Laplacian Mesh Optimization

Andrew Nealen¹, Takeo Igarashi², Olga Sorkine¹, Marc Alexa¹
1.TU Berlin, 2.The University of Tokyo

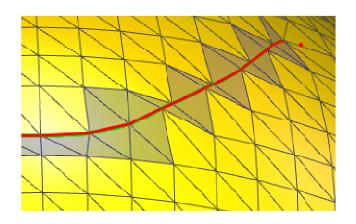
Presented by Ming Chuang on 11/04/2007

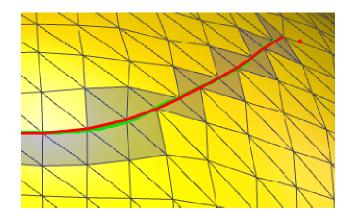
Outline

- What is the goal?
- Basics and Notation
- Related Work
- Framework
- Global Triangle Shape Optimization
- Mesh Smoothing
- Conclusion

What is the goal?

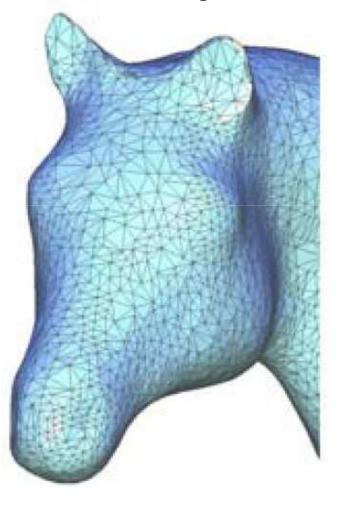
- A simple and efficient framework for:
 - Triangle Shape Optimization
 - Feature Preserving Smoothing





Original Mesh

Feature Preserving Smoothing



Triangle shape optimization

Basics and Notation

$$\mathbf{V} = [\mathbf{v}_1^T, \mathbf{v}_2^T, \dots, \mathbf{v}_n^T]^T, \, \mathbf{v}_i = [v_{ix}, v_{iy}, v_{iz}]^T \in \mathbb{R}^3$$

 δ_i is the Laplacian of \mathbf{v}_i $\sum_{\{i,j\}\in E} w_{ij} = 1$

$$\sum_{\{i,j\}\in E} w_{ij} = 1$$

$$\delta_i = \sum_{\{i,j\} \in \mathbf{E}} w_{ij} (\mathbf{v}_j - \mathbf{v}_i) = \left[\sum_{\{i,j\} \in \mathbf{E}} w_{ij} \mathbf{v}_j \right] - \mathbf{v}_i, \tag{1}$$

$$w_{ij} = \frac{\omega_{ij}}{\sum_{\{i,k\} \in \mathbf{E}} \omega_{ik}}$$
 (2)

$$\omega_{ij} = 1, \tag{3}$$

$$\omega_{ij} = \cot \alpha + \cot \beta,$$
 (4)

Basics and Notation

 To obtain the Laplacian for the entire mesh, we use the n by n Laplacian matrix L, with elements:

$$\mathbf{L}_{ij} = \begin{cases} -1 & i = j \\ w_{ij} & (i,j) \in \mathbf{E} \\ 0 & \text{otherwise} \end{cases} , \tag{5}$$

 L_u and L_c denote the matrices with uniform and cotangent weights respectively

Basics and Notation

•
$$V_d = [v_{1d}, v_{2d}, \dots, v_{nd}]^T, d \in \{x, y, z\}$$

•
$$\Delta_d = [\delta_{1d}, \delta_{2d}, \dots, \delta_{nd}]^T, d \in \{x, y, z\}$$

$$\Delta_d = \mathbf{L}\mathbf{V}_d. \tag{6}$$

 When properly scaled by the Voronoi region as Meyer et al. [2003], we obtain:

$$\overline{\kappa}_{i}\mathbf{n}_{i} = \delta_{i,c\overline{\kappa}} = \frac{1}{4A(\mathbf{v}_{i})} \sum_{\{i,j\} \in \mathbf{E}} (\cot \alpha + \cot \beta)(\mathbf{v}_{j} - \mathbf{v}_{i}), \quad (7)$$

which is the discrete mean curvature normal

Least Square Meshes

- Sorkine and Cohen-Or [2004] use a small subset
 C ∨ ometrically constrained vertices (anchors) to construct the mesh.
- They try to solve

$$\mathbf{V}'_d = [v'_{1d}, v'_{2d}, \dots, v'_{nd}]^T, d \in \{x, y, z\}$$

by minimizing the quadratic energy:

$$\|\mathbf{L}_{u}\mathbf{V}_{d}'\|^{2} + \sum_{s \in \mathbf{C}} w_{s}^{2} |v_{sd}' - v_{sd}|^{2}, \tag{8}$$

where v_{sd} are the anchors

 w_s^2 are weighting factors

– In practice, with the anchors as the first m vertices, the (n + m) x n overdetermined linear system $\mathbf{AV}_d' = \mathbf{b}$

$$\begin{bmatrix} \mathbf{L}_{u} \\ \mathbf{I}_{m \times m} & \mathbf{0} \end{bmatrix} \mathbf{V}_{d}' = \begin{bmatrix} \mathbf{0} \\ \mathbf{V}_{(1...m)d} \end{bmatrix}$$
(9)

can be solved in the least squares sense using normal equation: $\mathbf{V}_d' = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$

 Note that the first n rows are Laplacian constraints, while the last m rows are positional constraints.

