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Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is
sometimes useful or required to compute what one might call the “shape” of the set. For that
purpose, this article introduces the formal notion of the family of a-shapes of a finite point set in
R:~. Each shape is a well-defined polytope, derived from the Delaunay triangulation of the point
set, with a parameter a ● R controlling the desired level of detail. An algorithm is presented
that constructs the entire family of shapes for a given set of size n in time 0( nz ), worst case. A
robust implementation of the algorithm is discussed, and several applications in the area of
scientific computing are mentioned.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—geometrical problems and computations; G.4
[Mathematics of Computing]: Mathematical Software-reliability and robustness; 1.2.10
[Artificial Intelligence]: Vision and Scene Understanding—representation,s, data structures,
and transforms; shape; 1.3.4 [Computer Graphics]: Graphics Utilities—applicationpackages;
graphics packages; 1.3.5 [Computer Graphics]: Computational Geometry and Object ,Modeling
—cur[e, surface, solid, and object representations; geometric algorithms, languages, and systems;
J.2 [Computer Applications]: Physical Sciences and Engineering
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1. INTRODUCTION

The geometric notion of “shape” has no associated formal meaning. This is in
sharp contrast to other geometric notions, such as diameter, volume, convex
hull, etc. The goal of this article is to offer a concrete and formal definition of
shape that can be computed and applied. It is not supposed to possibly cover
the entire range of meanings the term “shape” carries in our contemporary
language, even if restricted to geometric contexts. Nevertheless, it is suffi-
ciently flexible to facilitate a wide range of applications including the study of
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molecular structures and the distribution of galaxies in our universe (see
Section 7).

More specifically, the topic of this article is the definition and computation
of the shape of a finite point set in three-dimensional Euclidean space, R 3.
Intuitively, we think of the set as a cloud of points, and we talk about the
shape of this cloud. A peculiar aspect of the common usage of the word
“shape” is that its meaning varies with the degree of detail intended. This
aspect will be reflected by defining a one-parametric family of shapes ranging
from “fine” and “local” to “crude” and “global.”

A fair amount of related work has been done for point sets in R2, and some
for point sets in R3. Jarvis [1977] was one of the first to consider the problem
of computing the shape as a generalization of the convex hull of a planar
point set. A mathematically rigorous definition of a shape was later in-
troduced by Edelsbrunner et al. [1983]. Their notion of a-shapes is the
two-dimensional analogue of the spatial notion described in this article.
Two-dimensional a-shapes are related to the dot patterns of Fairfield [1979;
1983] and the circle diagrams used in bivariate cluster analysis (see for
example Moss [1967]). Different graph structures that serve similar purposes
are the Gabriel graph [Matula and Sokal 1980], the relative-neighborhood
graph [Toussaint 1980], and their parameterized version, the @-skeleton
[Kirkpatrick and Radke 1985].

For R 3, Boissonnat [1984] suggested the use of Delaunay triangulations in
connection with heuristics to “sculpture” a single connected shape of a point
set. Our concept of shape is more general and mathematically well defined.
More recently, Veltkamp [1992] also generalized the above-mentioned two-di-
mensional graph structure to three dimensions, calling them y-graphs, Fi-
nally, note the superficial similarity between a-shapes and isosurfaces in R3.
The latter is a popular concept in volume visualization (see for example
Drebin et al. [1988] and Lorenson and Cline [ 1987]).

The outline of this article is as follows. A formal definition of a-shapes,
along with illustrations, is presented in Section 2. Geometric concepts related
to a-shapes are discussed in Section 3. These are a-hulls, a-diagrams (also
known as space-filling diagrams), a-complexes, Delaunay triangulations, and
Voronoi diagrams. A combinatorial analysis of a-shapes is offered in Section
4. Using Delaunay triangulations, it is fairly easy to compute a-shapes in R 3.
The resulting algorithm is sketched in Section 5. Given a set of n points in
143, it constructs a convenient implicit representation of the family of all
a-shapes in time 0( n2 ), worst case. This algorithm has been implemented by
the second author of this article. In Section 6 we report on essential aspects of
the implementation, such as its data structures, how it achieves robustness,
and how it performs in practice. Section 7 discusses some application prob-
lems that might benefit from the use of a-shapes. Finally, Section 8 considers
possible extensions of the material presented here.

