Drag and Drop Pasting

Jiaya Jia, Jian Sun, Chi-Keung Tang, Heung-Yeung Shum

The Chinese University of Hong Kong
Microsoft Research Asia
The Hong Kong University of Science and Technology

Presented By

Bhaskar Kishore

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions

Introduction

Problem

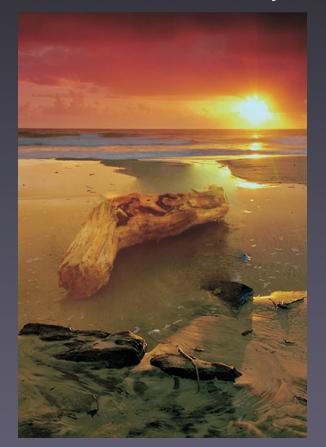
 For Poisson Image Editing to work well user must carefully draw boundary on source image

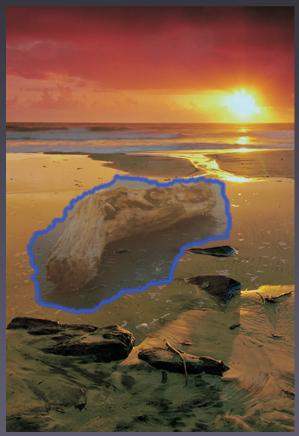
Poisson Image Editing may generate unnatural blurring

artifacts

Introduction

- Proposed
 - A new objective function to compute an optimized boundary
 - A blend guidance field to integrate an alpha matte into the Poisson equation to preserve fractional boundary







- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions

Related Work

- Poisson Image Editing [Perez et al. 2003]
- Image Stitching in the Gradient Domain [Levin et al. 2004]
- Interactive Digital Photomontage [Agarwala et al. 2004]
- Multi-resolution spline technique [Burt & Adelson 1983]

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions

Poisson Image Editing

• Minimizing Problem [Perez et al. 2003]

•
$$\min_{f} \int_{p \in \Omega_0} |\nabla f - v|^2 dp \text{ with } f|_{\partial \Omega_0} = f_t|_{\partial \Omega_0},$$
 (1)

where $v = \nabla fs$

Denote f' = f - fs, equation (1) becomes

•
$$\min_{f'} \int_{p \in \Omega_0} |\nabla f'|^2 dp \text{ with } f'|_{\partial \Omega_0} = (f_t - f_s)|_{\partial \Omega_0}.$$
 (2)

The associated Laplace equation is :

$$\Delta f' = 0 \text{ with } f'|_{\partial\Omega_0} = (f_t - f_s)|_{\partial\Omega_0}, \tag{3}$$

where $\Delta=(rac{\partial^2}{\partial x^2}+rac{\partial^2}{\partial y^2})$ is the Laplacian operator

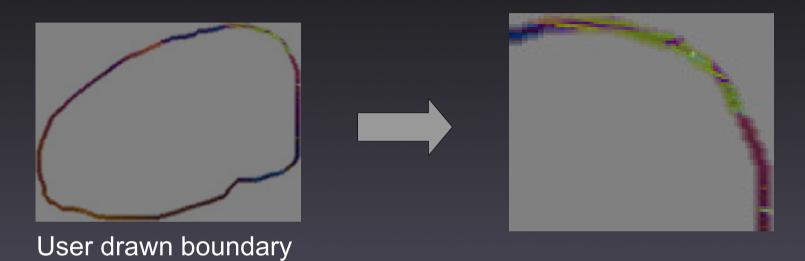
Poisson Image Editing

$$\min_{f'} \int_{p \in \Omega_0} |\nabla f'|^2 dp \text{ with } f'|_{\partial \Omega_0} = (f_t - f_s)|_{\partial \Omega_0}. \tag{2}$$

- Important Property of equation 2
 - Variational energy $\Omega_0 |\nabla f|^2$ will approach zero if and only if all boundary pixels satisfy $(f_t f_s)|_{\partial\Omega_0} = k$, where k is some constant value [Zwillinger 1997]
 - Important as less variation in color along the boundary produces better results in the compositing operation

Poisson Image Editing

$$\min_{f'} \int_{p \in \Omega_0} |\nabla f'|^2 dp \text{ with } f'|_{\partial \Omega_0} = (f_t - f_s)|_{\partial \Omega_0}. \tag{2}$$