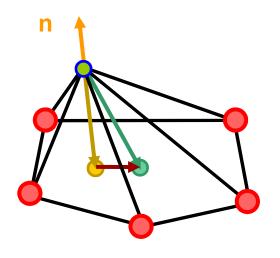
- Detail Preserving Triangle Shape Optimization:
 - Nealen et al. [2005] show how a least square optimization can improve triangle quality in a small mesh region, by modifying the above equation (9):

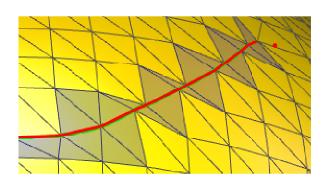
$$\begin{bmatrix} \mathbf{L}_{u} \\ \mathbf{I}_{m \times m} & \mathbf{0} \end{bmatrix} \mathbf{V}_{d}' = \begin{bmatrix} \Delta_{d,c} \\ \mathbf{V}_{(1...m)d} \end{bmatrix}, \tag{10}$$

where the uniform Laplacian of each new vertex position is asked to resemble its undeformed cotangent Laplacian as closely as possible

- Detail Preserving Triangle Shape Optimization:
 - Nealen et al. [2005] show how a least square optimization can improve triangle quality in a small mesh region, by modifying the above equation (9):

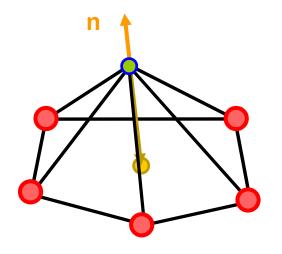
$$\begin{bmatrix} \mathbf{L}_{u} \\ \mathbf{I}_{m \times m} & \mathbf{0} \end{bmatrix} \mathbf{V}_{d}' = \begin{bmatrix} \Delta_{d,c} \\ \mathbf{V}_{(1...m)d} \end{bmatrix}, \tag{10}$$

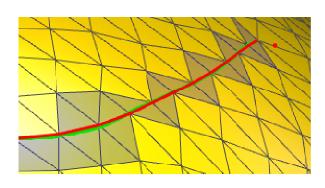




- Detail Preserving Triangle Shape Optimization:
 - Nealen et al. [2005] show how a least square optimization can improve triangle quality in a small mesh region, by modifying the above equation (9):

$$\begin{bmatrix} \mathbf{L}_{u} \\ \mathbf{I}_{m \times m} & \mathbf{0} \end{bmatrix} \mathbf{V}_{d}' = \begin{bmatrix} \Delta_{d,c} \\ \mathbf{V}_{(1...m)d} \end{bmatrix}, \tag{10}$$





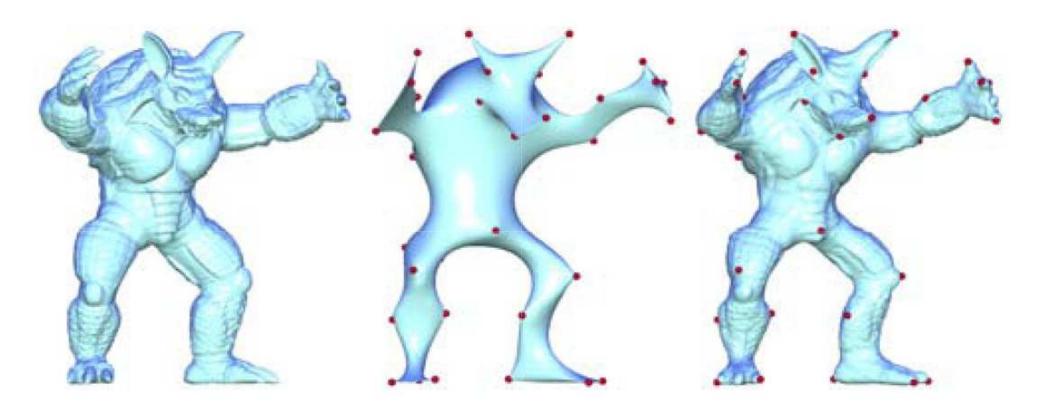
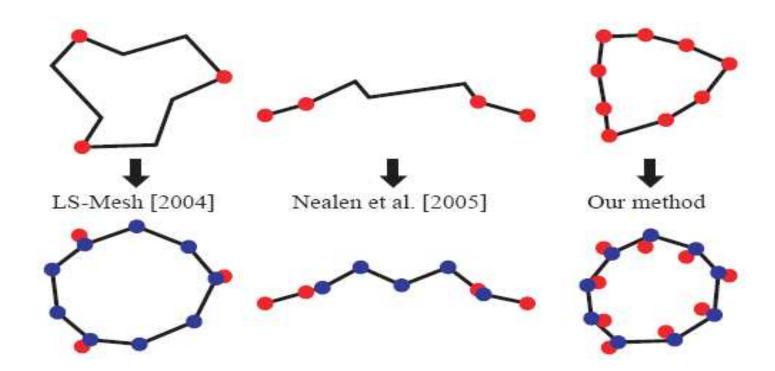


Figure 3: Least squares mesh [Sorkine and Cohen-Or 2004] (middle) and detail preserving triangle shape optimization [Nealen et al. 2005] (right) of the ARMADILLO (left), each with the same set of 40 control vertices (red).