2. ALPHA SHAPES IN SPACE

This section gives an intuitive description as well as a formal definition of
three-dimensional a-shapes, Both are supported by illustrations that show
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Fig. 1. Two tori. [II = 800, IF21 = 121971. The points are randomly generated on the surface of
two linked tori. Six different o-shapes for values of II decreasing from top to bottom and left to
right are shown. The first shape is the convex hull, for CY  = + x; the last shape is the point set
itself, for (I = 0. The tr-value  used in the fourth frame neatly separates the two tori. Further
decreasing (r disassembles the shape.  Singular triangles, which do not bound the interior of the
shape, are shown in darker color

point sets with sample members of their a-shape  family. The beauty and
elegance of the concept of an o-shape will hopefully be obvious after reading
Section 3 where relationships to other natural geometric concepts are re-
vealed.

Intuitive Description. Conceptually, o-shapes are a generalization of the
convex hull of a point set. Let S be a finite set in (w’ and (Y a real number
with 0 I cy I x. The u-shape of S is a polytope that is neither necessarily
convex nor necessarily connected. For (Y = x, the a-shape  is identical to the
convex hull of S. However, as cy decreases, the o-shape shrinks by gradually
developing cavities. These cavities may join to form tunnels, and even holes
may appear (see Figure 11.

Intuitively, a piece of the polytope disappears when LY becomes small
enough so that a sphere with radius (Y, or several such spheres, can occupy
its space without enclosing any of the points of S. Think of 5%”  filled with
Styrofoam and the points of S made of more solid material, such as rock. Now
imagine a spherical eraser with radius cr. It is omnipresent in the sense that
it carves out Styrofoam at all positions where it does not enclose any of the
sprinkled rocks, that is, points of S. The resulting object will be called the
o-hull (see Section 31. To make things more feasible we straighten the surface
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Fig. 2. Bust. In = 2630, lFzl = 351961.  This point set is based on a demo data set for Silicon
Graphics’ Solidview program, of course, without any of the original connectivity information. The
erasing sphere is shown to the right of the shape. Apart from a dense conglomerate of points
representing part of the person’s brain and brain stem, the set is basically hollow with most
points representing skin.

of the object by substituting straight edges for the circular ones and triangles
for the spherical caps. The obtained object is the a-shape of S (see Figure 2).
It is a polytope in a fairly general sense: it can be concave and even
disconnected; it can contain two-dimensional patches of triangles and one-di-
mensional strings of edges; and its components can be as small as single
points. The parameter cx controls the maximum “curvature” of any cavity of
the polytope.

General  Position. Throughout this article we assume that the points of S
are in general position. For the time being, this means that no 4 points lie on
a common plane; no 5 points lie on a common sphere; and for any fixed (Y, the
smallest sphere through any 2,3, or 4 points of S has a radius different from
LY. The general-position assumption will later be extended when convenient
(see Section 5.3). It simplifies forthcoming definitions, discussions, and al-
gorithms and is justified by a programming technique known as SOS
[Edelsbrunner and Miicke 19901. This method simulates an infinitesimal
perturbation of the points on the level of geometric predicates and relieves
the programmer from the otherwise necessary case analysis (see Section 6.2).

