

Multigrid Solvers

Michael Kazhdan
(600.657)

Announcements

The reading seminar starts this week:

- Usually it will be held in NEB 317
- This week it will be in Maryland 310

Multigrid Solvers

Recall:

To compute the solution to the Poisson equation $Ax=b$ using a Jacobi solver we:

1. We start with an initial guess x^0 ,
2. We generate a sequence of improved guesses

$$\{x^0, x^1, \dots, x^i, \dots\}$$

converging to the solution:

$$\lim_{i \rightarrow \infty} \|Ax^i - b\| \rightarrow 0$$

Multigrid Solvers

Recall:

To do this, we decompose the matrix A as the sum $A=D+P$:

- D is the diagonal part of A .
- P is everything else.

And define the update rule as:

$$x^{i+1} = D^{-1}(b - (Px^i))$$

which has the fixed-point property that if x is the solution $Ax=b$, then:

$$x = D^{-1}(b - (Px))$$

Multigrid Solvers

Goal:

To evaluate the convergence properties of the update rule:

Given a matrix A , a vector b , and an initial guess x^0 , how quickly will the series $\{x^0, \dots, x^i, \dots\}$ converge to the correct answer?

$$x^{i+1} = D^{-1}(b - (Px^i))$$

Multigrid Solvers

Goal:

Equivalently, we can think of the question in terms of the error. If we have the vector x such that $Ax=b$ we can ask:

Given a matrix A , and an initial guess $y^0=x-x^0$, how quickly will the series $\{y^0, \dots, y^i, \dots\}$ converge to zero?

$$y^{i+1} = -D^{-1}Py^i$$

Multigrid Solvers

Proof of Equivalence:

To show the equivalence, we need to show that if x is the solution to the equation $Ax=b$, then if:

- $\{x^0, \dots, x^i, \dots\}$ is the Jacobi sequence generated solving $Ax=b$ with initial guess x^0 , and
- $\{y^0, \dots, y^i, \dots\}$ is the Jacobi sequence generated solving $Ay=0$ with initial guess $y^0=x^0-x$

Then:

$$y^i = x^i - x$$

Multigrid Solvers

$$y^i = x^i - x$$

Proof (by induction):

$(i=0)$:

Clearly true, by definition of y^0 .

Multigrid Solvers

$$y^i = x^i - x$$

Proof (by induction):

Assume true for i :

$$y^{i+1} = -D^{-1}Py^i$$

Multigrid Solvers

$$y^i = x^i - x$$

Proof (by induction):

Assume true for i :

$$\begin{aligned} y^{i+1} &= -D^{-1}Py^i \\ &= -D^{-1}(P(x^i - x)) \end{aligned}$$

Multigrid Solvers

$$y^i = x^i - x$$

Proof (by induction):

Assume true for i :

$$\begin{aligned} y^{i+1} &= -D^{-1}Py^i \\ &= -D^{-1}(P(x^i - x)) \\ &= -D^{-1}(Px^i) + D^{-1}(P(x)) \end{aligned}$$

Multigrid Solvers

$$y^i = x^i - x$$

Proof (by induction):

Assume true for i :

$$\begin{aligned} y^{i+1} &= -D^{-1}Py^i \\ &= -D^{-1}(P(x^i - x)) \\ &= -D^{-1}(Px^i) + D^{-1}(P(x)) \\ &= -D^{-1}(Px^i) + D^{-1}((A - D)x) \end{aligned}$$

Multigrid Solvers

$$y^i = x^i - x$$

Proof (by induction):

Assume true for i :

$$\begin{aligned} y^{i+1} &= -D^{-1}Py^i \\ &= -D^{-1}(P(x^i - x)) \\ &= -D^{-1}(Px^i) + D^{-1}(P(x)) \\ &= -D^{-1}(Px^i) + D^{-1}((A - D)x) \\ &= -D^{-1}(Px^i) + D^{-1}(b - Dx) \end{aligned}$$

Multigrid Solvers

$$y^i = x^i - x$$

Proof (by induction):