Framework

 The main idea in this paper is that we no longer have a subset of positional constraints, instead, all vertices appear both as Laplacian and positional constraints....



Framework

 This paper propose a modification of the previous equation (9) and (10). The new 2n x n system is:

$$\left[\frac{\mathbf{W}_L \mathbf{L}}{\mathbf{W}_p}\right] \mathbf{V}_d' = \left[\frac{\mathbf{W}_L \mathbf{f}}{\mathbf{W}_p \mathbf{V}_d}\right]. \tag{11}$$

- In general, larger weights in W_p enforce positional constraints and preserve more original geometry
- On the other hand, \mathbf{W}_L enforce regular triangle shapes and/or surface smoothness

Framework

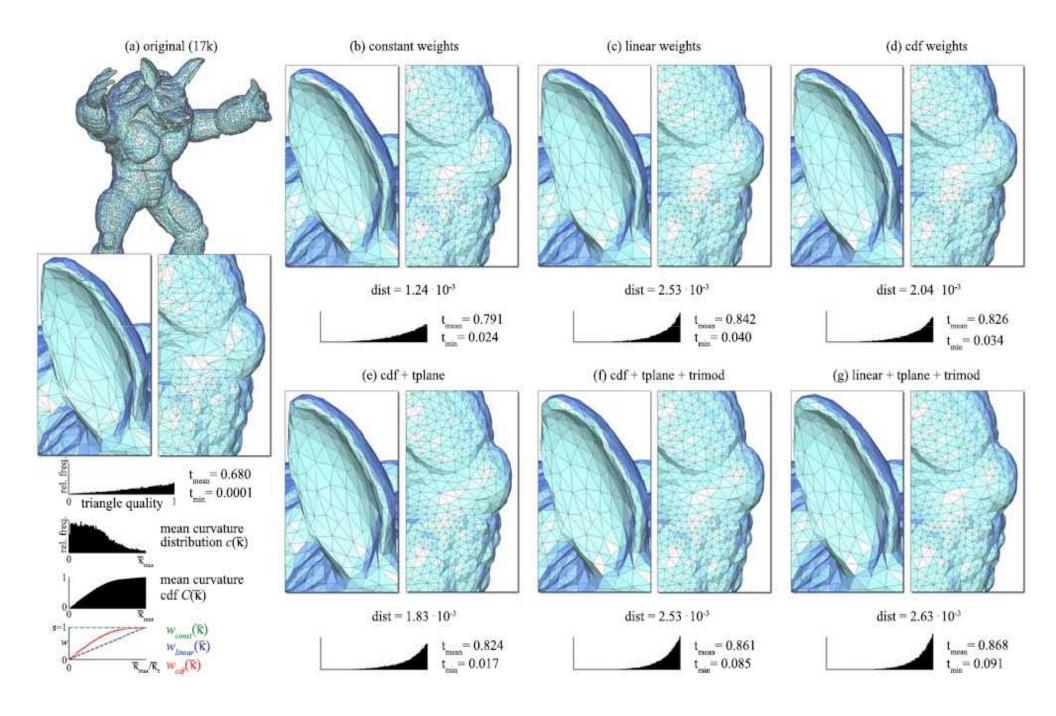
- As we will describe later, solving this system results in either:
 - Detail Preserving Triangle Shape Optimization
 - when setting $\mathbf{L} = \mathbf{L}_u$ and $\mathbf{f} = \Delta_{d,c}$,
 - Mesh Smoothing
 - when setting $\mathbf{L} = \mathbf{L}_{c\overline{K}}$ or \mathbf{L}_{c} (outer fairness) and $\mathbf{f} = \mathbf{0}$
 - ullet Or ${f L}={f L}_u$ (outer and inner fairness) and ${f f}={f 0}$

Global Triangle Shape Optimization

 We measure the triangle quality using the radius ratio [Pebay and Baker 2003], mapped to [0, 1]

$$t_i = 2\frac{r}{R},\tag{12}$$

- R and r are the radii of the circumscribed and inscribed circles respectively
- t_i =1(regular triangle) indicates it's well shaped,
 while t_i =0 is degenerate.