Formal Definition. For 0 < (Y < =, let an a-ball  be an open ball with
radius LY. For completeness, a O-ball  is a point, and an m-ball  is an open half
space. An a-ball  b is empty if b n S = 0. Any subset T G S of size ITI = k +
ACM  Transactions  on Graphics,  Vol. 13, No.  1, January 1994.
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1, with O < k <3, defines a k-simplex UT that is the convex hull of T, also
denoted by conv(T). The general-position assumption assures that all k-sim-
plices are properly k-dimensional. For O < h <2, a k.-simplex UT is said to be
a-exposed if there is an empty a-ball b with T = db n S, where Jb is the
sphere or plane bounding b. A fixed a thus defines sets F~,,, of u-exposed
k-simplices for O < k <2. The a-shape of S, denoted by Yu, is the polytope
whose boundary consists of the triangles in Fz, ~, the edges in Fl, ,,, and the
vertices in FO,,, (see Figures 1 and 2). The k-simplices in Fk,,, are also called
the k-faces of .Y~.

We still need to specify which connected components of Rs – d,~; are
interior and which are exterior to ,Y;t. Fix the value of a and notice that for
each a-exposed triangle crT there are two (not necessarily empty) a-balls,
b, + bz, so that T G fib, and T c db2. If both a-balls are empty then UT does
not belong to the boundary of the interior of .Y;,. Otherwise, assume that b, is
empty and that b ~ is not. In this case, cr~ bounds the interior of ~,. More
specifically, the interior of .Y~rand the center of b, lie on different sides of UT.
The definition of interior and exterior of .Y;, is possibly more natural in
the context of Delaunay triangulations and a-complexes as described in
Section 3.

3. RELATED GEOMETRIC CONCEPTS

There are quite a few natural geometric concepts that are closely related to

a-shapes. Some of them are discussed in this section. In each case, the
emphasis is on how the concept is related to a-shapes and how this relation
can enrich our understanding of a-shapes. Section 3.1 discusses a-hulls and
a-diagrams. Section 3.2 briefly reviews Delaunay triangulations and their
dual incarnations known as Voronoi diagrams. The relevance of the Delaunay
triangulation of a point set is that each a-shape of the set is the underlying
space of a subcomplex of the triangulation. These subcomplexes are termed
a-complexes and defined in Section 3.3. Extensions of these notions are
mentioned in Section 3.4.

3,1 Alpha Hulls and Alpha Diagrams

Recall from Section 2 that for positive real a an a-ball is defined as an open
ball with radius u. For a = O, it is a point, and for a = =, it is an open half
space. Given a finite point set S G R3, an a-ball is empty if b n S = 0. For
O < CY< X, the a-hull of S, denoted by,%U, is defined as the complement of the
union of all empty a-balls. This is the formal counterpart of the styrofoam
object described in Section 2. Sample members of the continuous family of
a-hulls are the convex hull of S, for a = Z, and S itself, for a sufficiently
small. Observe that ,~;i c~:z if al < crz.

Another interesting concept defined by a-balls is what we call the a-di-
agram of S, denoted by %,,. For O < a < Z, $%%.is the union of all a-balls
whose centers are points in S.l Observe that a point x G R3 belongs to ?Za iff

1In chemistry and biology, m-diagrams are known as space-filling diagrams. However, there they
are usually not restricted to equally large balls. This restriction can be removed with weighted
u-shapes and a-diagrams (Section 3.4).
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the a-ball centered at x is not empty. Denote this a-ball by b=. This implies
the following close relationship between ~, and ?<,.

xGY2,rebxn~, #0, and

x~,~,ebx~%’<r.

Consider the boundary of ~,. It consists of spherical caps, circular arcs, and
vertices which we call corners. These are the 2-, 1-, and O-faces of 71.. These
caps, arcs, and corners are in close correspondence with the vertices, edges,
and triangles of .Y;,. Some definitions are needed to describe this correspon-
dence.

Let a be fixed, with O < a < x, and let T be a subset of S of size
ITI = k + 1, with O < k s 2. Define K~ = n ~cT~~P, where bP is the a-ball
centered at p, as before. Besides general posltlon assume K~ + 0. For
ITI = 1, K~ is a sphere; for ITI = 2, K~ is a circle; and for ITI = 3, K~ is a
pair of points. It follows from the definitions that T is m-exposed iff K~
contains at least one face of the boundary of ~~,. If ITI = 1 this face is a cap; if
ITI = 2 it is an arc; and if ITI = 3 it is a corner. This fact can be expressed as
follows: fr* is a k-face of y~r, where O < k < 2 M K~ contains at least one
(2 – h )-face of tit,.

