
1

Multigrid Solvers

Michael Kazhdan

(600.657)

Anouncements

The reading seminar starts this week:
o Usually it will be held in NEB 317

o This week it will be in Maryland 310

Multigrid Solvers

Recall:

To compute the solution to the Poisson equation 

Ax=b using a Jacobi solver we:
1. We start with an initial guess x0, 

2. We generate a sequence of improved guesses

converging to the solution:
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Recall:

To do this, we decompose the matrix A as the 

sum A=D+P:
o D is the diagonal part of A.

o P is everything else.

And define the update rule as:

which has the fixed-point property that if x is the 

solution Ax=b, then:
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Goal:

To evaluate the convergence properties of the 

update rule:
Given a matrix A, a vector b, and an initial guess x0, 

how quickly will the series {x0,…,xi,…} converge to the 

correct answer?
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Goal:

Equivalently, we can think of the question in 

terms of the error. If we have the vector x such 

that Ax=b we can ask:
Given a matrix A, and an initial guess y0=x-x0, how 

quickly will the series {y0,…,yi,…} converge to zero?
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Proof of Equivalence:

To show the equivalence, we need to show that if 

x is the solution to the equation Ax=b, then if:
o {x0,…,xi,…} is the Jacobi sequence generated 

solving Ax=b with initial guess x0, and

o {y0,…,yi,…} is the Jacobi sequence generated 

solving Ay=0 with initial guess y0=x0-x

Then:
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Proof (by induction):

(i=0):
Clearly true, by definition of y0.
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Proof (by induction):

Assume true for i:

( )( )
( ) ( )( )

( ) ( )( )

( ) ( )

( )
xx

xPxbD

DxbDPxD

xDADPxD

xPDPxD

xxPD

PyDy

i

i

i

i

i

i

ii

−=

−−=

−+−=

−+−=

+−=

−−=

−=

+

−

−−

−−

−−

−

−+

1

1

11

11

11

1

11

xxy
ii
−=

Multigrid Solvers

Proof (by induction):

Assume true for i:

( )( )
( ) ( )( )

( ) ( )( )

( ) ( )

( )
xx

xPxbD

DxbDPxD

xDADPxD

xPDPxD

xxPD

PyDy

i

i

i

i

i

i

ii

−=

−−=

−+−=

−+−=

+−=

−−=

−=

+

−

−−

−−

−−

−

−+

1

1

11

11

11

1

11

xxy
ii
−=

Multigrid Solvers

Proof (by induction):

Assume true for i:

( )( )
( ) ( )( )

( ) ( )( )

( ) ( )

( )
xx

xPxbD

DxbDPxD

xDADPxD

xPDPxD

xxPD

PyDy

i

i

i

i

i

i

ii

−=

−−=

−+−=

−+−=

+−=

−−=

−=

+

−

−−

−−

−−

−

−+

1

1

11

11

11

1

11

xxy
ii
−=

Multigrid Solvers

Proof (by induction):

Assume true for i:

( )( )
( ) ( )( )

( ) ( )( )

( ) ( )

( )
xx

xPxbD

DxbDPxD

xDADPxD

xPDPxD

xxPD

PyDy

i

i

i

i

i

i

ii

−=

−−=

−+−=

−+−=

+−=

−−=

−=

+

−

−−

−−

−−

−

−+

1

1

11

11

11

1

11

xxy
ii
−=



3

Multigrid Solvers
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Convergence:

The question now can be formulated as follows:
Given a matrix A, and an initial guess y0, how quickly 

will the series {y0,…,yi,…} converge to zero?
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In the 1D case, the Laplacian matrix can be 

expressed as:
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In the 1D case, the Laplacian matrix can be 

expressed as:

How does the operator:

act on a vector yi?
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In the 1D case, the Laplacian matrix can be 

expressed as:

How does the operator:

act on a vector yi?
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It defines a vector yi+1 whose k-th coefficient is the 

average of the (k-1)-th and (k+1)-th coefficients of yi.

Multigrid Solvers

Example 1:

When the initial error y0 is high-frequency:
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Example 1:

When the initial error y0 is high-frequency:

the convergence is very fast!

Multigrid Solvers

Example 2:

When the initial error y0 is lower-frequency:
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Example 2:

When the initial error y0 is lower-frequency:

the convergence slows down.
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Example 2:

When the initial error y0 is lower-frequency:

the convergence slows down.

In a given iteration, the change in the k-th coefficient 

is determined by how much the coefficient differs 

from the average of its neighbors.
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Example 2:

When the initial error y0 is lower-frequency:

the convergence slows down.

In a given iteration, the change in the k-th coefficient 

is determined by how much the coefficient differs 

from the average of its neighbors.

So the smoother the error, 

the slower the convergence

Multigrid Solvers

Key Idea:

Transform error so low-frequencies become high-

frequencies:
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Key Idea:

Transform error so low-frequencies become high-

frequencies:

Restrict to lower resolution

Multigrid Solvers

General Approach:

Given the equation Ax=b:
1. Restriction:

Compute the low-resolution equation:
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General Approach:

Given the equation Ax=b:
1. Restriction:

Compute the low-resolution equation:

2. Low-Res Solve:

Solve for the low-resolution solution   .
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General Approach:

Given the equation Ax=b:
1. Restriction:

Compute the low-resolution equation:

2. Low-Res Solve:

Solve for the low-resolution solution   .

3. Projection:

Instantiate the high-resolution solution

x0 using the low-resolution solution.

bxA
~~~

=

x~
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General Approach:

Given the equation Ax=b:
1. Restriction:

Compute the low-resolution equation:

2. Low-Res Solve:

Solve for the low-resolution solution   .

3. Projection:

Instantiate the high-resolution solution

x0 using the low-resolution solution.

4. High-Res Solve:

Solve for the high-resolution solution x.
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General Approach:

Given the equation Ax=b:
1. Restriction:

Compute the low-resolution equation:

2. Low-Res Solve:

Solve for the low-resolution solution   .

3. Projection:

Instantiate the high-resolution solution

x0 using the low-resolution solution.

4. High-Res Solve:

Solve for the high-resolution solution x.

bxA
~~~

=
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Solves for the 

low-res part 

of x.
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General Approach:

Given the equation Ax=b:
1. Restriction:

Compute the low-resolution equation:

2. Low-Res Solve:

Solve for the low-resolution solution   .

3. Projection:

Instantiate the high-resolution solution

x0 using the low-resolution solution.

4. High-Res Solve:

Solve for the high-resolution solution x.

bxA
~~~

=

x~
Solves for the 

low-res part 

of x.

Solves for the 

high-res part 

of x.


