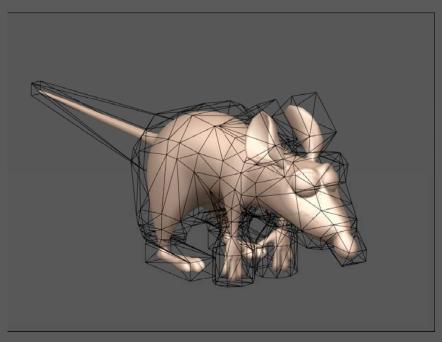
# Harmonic Coordinates for Character Articulation



# **PIXAR**

Pushkar Joshi Mark Meyer Tony DeRose Brian Green Tom Sanocki  We have a complex source mesh inside of a simpler cage mesh

 We want vertex deformations applied to the cage to be applied appropriately to the source mesh



# Mean Value Coordinates

Ju, Schaefer, Warren, 2005

$$p' = \sum_{i} g_{i}(p)C'_{i}$$

p' New object vertices

 $g_i(p)$  Mean value coordinate Weighting functions

C' Deformed cage vertices

# To compute $g_i(p)$ for each interior point p:

- Consider each point x on the boundary
- Multiply f(x) by the reciprocal distance from x to p
- Average over all x

From the Ju paper:

$$g(p) = \frac{\int_{x} w(x, v) f(x) dS_{p}}{\int_{x} w(x, v) dS_{p}}$$

where

$$w(x,p) = \frac{1}{|x-p|}$$

and

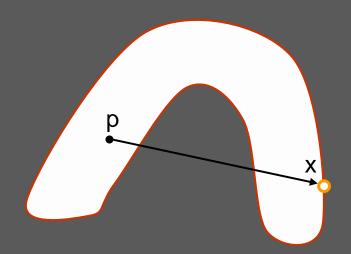
 $\overline{S_p}$  is the unit sphere centered at p

# To compute $g_i(p)$ for each interior point p:

- Consider each point x on the boundary
- Multiply f(x) by the reciprocal distance from x to p
- Average over all x

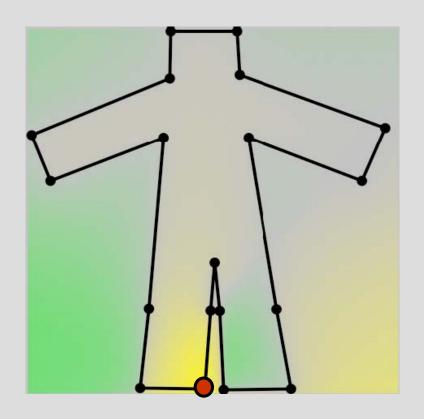
### Good things:

- Topological flexibility in designing the cage (any closed tri-mesh)
- Deformations are smooth
- Functions are linear, so no popping

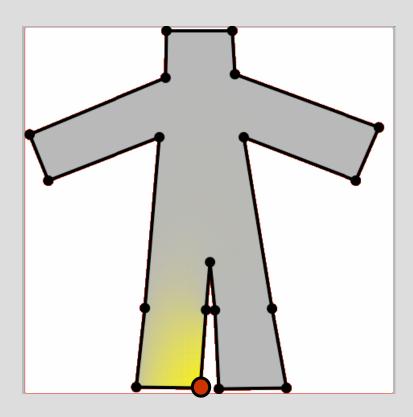


### Bad things:

- Does not respect the visibility of x from p
- If a cage vertex has a negative weight associated with it, then the object vertex and cage vertex will move in opposite directions



Mean Value Coordinate Field

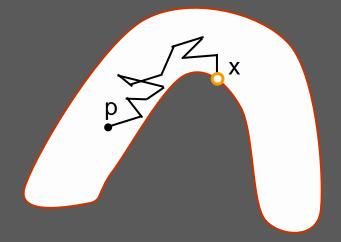


**Desired Coordinate Field** 





- Instead, let's average over all Brownian paths leaving p
  - This will consider the visibility of x from p
  - Essential for any concave mesh
- Interestingly enough...
  - This is the same as solving Laplace's equation
  - Porf, Stone 1978 & Bass 1995



$$\Delta h_i(p) = 0$$
  $p \in Interior(C)$ 

Solve for every cage vertex *p* 

Let us first approach things in two dimensions

# Boundary conditions:

- Let  $\partial p$  denote a point on the boundary  $\partial C$  of C
- Then:

$$h_i(\partial p) = \phi_i(\partial p), \quad \text{for all} \quad \partial p \in \partial C$$

where

 $\phi_i(\partial p)$  is the piecewise linear function such that  $\phi_i(C_j) = \delta_{i,j}$ 

# Properties:

Interpolation

$$h_i(C_j) = \delta_{i,j}$$

- Smoothness

The functions  $h_i(p)$  are smooth in the interior of the cage

Non-negativity

$$h_i(p) \ge 0$$
 for all  $p \in C$ 

Interior locality

Interior locality holds if we have the non-negativity property and no interior extrema

Linear reproduction

Given an arbitrary f(p), the coordinate functions can be used to define:

$$H[f](p) = \sum_{i} h_{i}(p) f(C_{i})$$

This is the 'no popping' condition

# Properties:

Affine invariance

$$\sum_{i} h_i(p) = 1$$
 for all  $p \in C$ 

Generalization of barycentric coordinates

 $h_i(p)$  is the barycentric coordinate of p with respect to  $C_i$ 

# Interpolation:

$$h_i(C_j) = \phi_i(C_j) = \delta_{i,j}$$

#### Smoothness:

Away from the boundary, harmonic coordinates are solutions, so they are smooth in the cage interior

On the boundary, they are only as smooth as the boundary conditions

## Non-negativity:

Harmonic functions achieve extreme at their boundaries

Boundary values are restricted to [0,1]

So interior values are restricted to [0,1]

## Interior locality:

Harmonic functions possess no interior extrema

# Linear reproduction:

This holds for everywhere on the boundary of *C*, by definition:

$$H[f](\partial p) = \sum_{i} h_{i}(\partial p) f(C_{i}) = \sum_{i} \phi_{i}(\partial p) f(C_{i})$$

Since f(p) is linear, second derivatives vanish, ie:

$$\nabla^2 f(p) = 0$$

and f(p) satisfies Laplace's equation on the interior of C

Since *H[f](p)* is a linear combination of harmonic functions, it also satisfies Laplace's equation

Use proof by induction to generalize to any *n*-dimension

# Results

| Cage Vertices      | 325   | 112   | 39     | 27     |
|--------------------|-------|-------|--------|--------|
| Object Vertices    | 9775  | 8019  | 269    | 136    |
| Grid resolution    | 5     | 5     | 4      | 5      |
| Solve time         | 57.4  | 17.6  | 5.85   | 0.83   |
| Pose time          | 0.111 | 0.026 | 0.0001 | 0.0007 |
| Solution size (MB) | 9.2   | 3.7   | 0.32   | 0.048  |

Error: < 0.005

Total footprint: < 90MB

# Future Work:

- Compute the harmonic coordinates for each cage vertex independently and in parallel
- Better solvers (currently using MultiGrid)
- Octrees
- Localize re-solves