Moreover, the number and structure of (2 – k )-faces contained in K~ are
reflected by m~ and the way it is embedded in Y:,. For example, if ITl = 3,
then K~ contains none, one, or two corners of Y,,. First, it contains no corner
iff UT is not a triangle of Y;r. This is mentioned above. Second, Kr contains
one corner iff UT bounds the interior of Ya. Third, both points of KT are
corners of ?%, iff both sides of CT face the outside of ~,, that is, UT is a
triangle of $;, that does not bound its interior. Such a triangle will be called
singular in Section 5.2. Similarly, if ITI = 2, and UT is an edge of ~;, then
every angular interval between two incident triangles of ~. that faces the
outside corresponds to an arc of ?2,, contained in KT. If there is no incident
triangle (in this case, ~~ is a singular edge) then the entire circle K~ belongs
to the boundary of w,,. Analogous statements can be made for ITI = 1 where
spherical caps on K~ correspond to solid angles around the vertex UT that
face the outside of y~,.

All this amounts to a one-to-one correspondence between the (2 – k )-faces
of ‘~,, and the k-faces of Y., provided the latter are interpreted with multi-
plicities reflecting the number of exposed sides, angular intervals, or solid
angles. The one-to-one correspondence also preserves incidence. This sug-
gests that %., or, more specifically, the boundary of %. be represented by Y.,
or, more specifically, the faces &u and their incidence.

3.2 Delaunay Triangulations and Voronoi Diagrams

A finite point set S & R 3 defines a special triangulation known as the
Delaunay triangulation of S (see for example Edelsbrunner [1987] and
Preparata and Shames [1985]). Assuming general position of the points, this
triangulation is unique and decomposes the convex hull of S into tetrahedral.
The triangulation is named after the Russian geometer Boris Delaunay (also
Delone) who introduced it in his seminal paper [Delaunay 1934]. As ex-
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plained below, the Delaunay triangulation of S is dual to another complex

defined by S, known as the Voronoi diagram [Voronoi 1907; 1908]. Both

complexes are related in an interesting way to the family of all cr-shapes of S.

The relationship between cr-shapes and Delaunay triangulations will be of
particular importance for this article.

Delauna.y Triangulations. For O s k s 3, let Fk be the set of k-simplices
w~ = conv(T), T c S and (TI = k + 1,for which there are empty open balls b
with d b n S = T. Notice that F() = S. The Delaunay triangulation of S,
denoted by P, is the simplicial complex defined by the tetrahedral in F:], the
triangles Fz, the edges in F1, and the vertices in F,]. By definition, for each
simplex UT = 9, there exist values of a >0 so that w~ is a-exposed. Con-
versely, every face of .‘Y;, is a simplex of ~. This implies the following
relationship between the Delaunay triangulation and the boundary of. /(,.

We take advantage of this relationship by representing the family of a-shapes
of S implicitly by the Delaunay triangulations of S. This will be described in
detail in Section 5.

Voronoi Diagrams. For a point P E S, define V(p), the Voronoi cell of p,
as the set of points x E R‘] so that the Euclidean distance between x and p
is less than or equal to the distance between x and any other point of S. Each
Voronoi cell is a convex polyhedron, and the collection of all Voronoi cells, one
for each point of S, defines the Voronoi diagram of S, denoted by 7‘, We call
a Voronoi cell also a 3-cell of 7‘. Each 2-cell of ‘7” is the intersection of two
Voronoi cells; each l-cell or edge is the intersection of three t3-cells; and each
O-cell or vertex is the intersection of four 3-cells. There is a natural one-to-one
correspondence between the k-simplices of ~ and the (3 – k )-cells of 7 ‘. Let
T be a subset of S of size ITI = k + 1, with O < k <3, and define VT =
n ,,, ~v(p).

[r~ is a k-simplex of .Q ~ VT is a (3 – k)-cell of ‘7 “, for O < k < 3.

