Filing Holes in Complex Surfaces Using Volumetric Diffusion

J. Davis, S. Marschner, M. Garr and M. Levoy

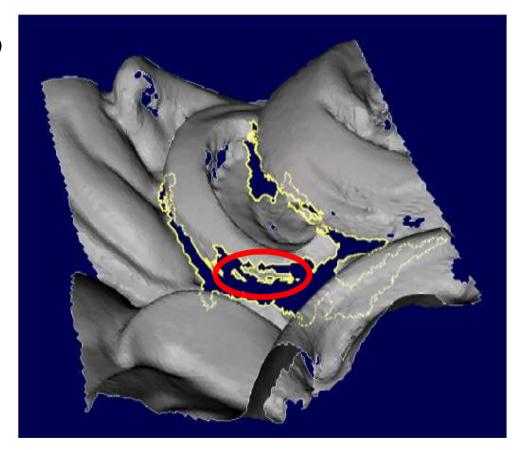
Presented by Owen Gray

Overview

- Challenges of hole filling
- Limitations of mesh-based approaches
- Constructing a distance function
 - VRIP
- Diffusion
- Results

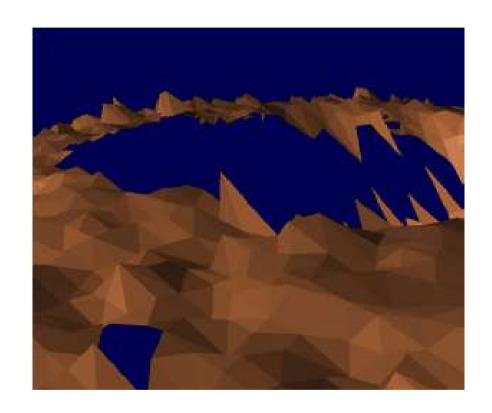
Complications of Hole Filling

- Not always possible to fill holes from surface information alone
 - Holes may result in multiple connected components (red)
 - Accurate filling requires knowledge of surface topology



Complications of Hole Filling

- Scanner noise results in ragged hole boundaries
 - Can't correct for outliers at hole boundaries
 - Hole boundaries tend to be in regions where scanner noise is largest (oblique angle, poor surface characteristics)



Limitations of Mesh-Based Approaches

- In the absence of data (holes) there is no single solution to the problem of mesh construction
 - Various heuristics exist for mesh construction
 - These tend to fail in the cases identified above

- Filling holes with simple disk topology may not be possible
 - Disconnected components
 - Complex hole geometry
- Construction of an arbitrary mesh can result in non-manifold surface
 - Defeats the purpose of filling holes (CAD etc.)

Signed Distance Function

- Voxels are assigned a boolean value
 - 1 (full) or 0 (empty) $v_i(\mathbf{x}) \in 0,1$
- Each voxel is assigned a weight representing the confidence in that voxel's membership in the interior or empty space set
 - Weights are determined using the VRIP algorithm, but other weighting schemes could be substituted

$$w_s(\mathbf{x}) \in [0,1]$$

Signed Distance Function

- Algorithm is essentially a post-processing step, applicable to any input that allows the definition of a signed distance function **d**
 - d is defined only in a narrow band of arbitrary thickness at the known surface boundary
 - d ranges from -1 (inside) to 1 (outside) at the extremes of this band

$$d_{i}(\mathbf{x}) \in [-1,1] \qquad d_{s}(\mathbf{x}) \in [-1,1]$$

$$d_{i} = w_{s} d_{s} + (1 - w_{s}) \hat{d}_{i}$$

VRIP

- VRIP (Volumetric Range Image Processing Package) was used to generate the initial volumes for diffusion
 - Freely available implementation of the algorithm described by Curless and Levoy (A Volumetric Method for Building Complex Models From range Images, '96)
 - Applies line of sight constraints based on scanner geometry to generate volume and weight values for each voxel
 - Diffusion would also be applicable to volumes generated by other algorithms