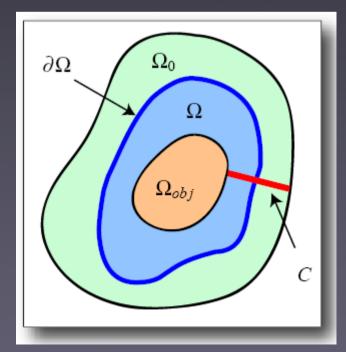
- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions

Before Boundary Energy Minimization

- Optimal Boundary
 - Where is this optimal boundary $\partial\Omega$?
 - Has to be inside the region of interest Ω_0
 - It also has to be outside the object of interest $\Omega_{_{obj}}$

• Use GrabCut [Rother et al. 2004] to automatically

compute $\Omega_{_{\mathrm{obj}}}$



Boundary Energy Minimization

 To reduce the color variance along the boundary the following objective function is minimized:

$$E(\partial \Omega, k) = \sum_{p \in \partial \Omega} ((f_t(p) - f_s(p)) - k)^2, \text{ s.t. } \Omega_{obj} \subset \Omega \subset \Omega_0, \text{ (4)}$$

- Where
 - f(p) is a ternary set in {r,g,b} space
 - f(p) f(q) is computed as L2 Norm

Boundary Energy Minimization

- Iterative Optimization
 - 1. Initialize Ω as Ω 0
 - 2. Take derivative of equation 4 and equate to zero. Solve for K.

$$\frac{\partial E(\partial \Omega, k)}{\partial k} = 0$$

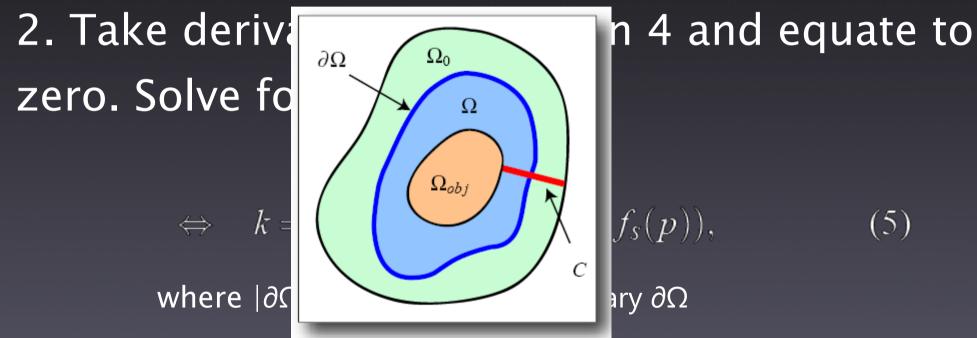
$$\Leftrightarrow k = \frac{1}{|\partial \Omega|} \sum_{p \in \partial \Omega} (f_t(p) - f_s(p)), \tag{5}$$

where $|\partial\Omega|$ is length of the boundary $\partial\Omega$

- 3. Given the current K, optimize the boundary $\partial\Omega$.
- 4. Repeat steps 2 and 3 until the energy does not decrease in successive iterations

Boundary Energy Minimization

- Iterative Optimization
 - 1. Initialize Ω as Ω 0

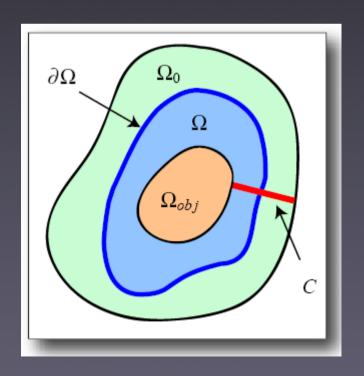


- 3. Given the current K, optimize the boundary $\partial\Omega$.
- 4. Repeat steps 2 and 3 until the energy does not decrease in successive iterations

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions

- Assume a graph G
 - Nodes in G are pixels within the band Ω Ω_{obj}
 - Edges represent 4-connectivity relationships between neighboring pixels
 - Cost on each node is defined as $((f_t(p) f_s(p)) K)^2$
 - Region Ω_{obj} can be considered as genus 0
 - Region $\Omega_0 \setminus \Omega_{obj}$ can be considered as genus 1

- Finding Shortest path is difficult as $\partial\Omega$ is a closed curve enclosing Ω_{obj}
- We therefore change region $\Omega_0 \backslash \Omega_{obj}$ from genus 1 to genus 0 by introducing cut C.