This correspondence preserves (or reverses) incidence which implies that LA
and ‘7 are indeed dual to each other.

Observe that VT. is the set of all points x for which there exists an empty
open ball b, centered at x with T L db, n S. Equality holds iff x belongs to
the relative interior of VT. Itfollows that w~ is a-exposed iff there is a point
x in the relative interior of VT whose distance from the points in T is a.
Since VT is convex there is a single interval so that CTTis a-exposed iff a
belongs to this interval. We will exploit this fact later when we discuss how to
decide when a simplex of ?3 is a-exposed.

3.3 Alpha Complexes

Since all faces of Y,, are simplices of 9, it follows that the intenor of >;, is
naturally triangulated by the tetrahedral of 2. This idea leads to the concept
of a-complexes as defined shortly. A (three-dimensional) simplicial complex
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is a collection %’ of closed k-simplices, for O < k < 3, that satisfies the
following two properties.

(i) If UT E % then u~ ~ % for every T’ c T. In other words, with every
simplex ~*, 6’ contains all faces of ~~ as well.

(ii) If UT, u~, ● %’, then either UT f’ UT = B, or VT f’ u~ = (rT~ ~ = convtT
n T’). Note that (i) implies that this face is also in %’. In other words, the
intersection of any two simplices in t7 is either empty or a face of both.

A subset i?’ c % is a subcomplex of i7 if it is also a simplicial complex.
Each k-simplex crT of .9 defines an open ball b~ bounded by the smallest

sphere $b~ that contains all points of T. Let p~ be the radius of b~. For
k = 3, db~ is the circumsphere of UT; for k = 2, the circumcircle of UT is a
great circle of db~; and for k = 1, the two points in T are antipodal on d b~.
Call db~ the smallest circumsphere and Q~ the radius of UT. For 1< k <3
and O s a s x, define Gh, ,, as the set of k-simplices o~ = ~ for which b* is
empty and Q~ < a. Furthermore, define GO,,, = S, for all a. The sets Gh,. do
not necessarily define a simplicial complex because it can happen that G~, .
contains a tetrahedron, but not all triangles of this tetrahedron belong to
G2,., similarly for triangles and edges. With this in mind, we define the
a-complex of S, denoted by %,,, as the simplicial complex whose k-simplices
(1) are either in GA,. or (2) they bound (k. + 1)-sirnplices of %.. By definition,
~., is a subcomplex of ~,, if al < a2.

The underlying space of %U, denoted by I~. 1,is the union of all simplices of
%“, or in other words, the part of R3 covered by ~.. Thus, the underlying
space of ~c, is a polytope in the sense specified in Section 2. Indeed, we have
the following most important property of %., which we present without proof.

ForallO<a<~,~i=l&al.

This can be considered an alternative definition of a-shapes. It makes it easy
to specify the intervals of the simplices of Q alluded to in the above
discussion of Voronoi diagrams. For example, let ~j” be a k-simplex of S7. If
b~ is empty then UT belongs to %. iff a ~ ( p~, Z].2

3.4 Extensions

The definitions presented in Sections 2 and 3 above can be extended in
various ways. So far we refrained from mentioning these extensions in order
to avoid unnecessary complications and to be faithful to the currently avail-
able implementation of the concepts in this article. For completeness, nega-
tive values of a, weighted points, and higher dimensions are now briefly
discussed.

Negative Alpha Values. This extension has been described in Edelsbrun-
ner et al. [1983] for the two-dimensional case .3 For negative a, a-complexes

2Because of the general-position assumption we have a # o~. It is therefore irrelevant whether
the interval is open or closed at its left endpoint.
3The definitions in Edelsbrunner et al. [ 1983] are slightly different from the ones in this article.
In particular, their a is the same as minus one over a in this article. Thus, our negative values
of a correspond to their positive values,
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are most naturally defined as subcomplexes of the so-called furthest-point

Delaunay triangulations of S (see for example Edelsbrunner [ 1987] and

Preparata and Shames [1985]). For T c S and ITI = 4, the tetrahedron a~
belongs to this triangulation iff b ~ contains all points of S – T. The cr-shape

is, again, the underlying space of the a-complex. These shapes exhibit far less

interesting geometric and topological properties than the ones for positive a

and are thus less interesting for applications. We omit further details.