Assume true for i :

$$\begin{aligned} y^{i+1} &= -D^{-1}Py^i \\ &= -D^{-1}(P(x^i - x)) \\ &= -D^{-1}(Px^i) + D^{-1}(P(x)) \\ &= -D^{-1}(Px^i) + D^{-1}((A - D)x) \\ &= -D^{-1}(Px^i) + D^{-1}(b - Dx) \\ &= D^{-1}(b - Px^i) - x \end{aligned}$$

Multigrid Solvers

$$y^i = x^i - x$$

Proof (by induction):

Assume true for i :

$$\begin{aligned} y^{i+1} &= -D^{-1}Py^i \\ &= -D^{-1}(P(x^i - x)) \\ &= -D^{-1}(Px^i) + D^{-1}(P(x)) \\ &= -D^{-1}(Px^i) + D^{-1}((A - D)x) \\ &= -D^{-1}(Px^i) + D^{-1}(b - Dx) \\ &= D^{-1}(b - Px^i) - x \\ &= x^{i+1} - x \end{aligned}$$

Multigrid Solvers

Convergence:

The question now can be formulated as follows:

Given a matrix A , and an initial guess y^0 , how quickly will the series $\{y^0, \dots, y^i, \dots\}$ converge to zero?

$$y^{i+1} = -D^{-1}Py^i$$

Multigrid Solvers

In the 1D case, the Laplacian matrix can be expressed as:

$$\underbrace{\begin{pmatrix} -2 & 1 & \cdots & 0 & 0 \\ 1 & -2 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & -2 & 1 \\ 0 & 0 & \cdots & 1 & -2 \end{pmatrix}}_A = \underbrace{\begin{pmatrix} -2 & 0 & \cdots & 0 & 0 \\ 0 & -2 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & -2 & 0 \\ 0 & 0 & \cdots & 0 & -2 \end{pmatrix}}_D + \underbrace{\begin{pmatrix} 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}}_P$$

Multigrid Solvers

In the 1D case, the Laplacian matrix can be expressed as:

$$\underbrace{\begin{pmatrix} -2 & 1 & \cdots & 0 & 0 \\ 1 & -2 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & -2 & 1 \\ 0 & 0 & \cdots & 1 & -2 \end{pmatrix}}_A = \underbrace{\begin{pmatrix} -2 & 0 & \cdots & 0 & 0 \\ 0 & -2 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & -2 & 0 \\ 0 & 0 & \cdots & 0 & -2 \end{pmatrix}}_D + \underbrace{\begin{pmatrix} 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}}_P$$

How does the operator:

$$y^{i+1} = -D^{-1}Py^i$$

act on a vector y ?

Multigrid Solvers

In the 1D case, the Laplacian matrix can be expressed as:

$$\underbrace{\begin{pmatrix} -2 & 1 & \cdots & 0 & 0 \\ 1 & -2 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & \cdots & 1 & -2 \end{pmatrix}}_A = \underbrace{\begin{pmatrix} -2 & 0 & \cdots & 0 & 0 \\ 0 & -2 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & \cdots & 0 & -2 \end{pmatrix}}_D + \underbrace{\begin{pmatrix} 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}}_P$$

How does the operator:

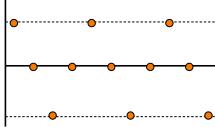
$$y^{i+1} = -D^{-1}Py^i$$

It defines a vector y^{i+1} whose k -th coefficient is the average of the $(k-1)$ -th and $(k+1)$ -th coefficients of y^i .

Multigrid Solvers

Example 1:

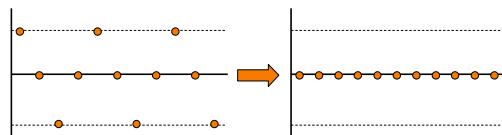
When the initial error y^0 is high-frequency:



Multigrid Solvers

Example 1:

When the initial error y^0 is high-frequency:

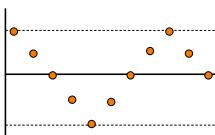


the convergence is very fast!

