Computing and Rendering Point Set Surfaces

Marc Alexa, et.al. IEEE TVCG 9(1), Jan 2003

Presented by Matthew Bolitho

24 October 2005

Manifold Surfaces

Definition

"A manifold is a topological space that is locally Euclidean" – Mathworld

Manifold Surfaces

Definition

"A manifold is a topological space that is locally Euclidean" – Mathworld

• Around every point there is a local neighbourhood that is topologically the same as an open unit ball.

Manifold Surfaces

Definition

"A manifold is a topological space that is locally Euclidean" – Mathworld

- Around every point there is a local neighbourhood that is topologically the same as an open unit ball.
- We can create local parameterised neighbourhoods that cover the entire surface.

• A point set defines an implicit surface.

- A point set defines an implicit surface.
- Define a map π that projects a point near the surface onto the surface.

- A point set defines an implicit surface.
- Define a map π that projects a point near the surface onto the surface.
- The surface is formed from all points s.t. $\pi(p) = p$.

- A point set defines an implicit surface.
- Define a map π that projects a point near the surface onto the surface.
- The surface is formed from all points s.t. $\pi(p) = p$.
- The map π is created from Moving Least Squares.

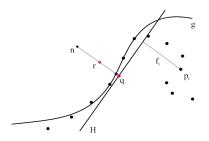


Figure from Alexa03

 A reference domain H is formed from the neighbourhood around r.

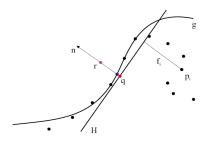


Figure from Alexa03

• Point q is the projection of r onto the plane H.

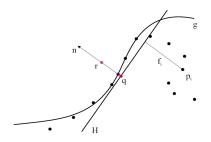


Figure from Alexa03

ullet A polynomial g approximates the height function f.

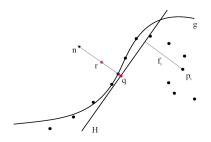


Figure from Alexa03

• $f_i = dist(p_i, H)$ weighted by $dist(p_i, q)$

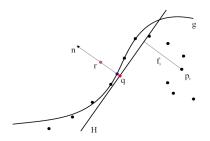


Figure from Alexa03

• The map $\pi(p)$ projects p onto g

Claim

Points can be used as a complete representation of shape (i.e. no polygonal mesh representation)

Claim

Points can be used as a complete representation of shape (i.e. no polygonal mesh representation)

 Provided the sampling is sufficently dense, all features captured

Claim

Points can be used as a complete representation of shape (i.e. no polygonal mesh representation)

- Provided the sampling is sufficently dense, all features captured
- Given a collection of points, one can define a manifold

Claim

Points can be used as a complete representation of shape (i.e. no polygonal mesh representation)

- Provided the sampling is sufficently dense, all features captured
- Given a collection of points, one can define a manifold
- In detailed models, triangles often project to ≤ 1 pixel render as points anyway

Claim

Points can be used as a complete representation of shape (i.e. no polygonal mesh representation)

- Provided the sampling is sufficently dense, all features captured
- Given a collection of points, one can define a manifold
- In detailed models, triangles often project to ≤ 1 pixel render as points anyway

Question

Is this resonable?

• A point set may be noisy and over or under sampled

- A point set may be noisy and over or under sampled
- Once a projection map π is known everywhere:

- A point set may be noisy and over or under sampled
- Once a projection map π is known everywhere:
 - Noise can be reduced by mapping all points into the smooth manifold surface

- A point set may be noisy and over or under sampled
- Once a projection map π is known everywhere:
 - Noise can be reduced by mapping all points into the smooth manifold surface
 - Points can be removed to decimate the point set (remove the point that contributes least to g)

- A point set may be noisy and over or under sampled
- Once a projection map π is known everywhere:
 - Noise can be reduced by mapping all points into the smooth manifold surface
 - Points can be removed to decimate the point set (remove the point that contributes least to g)
 - \bullet Points can be added by placing them near the surface, then mapping them onto the surface with π

Weighting Function

• When computing the polynomial g, each point is weighted as:

$$\theta(d) = e^{\frac{-d^2}{h^2}}$$

Where $d = dist(p_i, q)$ and h is the variance.

Weighting Function

• When computing the polynomial g, each point is weighted as:

$$\theta(d) = e^{\frac{-d^2}{h^2}}$$

Where $d = dist(p_i, q)$ and h is the variance.

• Note that *d* is defined from *q* not *r*.

Weighting Function

• When computing the polynomial g, each point is weighted as:

$$\theta(d) = e^{\frac{-d^2}{h^2}}$$

Where $d = dist(p_i, q)$ and h is the variance.

- Note that *d* is defined from *q* not *r*.
- If h is small, then the neighbourhood of points in H is also small, and g captures more detail.

Weighting Function Example

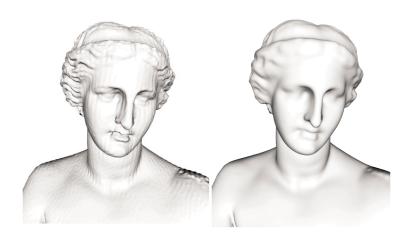


Figure from Alexa03

• Space requirement proportional to h, not |P|.

- Space requirement proportional to h, not |P|.
- Generates a C^{∞} manifold.

- Space requirement proportional to h, not |P|.
- Generates a C^{∞} manifold.
- Nice application of differential geometry.

- Space requirement proportional to h, not |P|.
- Generates a C^{∞} manifold.
- Nice application of differential geometry.
- h doesn't have to be a global paramter

Disadvatages

 Hard to assess the time requirements: 1500-3500 points per second on a "standard Pentium PC"

But 10-30 seconds for the 36,000 point bunny seems slow.