Weighted Points. Recall the relationship between a-shapes and cwdia-

grams described in Section 3.1. It is interesting to consider diagrams for

different ball sizes, and this is indeed done in chemistry and biology where

space-filling diagrams are usually defined as unions of balls with arbitrary

and thus possibly different radii. In order to represent such diagrams by

polytopes similar to a-shapes it is necessary to introduce weighted cr-shapes.

These can be defined using subcomplexes of so-called regular triangulations

(see for example Edelsbrunner [1992a] and Lee [ 1991]). Given a finite set of

points, each with a real weight, the regular triangulation is a unique simpli-

cial complex whose underlying space is the convex hull of the point set. If all

weights are the same then it equals the Delaunay triangulations of the

points. Details can be found in Edelsbrunner [ 1992b].

Higher Dimensions. It is fairly straightforward to generalize all important

concepts of this section (like a-shapes, cr-hulls, cr-diagrams, cr-complexes,

Delaunay triangulations and Voronoi diagrams) to finite point sets S in R ‘i,
for arbitrary dimension d. This generalization, combined with an extension to
weighted points is developed in Edelsbrunner [ 1992 b]. Note, however, that
the implementation details become progressively “hairier” with increasing
dimension, and the worst-case complexity of the problem grows exponentially.
For example, if S is a set of n points in R’] then the Delaunay triangulations
of S can consist of up to (O(rrl((’‘ 1’ z1, faces (see Seidel [ 1991]). Although the
running time of the programs constructing a-shapes will get substantially
worse as d increases, there might be applications that warrant implementa-
tions in low dimensions higher than three.

4, COMBINATORIAL ANALYSIS

In contrast to a-hulls and a-diagrams, the a-shapes of a finite point set form
a discrete family, even though they are defined for all real numbers a, with
O < a < ~. Indeed, Y:,, #Y,,,, iff U ~ ~G&,,,, # U ~ ~Gk,(,,. Thus, .Y;,, #,Y,,, iff
there is an empty open ball-bounded by a smallest circumsphere of an edge,
triangle, or tetrahedron of P whose radius lies between u, and az. Such a
radius is referred to as an cwthreshold because it separates two a-shapes.
The number of reshapes exceeds the number of a-thresholds by one. It
follows that one plus the total number of k-simplices of !9, for 1 < k <3, is
an upper bound on the number of different a-shapes. An upper bound on the
number of simplices of 9 can be obtained using a relationship between
Delaunay triangulations in R‘] and certain convex polytopes in !%4.We briefly
describe this relationship in the next paragraph and refer to Edelsbrunner
[ 1987] and Seidel [1991] for details.
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Lij2ing Map. Identify R 3 with the x, Xz x3-space in R4, that is, the sub-
space X4 = O. The lifting map is a geometric transform that project points
p = (7r1,7r~, rr~) in R3 along the x4-axis onto the paraboloid of revolution U:
X4 = ~~=lx~ in R 4. Let pu = (ml, Wz,mB, X;. ,m~ ) be the image of p, and
define Su = {pu Ip G S}. The convex hull of Su, conv(Su ), is a convex poly-
tope with n vertices in R!4. A facet belongs to the lower boundary of this
polytope if the polytope lies on the side of the positive xb-axis of the
hyperplane that contains the facet. Otherwise, it belongs to the upper bound-
ary of conv(Su ). If we project all facets of the lower boundary of conv(Su )
parallel to the x4-axis into R 3, along with their sub faces, then we obtain the
Delaunay triangulations of S (see Edelsbrunner [ 1987]).