Initialization and Iteration

- All voxels within range of the surface are assigned an initial distance from the surface
 - $-v_0$ =1 only if it has non zero weight and is in the initial source volume

$$(d_0, v_0) = (d_s, [w_s > 0])$$

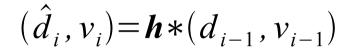
 The distance function is updated iteratively based on the values of it's neighbors

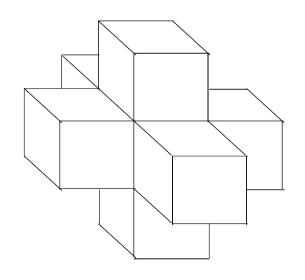
$$d_{i} = w_{s} d_{s} + (1 - w_{s}) \hat{d}_{i}$$

 Results of subsequent iterations are combined using a variation of alpha blending

Convolution

- Convolution kernel **h** is a 7- $(\hat{d}_i, v_i) = h*(d_{i-1}, v_{i-1})$ voxel "Plus" operator
 - Result is similar to a Gaussian blur of the original boolean volume
 - Applying a true Gaussian approximation as the kernel may improve preservation of sharp edges
 - Effect is a low-pass filter, removing fine detail





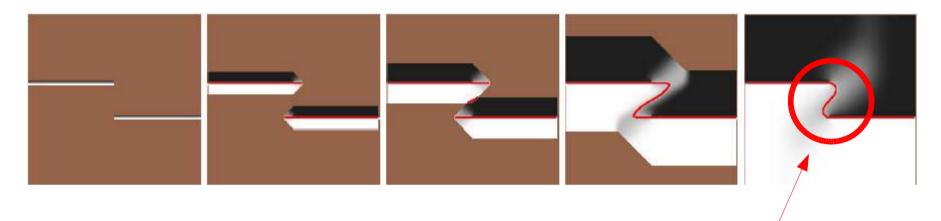
Volume Blending

- The original distance value of each voxel \mathbf{d}_s is composed with the resulting distance value after each iteration
- Composition is accomplished with the alpha-blending algorithm presented by Tom Porter and Tom Duff (SIGRAPH '84) where the voxel weight w_s is used as the alpha value

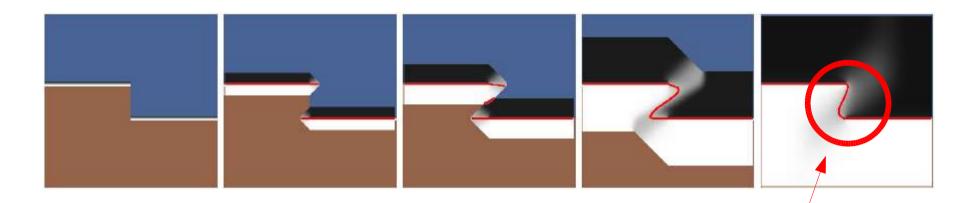
$$\begin{split} \alpha_{out} &= \alpha_{foreground} + (1 - \alpha_{foreground}) * \alpha_{background} \\ C_{out}^{'} &= C_{foreground}^{'} + (1 - \alpha_{foreground}) * C_{background}^{'} \\ where \\ C_{foreground}^{'} &= C_{foreground} * \alpha_{foreground} \\ C_{background}^{'} &= C_{background} * \alpha_{background} \\ C_{out}^{'} &= C_{out} * \alpha_{out} \end{split}$$

Termination

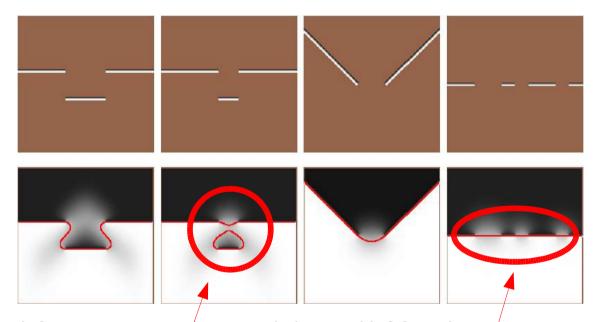
- Algorithm terminates when the change in the distance Δd_i is less than the known noise of the scanner
 - Not clear how this threshold is determined since scanner accuracy varies
 - Local geometry (angle of incidence of scanner beam)
 - Surface properties (specularity, reflectance, subsurface scattering)