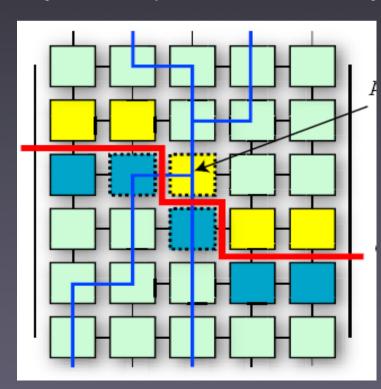
Cut C

- Compute shortest straight line segment among all pixel pairs for $\partial\Omega$ obj and $\partial\Omega$ 0.
- Benefits of this approach

Short length reduces probability that optimal boundary passes

the cut more that once

• Speeds up computation.



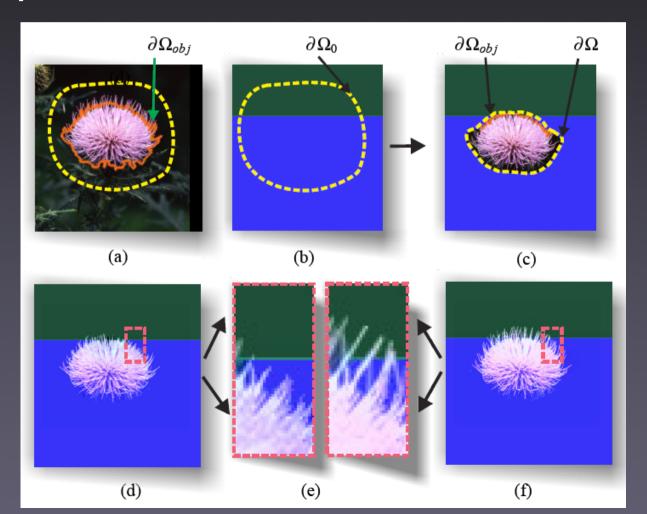
Shortest Closed Path Algorithm

- For each pixel P on one side of the cut (Marked Yellow)
 compute Shortest paths to all adjacent pixels on the
 other side (Shown in Blue).
 - Use 2D Dynamic programming [Dijkstra 1959; Mortensen and Barrent 1995] to compute paths.
 - O(N) where N is the number of pixels in the band.
- Repeat process for all pixels on yellow side of cut C.
 - We obtain a set of Paths.
 - Optimized boundary $\partial\Omega$ is assigned to the path with globally minimum cost.
 - Assuming there are M yellow pixels, overall complexity is O(MN)

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions

Fractional Boundary

 Problem is optimized boundary may intersect with an object with fractional boundary and break up subtle and fine details



- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions

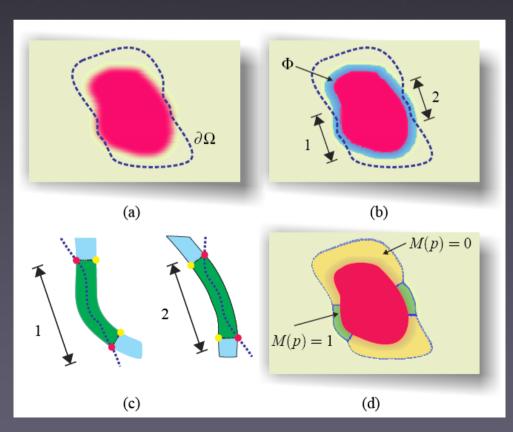
- Solution is to incorporate an alpha matt into the guidance field for Poisson equations
- To do this we must detect regions in which alpha blending should be computed
- Define binary coverage mask M to indicate where alpha blending should be applied.