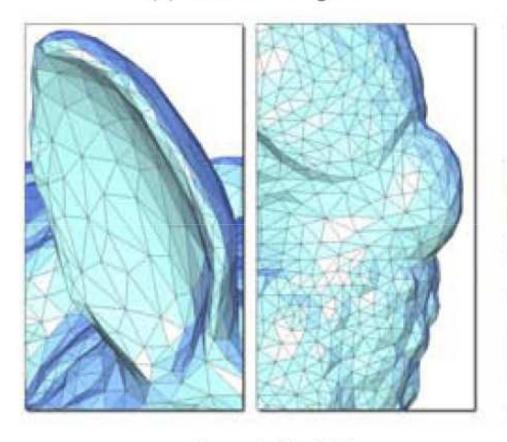
- $W_1 = I$, $f = \Delta_{d,c}$
- $W_D = ?$

 $\mathbf{W}_p = \mathbf{W}_{const} = s\mathbf{I}$ • Lowest geometric error (Hausdorff distance [Cignoni et al. 1998])

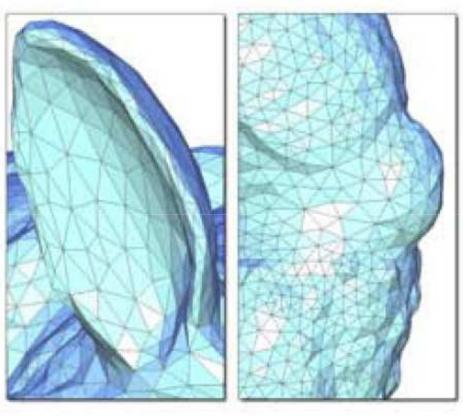
 $\mathbf{W}_p = \mathbf{W}_{linear}$

- Using a linear curvature-to-weight transfer function, which maps the discrete mean curvature to weight for each vertex.
- More precisely, we map the interval $[\overline{\kappa}_{min}, \overline{\kappa}_{max}]$ to [0,s] Threshold $\underline{\overline{\kappa}}$ is also used to truncate outliers

(b) constant weights



(c) linear weights



 $dist = 1.24 \cdot 10^{-3}$

 $dist = 2.53 \cdot 10^{-3}$

$$t_{\text{mean}} = 0.842$$

 $t_{\text{min}} = 0.040$

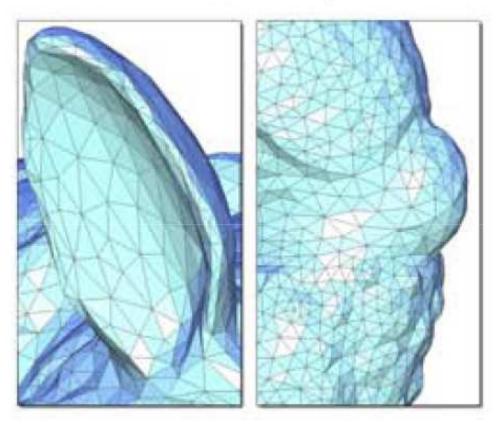
$$\mathbf{W}_p = \mathbf{W}_{cdf}$$

- While \mathbf{W}_{const} constrains low curvature vertices too much, \mathbf{W}_{linear} tends to give them to much freedom
- For those mesh a large amount of low curvature vertices, we use the cumulative density function (cdf) of \overline{K} to assign them larger weight.

$$C(\overline{\kappa}) = \int_0^{\overline{\kappa}} c(t) dt, \tag{13}$$

(c) linear weights

(d) cdf weights



$$dist = 2.53 \cdot 10^{-3}$$

 $dist = 2.04 \cdot 10^{-3}$

$$t_{\text{mean}} = 0.826$$
 $t_{\text{min}} = 0.034$

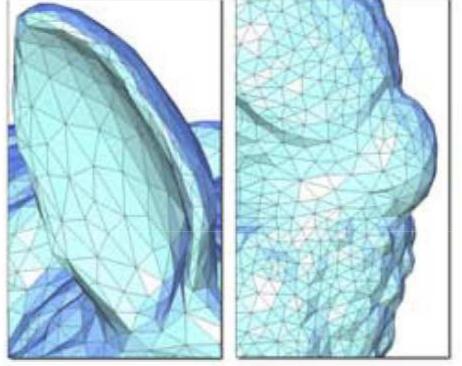
$$t_{\min} = 0.034$$

 To further reduce the geometric error, we can add the following term to the energy function:

$$\sum_{i=1}^{n} |\mathbf{n}_i \cdot (\mathbf{v}_i' - \mathbf{v}_i)|^2. \tag{14}$$

 This penalizes the displacement which is perpendicular to the tangent plane defined by the original vertex and the local surface normal given in the equation (7).

