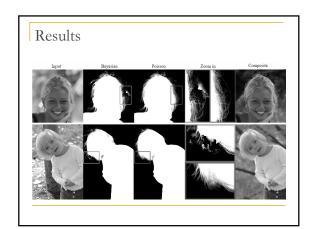


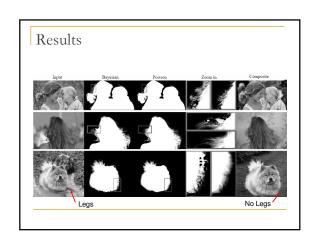




4: Clone Brush ■ Directly copy the matt gradient $A(\nabla I - \mathbf{D})$ ■ For when the gradients are indistinguishable







Applications

- Multi-background
 - $\ \square$ Mean image improves results by smoothing B
 - □ Backgrounds don't have to be known

Applications

Defogging

$$I = I_{Clear} e^{-\beta d} + Fog \left(1 - e^{-\beta d}\right)$$

$$\nabla I_{Clear} = \nabla I e^{-\beta d}$$

- $\ \square \ \beta$ is the scatter coefficient
- □ *d* is the depth value
- $\ \square$ Local refinement of $e^{-\beta d}$ using the boosting brush
- $\hfill\Box$ Model from Narasimhan and Nayar 2003