• Denote $\Phi = \{ p \mid 0 < \alpha(p) < 1 \}$ as the fractional object boundary

• α is computed automatically within a few pixels surrounding Ω obj using coherence matting [Shum

et al. 2004]

Φ is the shape of the narrow blue belt

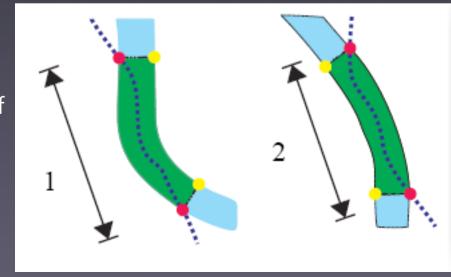


- Now the blended guidance field $v' = (v'_x, v'_y)$
- For each pixel $p = (x,y), v'_{x}(x,y)$ is defined as

$$v_x'(x,y) = \begin{cases} \nabla_x f_s(x,y) & M(x,y) = M(x+1,y) = 0\\ \nabla_x (\alpha f_s + (1-\alpha)f_t) & M(x,y) = M(x+1,y) = 1\\ 0 & M(x,y) \neq M(x+1,y) \end{cases}$$
(6)

To construct M

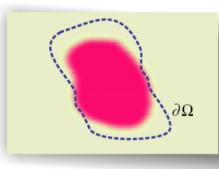
- Compute head and tail intersections b/w $\partial\Omega$ and belt Φ (Red Dots)
- Compute the nearest point on the other side of belt Φ . This gives us the green region in which blending must be applied.
- Set $\{p|M(p) = 1\}$ in green region and M(p) = 0 in remaining pixels of p in $\Omega \cup \Phi$



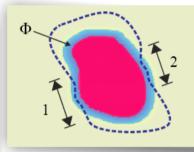
• Now the blended guidance field $v' = (v'_x, v'_y)$

• For each pixel n – (x y) y' (x y) is defined as

$$v_x'(x,y) = \begin{cases} \nabla_x & 0 \end{cases}$$

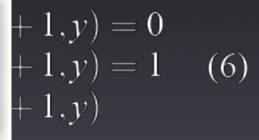


(a)



(b)

M(p) = 0

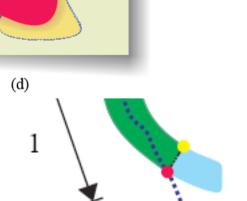


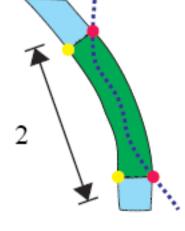
To constru

Compute head
 ∂Ω and belt Φ (

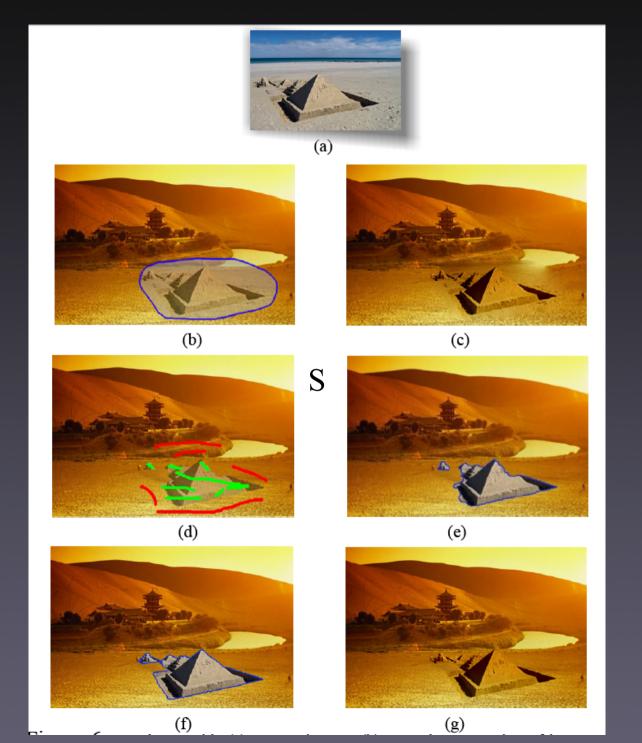
• Compute the nebels belt Φ. This gives us the green region in which blending must be applied.