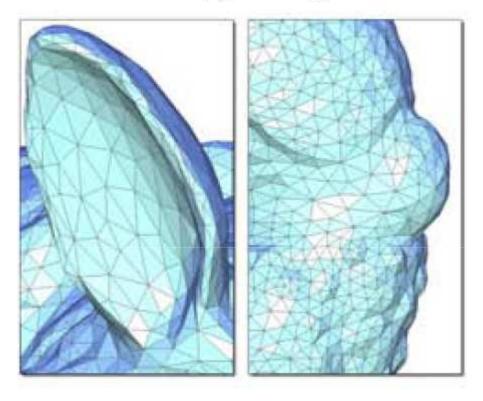
(e) cdf + tplane



 $dist = 1.83 \cdot 10^{-3}$

$$t_{\text{mean}} = 0.824$$
 $t_{\text{min}} = 0.017$

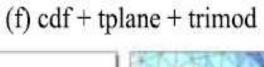
(d) cdf weights

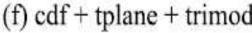


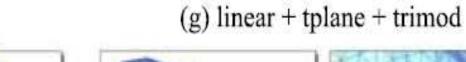
 $dist = 2.04 \cdot 10^{-3}$

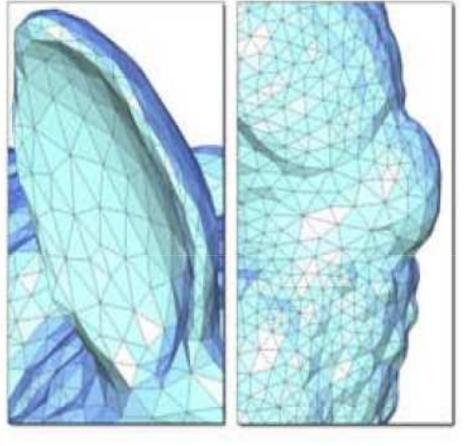
$$t_{\text{mean}} = 0.826$$
 $t_{\text{min}} = 0.034$

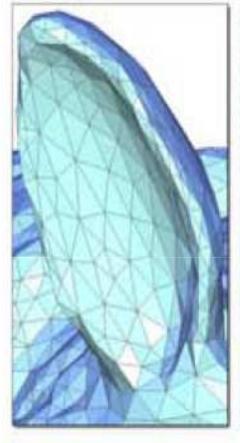
- In some application, we may want to maximize
 T_{min}
- In this case, the positional weights W_p can be modulated with the diagonal matrix W_t , where the entry for vertex is set to the minimal triangle $q_i w_{t,i}$ ty t of its advicent triangles

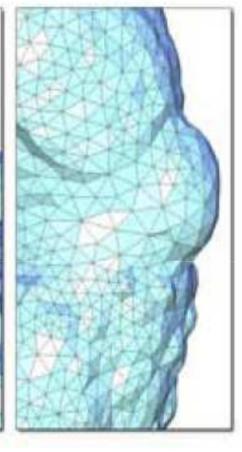




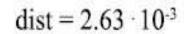








 $dist = 2.53 \cdot 10^{-3}$

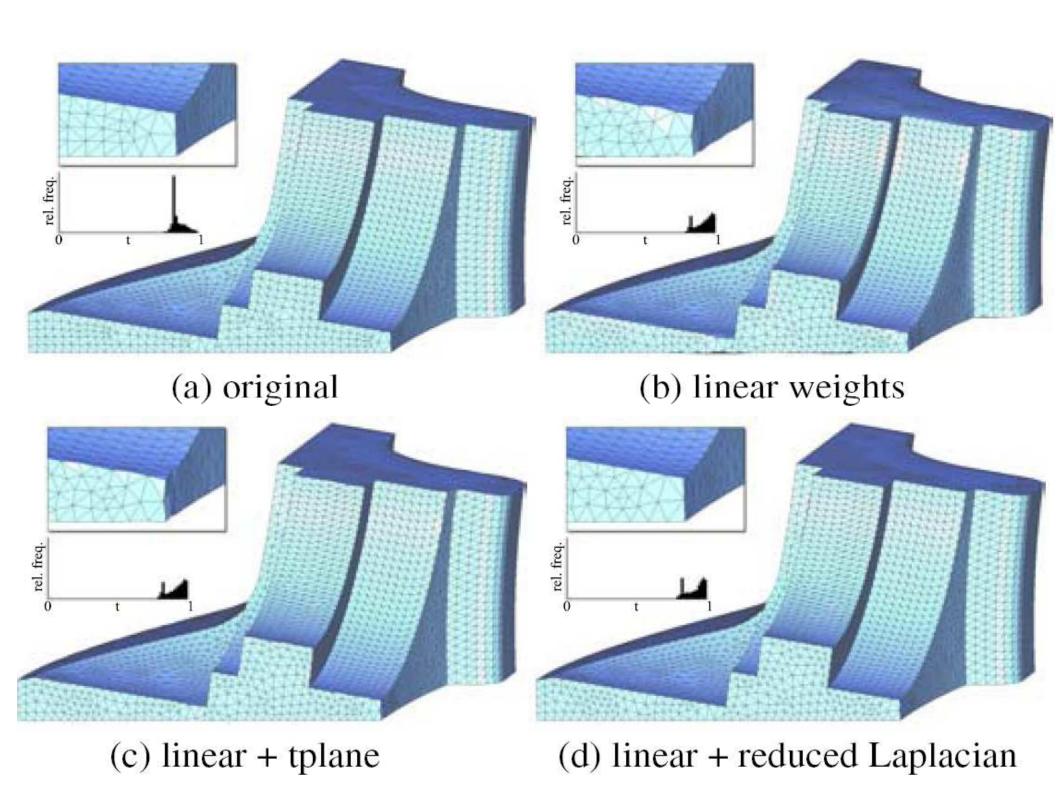


$$t_{\text{mean}} = 0.868$$

 $t_{\text{min}} = 0.091$

 For meshes with distinct sharp features, we reduce the weight on the Laplacian constraint of high curvature vertices