Multigrid Solvers

Example 2:

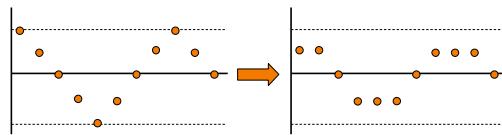
When the initial error y^0 is lower-frequency:



Multigrid Solvers

Example 2:

When the initial error y^0 is lower-frequency:

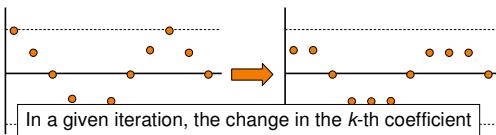


the convergence slows down.

Multigrid Solvers

Example 2:

When the initial error y^0 is lower-frequency:

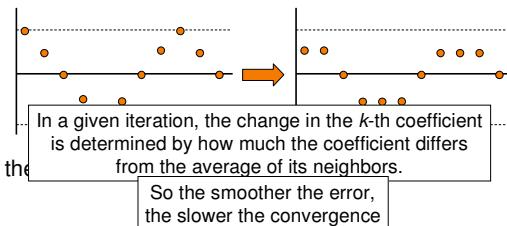


In a given iteration, the change in the k -th coefficient is determined by how much the coefficient differs from the average of its neighbors.

Multigrid Solvers

Example 2:

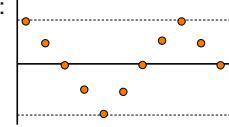
When the initial error y^0 is lower-frequency:



Multigrid Solvers

Key Idea:

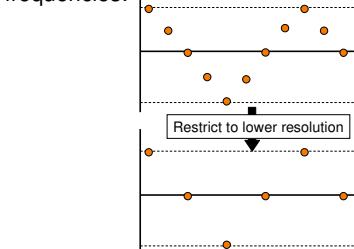
Transform error so low-frequencies become high-frequencies:



Multigrid Solvers

Key Idea:

Transform error so low-frequencies become high-frequencies:



Multigrid Solvers

General Approach:

Given the equation $Ax=b$:

1. Restriction:

Compute the low-resolution equation:
 $\tilde{A}\tilde{x}=\tilde{b}$

Multigrid Solvers

General Approach:

Given the equation $Ax=b$:

1. Restriction:

Compute the low-resolution equation:
 $\tilde{A}\tilde{x}=\tilde{b}$

2. Low-Res Solve:

Solve for the low-resolution solution \tilde{x} .

Multigrid Solvers

General Approach:

Given the equation $Ax=b$:

1. Restriction:

Compute the low-resolution equation:
 $\tilde{A}\tilde{x}=\tilde{b}$

2. Low-Res Solve:

Solve for the low-resolution solution \tilde{x} .

3. Projection:

Instantiate the high-resolution solution x^0 using the low-resolution solution.

Multigrid Solvers

General Approach:

Given the equation $Ax=b$:

1. Restriction:
Compute the low-resolution equation:
$$\tilde{A}\tilde{x} = \tilde{b}$$
2. Low-Res Solve:
Solve for the low-resolution solution \tilde{x} .
3. Projection:
Instantiate the high-resolution solution x^0 using the low-resolution solution.
4. High-Res Solve:
Solve for the high-resolution solution x .

Multigrid Solvers

General Approach:

Given the equation $Ax=b$:

1. Restriction:
Compute the low-resolution equation:
$$\tilde{A}\tilde{x} = \tilde{b}$$
2. Low-Res Solve:
Solve for the low-resolution solution \tilde{x} .
3. Projection:
Instantiate the high-resolution solution x^0 using the low-resolution solution.
4. High-Res Solve:
Solve for the high-resolution solution x .

Solves for the low-res part of x .

Multigrid Solvers

General Approach:

Given the equation $Ax=b$:

1. Restriction:
Compute the low-resolution equation:
$$\tilde{A}\tilde{x} = \tilde{b}$$
2. Low-Res Solve:
Solve for the low-resolution solution \tilde{x} .
3. Projection:
Instantiate the high-resolution solution x^0 using the low-resolution solution.
4. High-Res Solve:
Solve for the high-resolution solution x .

Solves for the low-res part of x .

Solves for the high-res part of x .