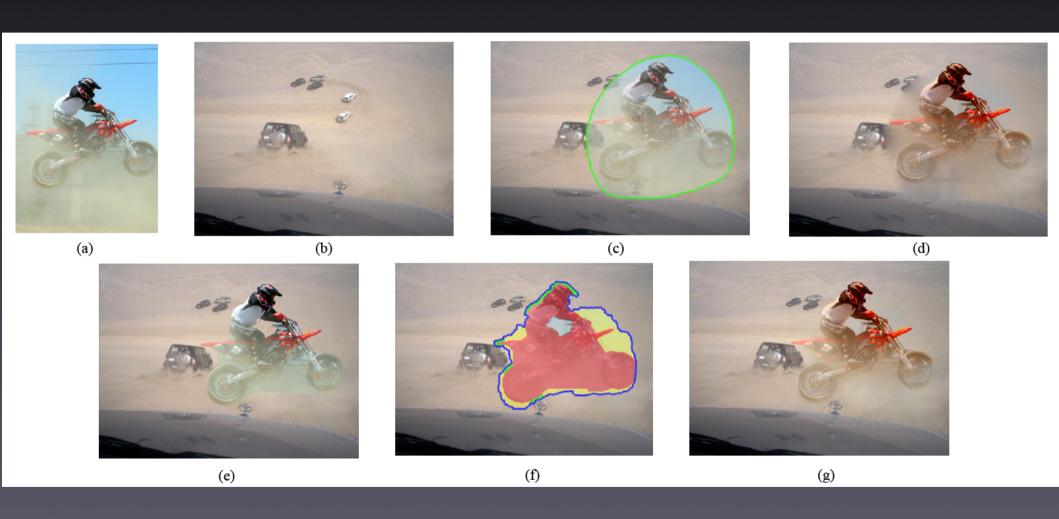
• Set $\{p|M(p) = 1\}$ in green region and M(p) = 0 in remaining pixels of p in $\Omega \cup \Phi$

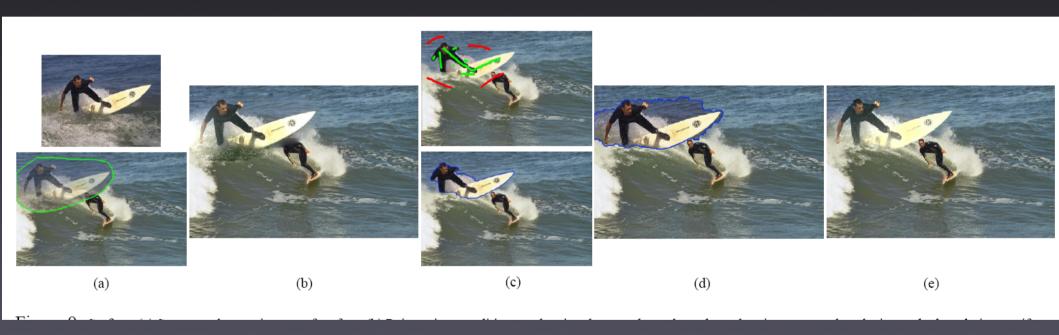


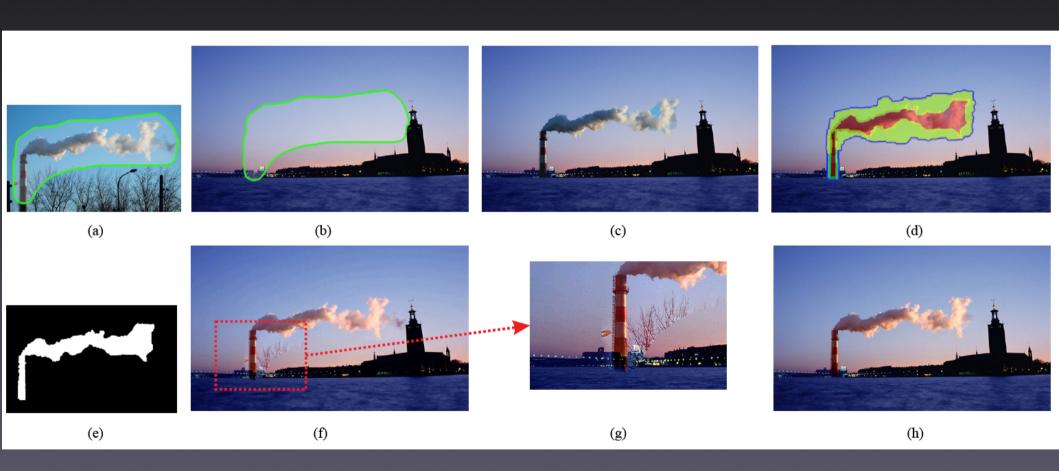


- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions









- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions

Conclusions

- Proposed a user friendly approach to achieve seamless image composition without requiring careful initialization by user
- A system which is more practical and easy to use
- The approach preserves fractional boundary by introducing blended guidance field
- User interaction is only required if there is a large error in computing $\Omega_{_{obi}}$