$$\mathbf{W}_L = s\mathbf{I} - \mathbf{W}_{linear}$$

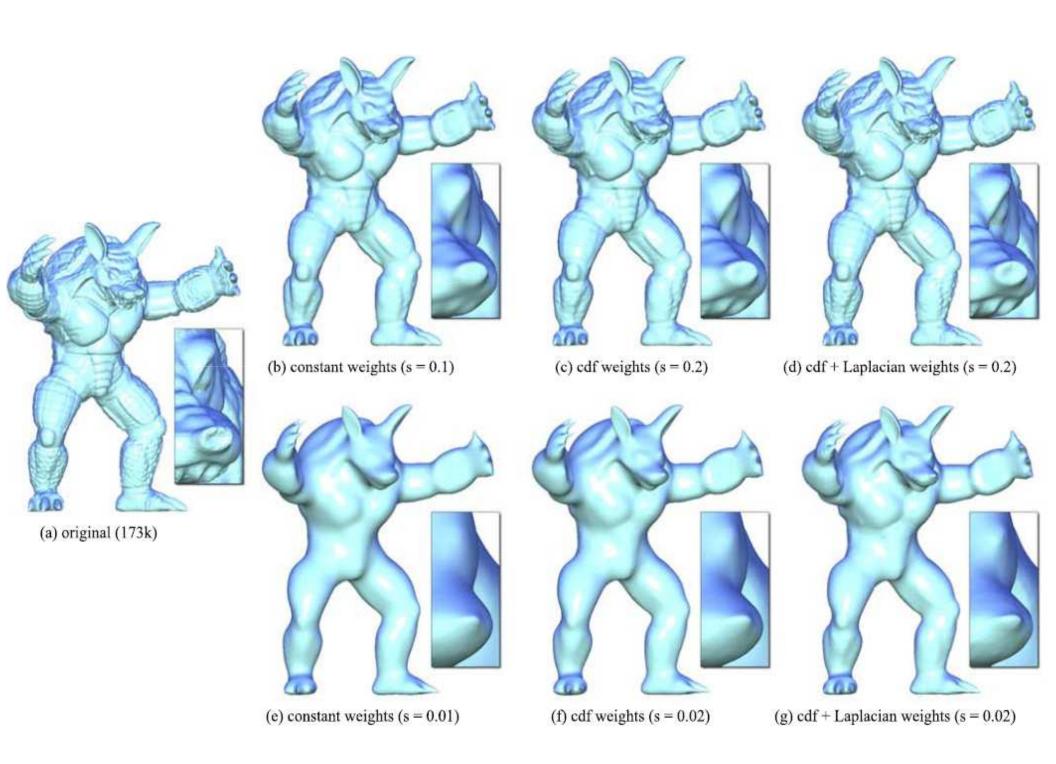


- In some application, we may want to maximize
 T_{min}
- In this case, the positional weights W_p can be modulated with the diagonal matrix W_t , where the entry for vertex is set to the minimal triangle $q_i w_{t,i}$ ty t of its advicent triangles

- In some application, we may want to maximize
 T_{min}
- In this case, the positional weights W_p can be modulated with the diagonal matrix W_t , where the entry for vertex is set to the minimal triangle $q_i w_{t,i}$ ty t of its advicent triangles

Mesh Smoothing

- Our frame work can be easily adjusted to perform global mes smoothing, optionally with feature preservation, simply by setting f=0, and adjusting the positional and Laplacian weights.
- Three parameters can be adjusted:
 - Positional Weights: W_{const}, W_{linear}, and W_{cdf}
 - Scale factor s
 - Laplacian weights W_L
 - Any variants of the function mentioned above can be used.



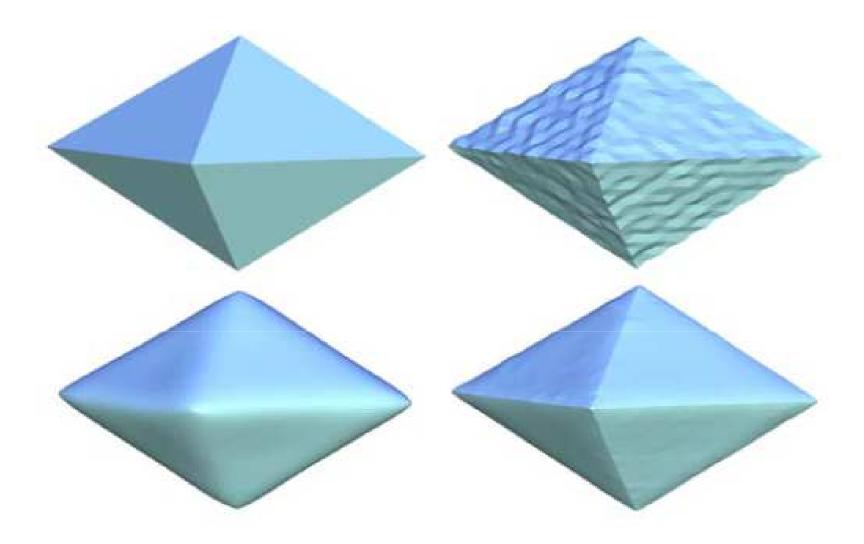


Figure 8: Smoothing a pyramid. Top row: original DOUBLEPYRA-MID and the noisy version. Bottom row: Using $\mathbf{W}_p = \mathbf{W}_{linear}$ alone smoothes out sharp features, while additionally reducing the weights on Laplacian constraints of feature vertices recovers most of the original shape.

