Inference of Surfaces, 3D Curves, and Junctions From Sparse, Noisy, 3D Data

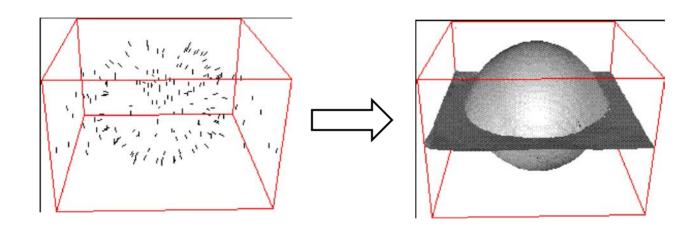
Gideon Guy and Gérard Medioni

Presentation by Ofri Sadowsky, 10/18/2005

Problem Statement

- Given a collection of oriented sample points (i.e., positions and normals) in space, find the following features: continuous surfaces, boundary curves, and junctions (or corners), that are consistent with the sample.
 - Solution extended to find point normals from a non-oriented sample, and to include short-curve inputs.

Problem Statement: Ideal Example



Tang and Medioni, 1998

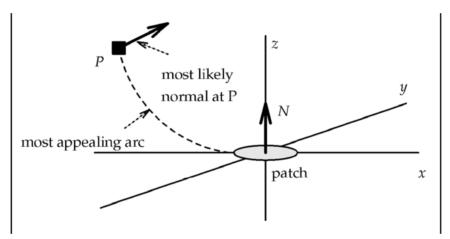
Solution Outline

- Use a voxel grid as a framework on which features are defined.
- Create saliency maps for the three types of features.
- Locate places where feature saliency is maximal and connect them to reconstruct the feature.

Underlying Model

- Normals of continuous surfaces vary smoothly at a rate proportional to the curvature.
- Sharp boundaries (edges and corners) between surfaces are characterized by discontinuities in normals.
- The normal field can be extrapolated from the sample points.
- Continuous surfaces, and edge and corner discontinuities can be characterized by the distribution of extrapolated normals.

Normal Extrapolation: The Diabolo Field



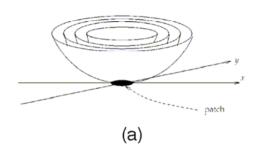
Given a surface patch located at *S* with normal *N*, and a point *P*, the most likely surface going through them includes the circular arc through *S* and *P* that is orthogonal to *N* at *S*. The normal at *P* is therefore the vector orthogonal to the arc at *P*.

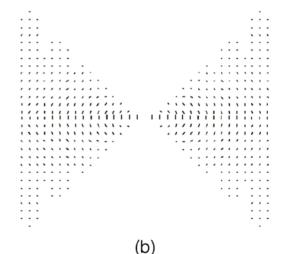
Normal Extrapolation: The Diabolo Field

- The Diabolo field extends from each sample point to define its contribution to surface normals in its environments
- "In spherical coordinates, the Diabolo Field thus takes the following form:

$$\overline{DF}(r, \varphi, \theta) = e^{-Ar^2}e^{-B\varphi^2}$$

where A encodes the decay due to proximity, and B the decay due to higher curvature."





Normal Extrapolation: Vector Convolution and Vote Aggregation

- This part of the text is unclear.
- In the end, a normal vector is assigned to each voxel, based on the Diabolo fields of the sample points.
 - Probably the mean (central moment) of the Diabolo field contribution of each sample.

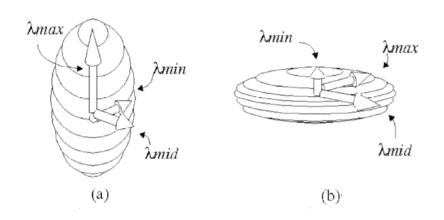
Vote Interpretation

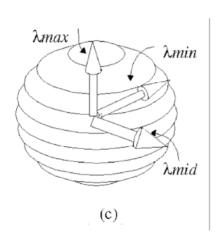
 Second order moments are extracted for the distribution of normals in the neighborhood of each voxel.

$$\begin{bmatrix} E_{x,x} & E_{x,y} & E_{x,z} \\ E_{y,x} & E_{y,y} & E_{y,z} \\ E_{z,x} & E_{z,y} & E_{z,z} \end{bmatrix} = \begin{bmatrix} V_{\min} \\ V_{\min} \\ V_{\max} \end{bmatrix}^T \begin{bmatrix} \lambda_{\min} & 0 & 0 \\ 0 & \lambda_{\min} & 0 \\ 0 & 0 & \lambda_{\max} \end{bmatrix} \begin{bmatrix} V_{\min} \\ V_{\min} \\ V_{\max} \end{bmatrix}$$

• The values of λ can be regarded as lengths of axes of ellipsoids

Vote Interpretation: Eigenvalue Analysis





- The three important voting ellipsoids.
 - a) $\lambda_{\text{max}} >> \lambda_{\text{mid}} \approx \lambda_{\text{min}}$, high agreement in exactly one direction (a surface).
 - b) $\lambda_{\text{max}} \approx \lambda_{\text{mid}} >> \lambda_{\text{min}}$, high agreement in exactly two orientations (an intersection, or 3D curve).
 - c) $\lambda_{\text{max}} \approx \lambda_{\text{mid}} \approx \lambda_{\text{min}}$, votes are coming from all directions (a 3D junction).

Feature Reconstruction: Curve Saliency

- The voxels in the curve saliency map hold a tuple (s, \mathbf{t}) , where $s = \lambda_{\text{mid}} \lambda_{\text{min}}$ is the saliency, and $\mathbf{t} = V_{\text{min}}$ is the estimated tangent direction at the voxel.
- The curve is assumed to go through points where *s* is a local maximum in the plane normal to the tangent.
- The gradient vector \mathbf{g} of s is estimated through finite differences.
- The projection of g on the tangent-normal plane is $q=(t \times g) \times t$
- When g is more-or-less aligned with t, q~=0
- On a voxelized grid, finding the intersection points of a salient curve with voxel faces is done by finding sign changes of components of q (Fig. 10).

Main Contributions

- Defining saliency maps for features
- Reconstruction of features from saliency maps
- Recovering normals from point samples
- Extrapolation of continuous surfaces and curves from sparse samples
- Robust to outlier noise (Fig. 19)
- Integration of features into models (Tang and Medioni, 1998)

Method Limitations

- The text of the papers could be much improved if more math was used.
- Relies on voxel topology for continuity
 - Limited to voxel resolution
 - Surface reconstructed using Marching Cubes ⇒
 Marching Cubes artifacts
 - Other topologies?
- No watertight surface guarantee.
 - See the '98 paper, Fig. 16
- No measure of accuracy