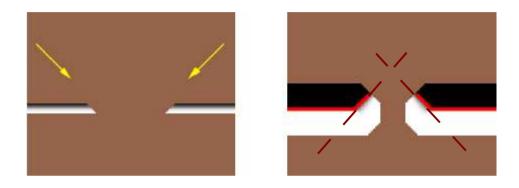
- Without applying line-of-sight constraints when generating the weighting function, blending results in marked splines at (unobserved) hole boundaries
 - Diffusion cannot reproduce sharp features



- Accounting for line-of-sight in the weights and boolean volume results in sharper features
 - Still produces chamfers and fillets at sharp boundaries
 - Geometry is plausible, but not accurate

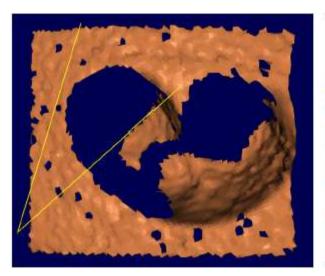


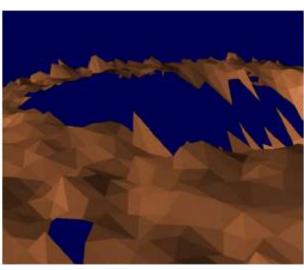
- The artifacts produced by diffusion can seal concave structures (alter topology) if line-of-sight constraints are not applied
- Performance on planar holes is good, producing s plausible fit with the original surface

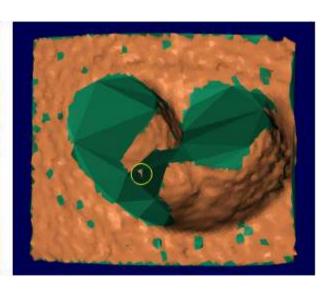


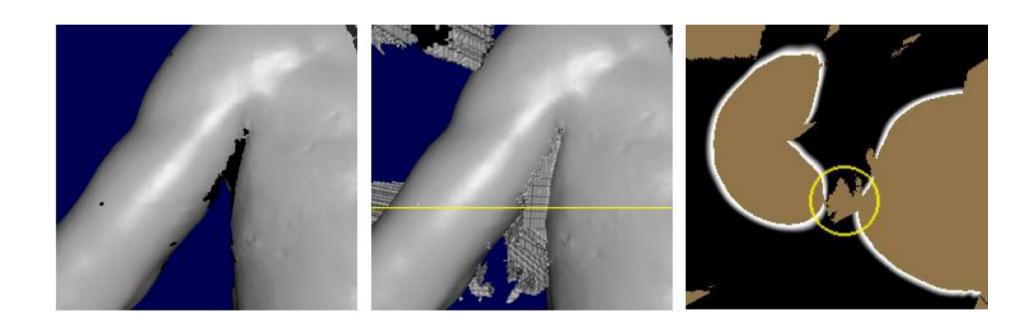
- Diffusion produces artificial contours for scans at acute angles
 - This cannot be corrected by line-of-sight constraints,
 but is in fact a byproduct of them