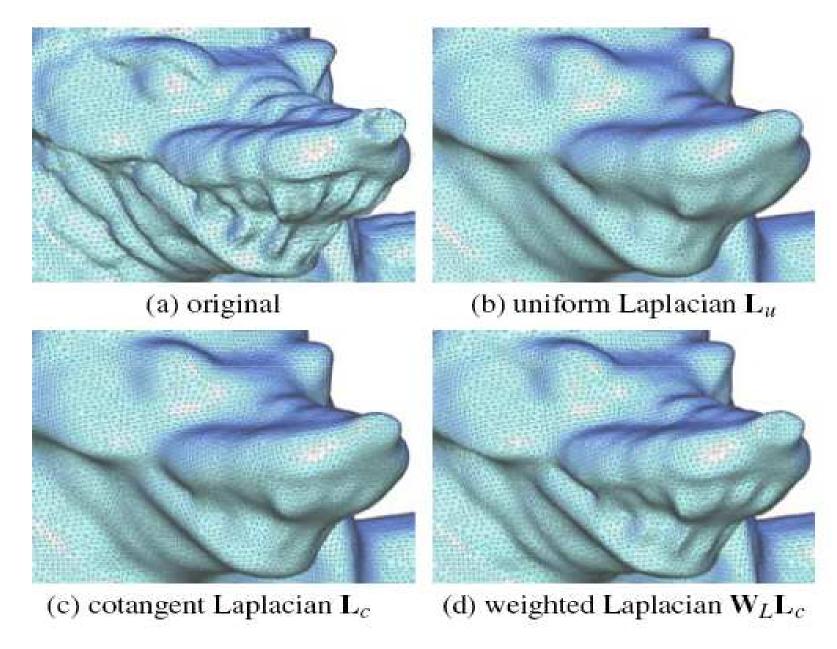


Figure 9: Comparison of umbrella (b) and cotangent (c) discretization of the L matrix. In (d), Laplacian constraints $\mathbf{L}_c \mathbf{V}_d' = 0$ are relaxed on feature vertices.

Conclusion

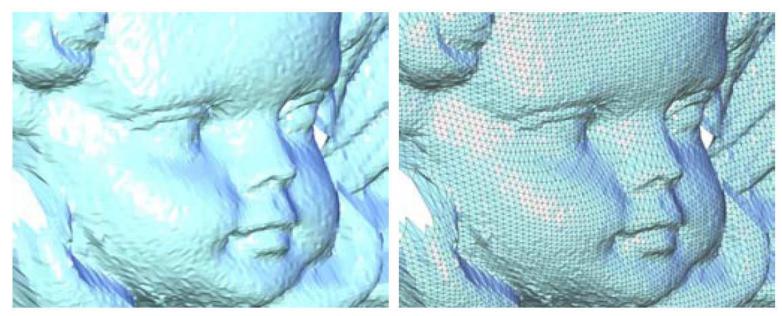
Pros

- Efficient, non-iterative approach
- Easily controllable triangle shape optimization and mesh smoothing
- Leverages existing least squares frameworks

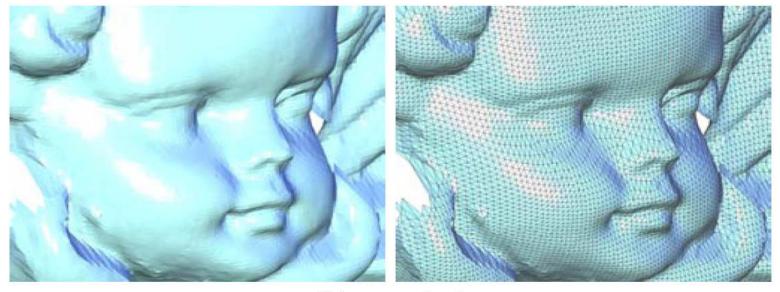
Cons

- Rely on some parameter tweaking to get what you want...
- Euclidean distance is not Hausdorff distance, so error control is indirect...

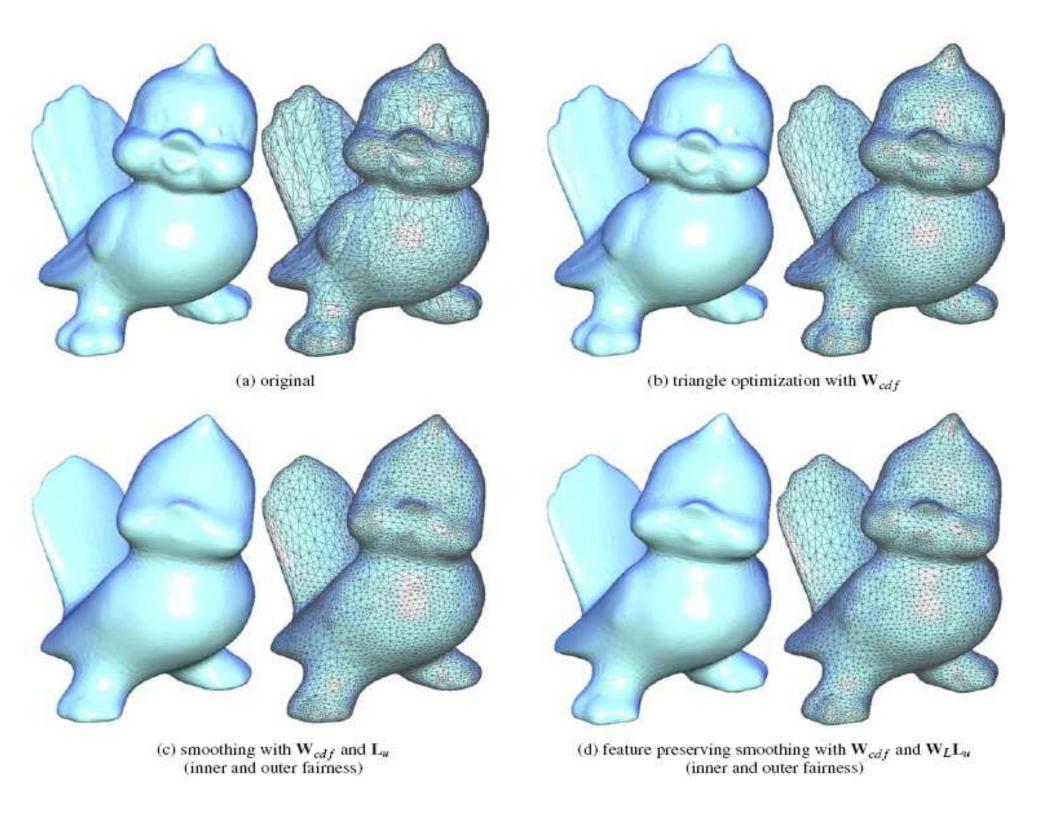
More results....

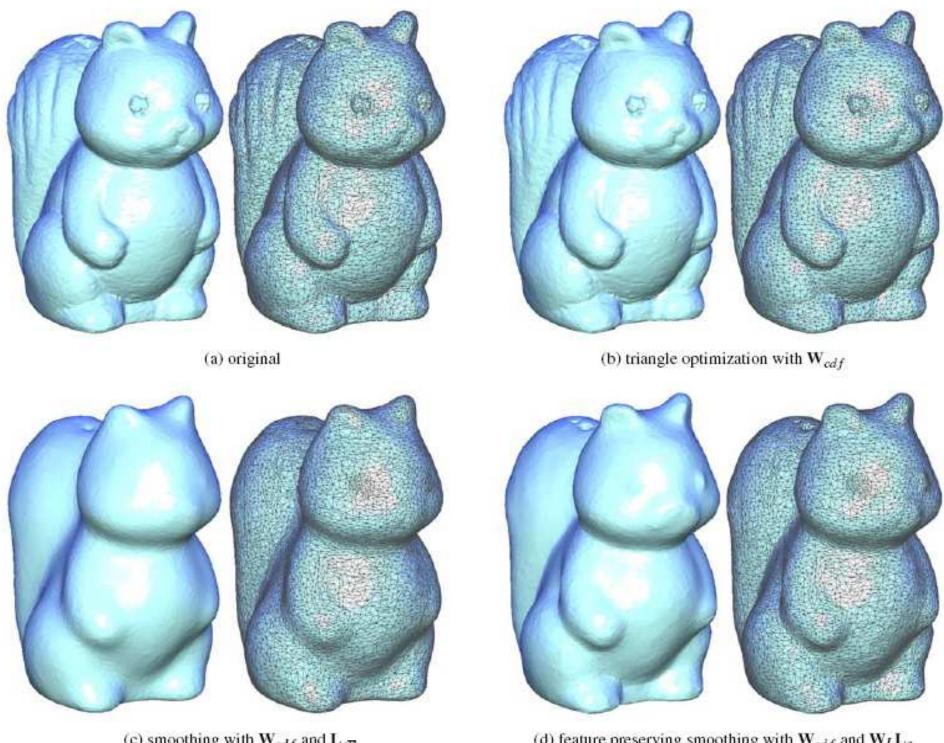


(a) original



(b) smoothed





(c) smoothing with \mathbf{W}_{cdf} and $\mathbf{L}_{c\mathbf{x}}$ (d) feature producter fairness only, inner fairness untouched) (outer fa

(d) feature preserving smoothing with \mathbf{W}_{cdf} and $\mathbf{W}_L\mathbf{L}_c$ (outer fairness only, inner fairness untouched)

Thank you...