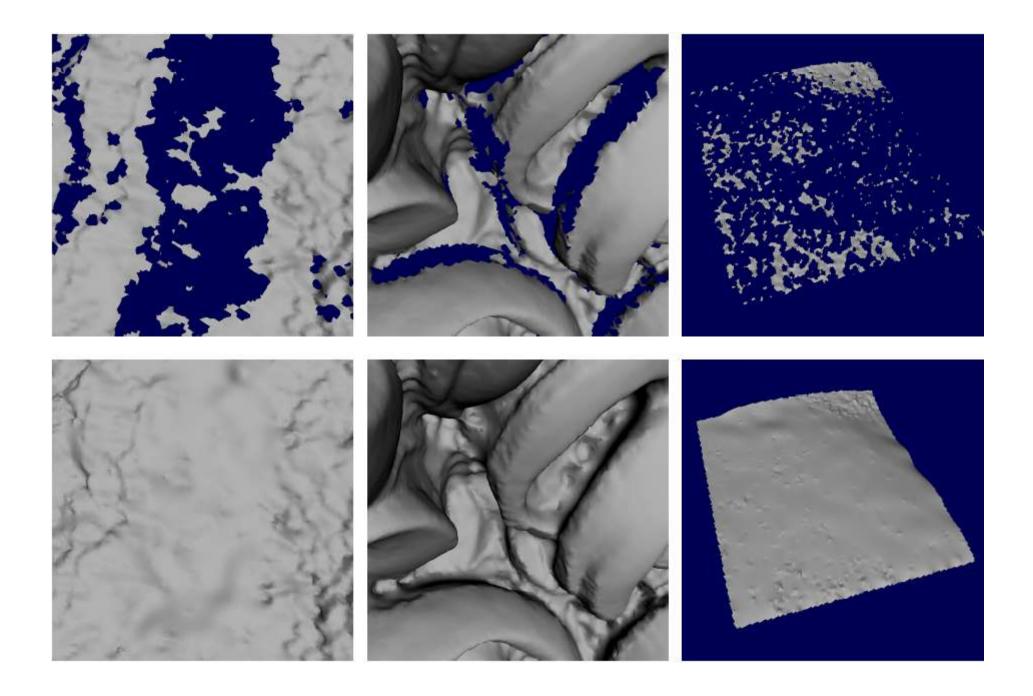
<END>

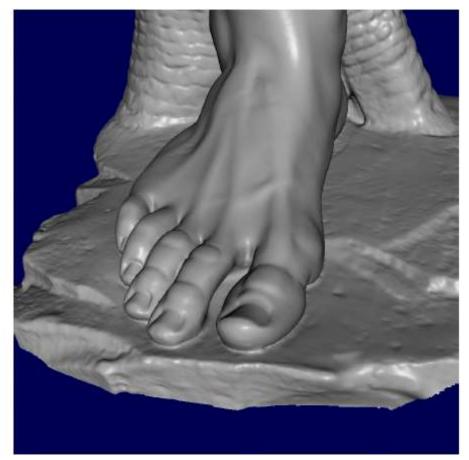


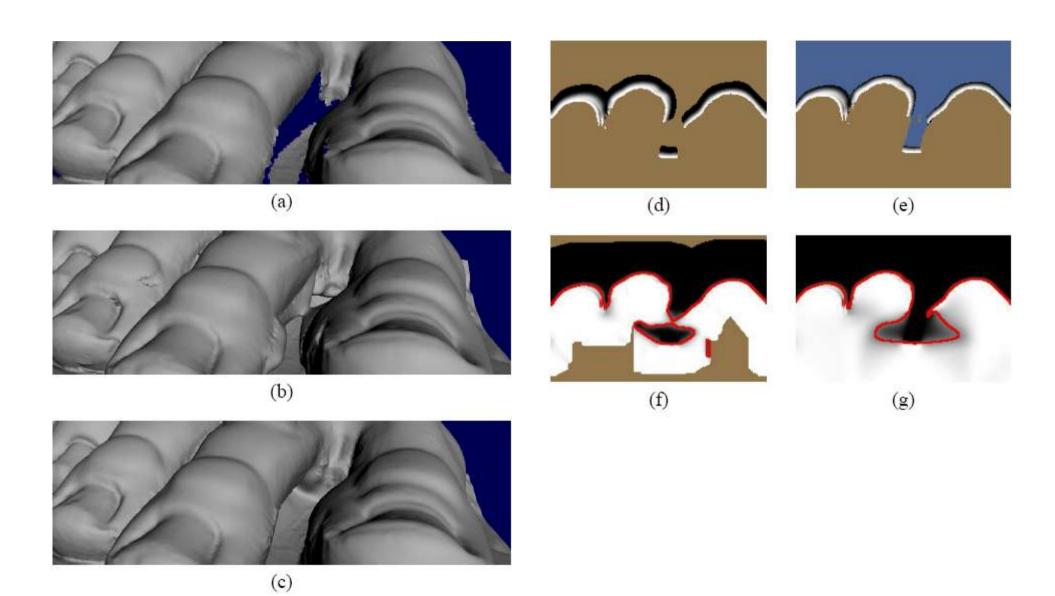


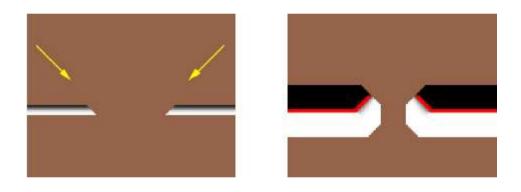




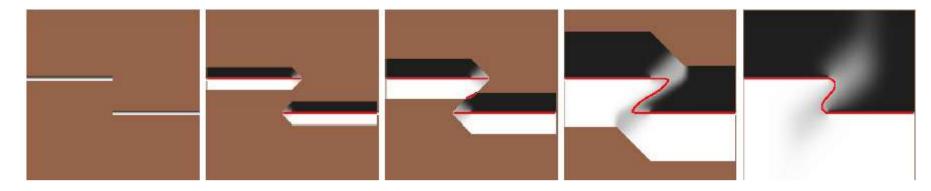




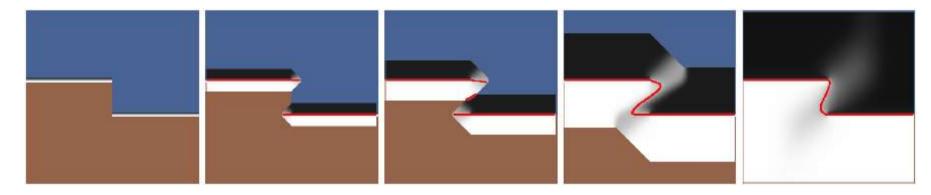


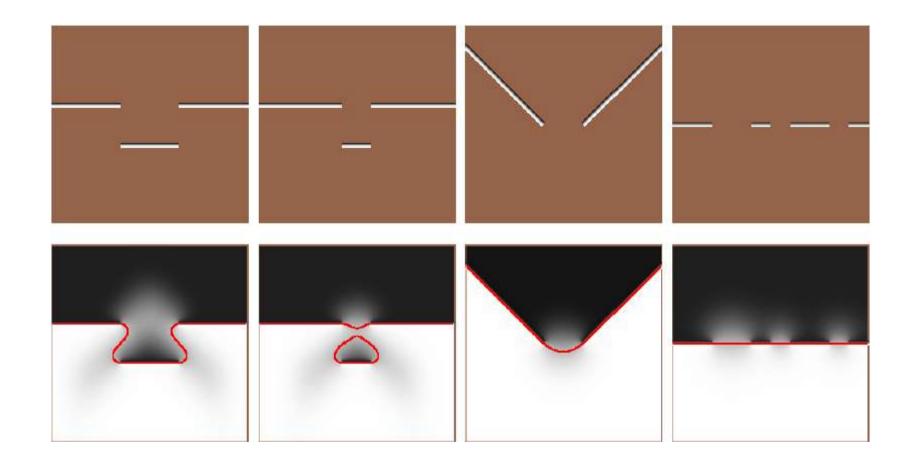


Raw



With Line of site constraints





$$d_{i}(\mathbf{x}) \in [-1,1]$$

$$d_s(\mathbf{x}) \in [-1,1]$$
$$w_s(\mathbf{x}) \in [0,1]$$

$$(d_{0}, v_{0}) = (d_{s}, [w_{s} > 0])$$

$$(\hat{d}_i, v_i) = h * (d_{i-1}, v_{i-1})$$

$$d_{i} = w_{s} d_{s} + (1 - w_{s}) \hat{d}_{i}$$