Upper Bounds. According to the upper-bound theorem for convex poly-
topes, the maximum number of 1-, 2-, and 3-faces of a convex polytope with
n ~ 5 vertices in R4 are (1/2)(rz2 – n), rz2 – 3n, and (1/2)(n2 – 3n), respec-
tively (see for example Brtmsted [1983] and McMullen and Shepard [1971]).
The lifting map implies the same upper bounds for l~h1,with 1< k <3. As a
matter of fact, the upper bound for IF3I is one less than for the number of
3-faces of conv( S~, ) because at least one 3-face belongs to the upper boundary
of conv( Su ). By a result of Seidel [199 1], these bounds are tight even though
the vertices of conv(Su ) are constrained to lie on a second-degree surface in
R4. We summarize these results for n = ISI.

lFOl=n, lFl[<~(n2 –n), lFz/ <n2 –3n, andl F31 s ~(nz – 3rz – 2).

By adding one to the sum of the bounds for IFI1,IF21,and IF~1,we obtain the
following result:

S has at most 2n2 – 5n different a-shapes.

This bound is too pessimistic for two reasons. First, although the upper
bounds on the number of simplices of S are tight, there are many fewer
simplices for most point sets. For example, if the n points are uniformly
distributed in the unit ball then the expected number of simplices is only
0(n) (see Dwyer [ 1991]). Second, not all edges and triangles of ~ have a
smallest circumsphere that bounds an empty open ball. However, since the
circumsphere of every tetrahedron of 27 bounds an empty open ball by
definition, the number of different a-shapes is always at least a fraction of
the number of simplices of 9.

5. ALGORITHMS

As described in Section 3, the family of a-shapes of a finite point set S can be
represented by the Delaunay triangulation of S. In this representation, each
simplex of ~ is associated with an interval that specifies for which values of
a the simplex belongs to the a-shape, Section 5.1 discusses the construction
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of 9, and Section 5.2 explains how the intervals of the simplices are com-
puted. For completeness, Section 5.3 gives the formulas that can be used to
implement the required primitive operations.

5.1 Three-Dimensional Delaunay Triangulations

The construction of Delaunay triangulations is a popular topic in the area of
geometric algorithms (see for example Edelsbrunner [ 1987] and Preparata
and Shames [ 1985]). Indeed, various different approaches have been studied
and described in the literature. Some approaches are based on the lifting map
mentioned in Section 4, which transforms the problem into one of construct-
ing the convex hull of a four-dimensional point set.

The algorithm adopted for our implementation of a-shapes has been sug-
gested by Joe [ 1991]. It is based on the idea of local transformations or flips.4
The algorithm can be viewed as a generalization of the edge-flip method for
two-dimensional triangulations by Lawson [ 1977]. Note, however, that the
straightforward generalization of the two-dimensional algorithm to R ‘j fails
to always compute the Delaunay triangulation (see Joe [ 1989]). Nevertheless,
the correctness of the flip algorithm in R‘> can be established if the points are
added one by one. We sketch the structure of the resulting incremental
algorithm below and discuss the notion of a flip later.

Incremental-flip Algorithm

Sort S along some fixed direction,
and relabel the points so that ( p,, p2, . . ., p,, ) is the sorted sequence.
Initialize @ to the triangulation whose only tetrahedron is UT,
T={ PI! P2, P: I! PI)
for i ,= 5 to n do

Add p, by connecting it to all vertices, edges, and triangles of @ visible
from p,,
Use flips to transform ‘Y to the Delaunay triangulation of (PI, Pz, . . . . p,).

end for.

Consider two tetrahedral (JT and U7, that share a common triangle UT. For
example, T = {pl, p,,, p~), T’ = T U {pU}, and T“ = T U {p{). Triangle WT is
called Iocall.y Delaunay if it belongs to the Delaunay triangulation of T’ u T“.
This is the case iff the point p,, lies outside the sphere d b~. Local Delaunay-
hood is a necessary condition for Uy to belong to the Delaunay triangulation,
but it is not sufficient. Nevertheless, Delaunay [ 1934] proved that if all
triangles are locally Delaunay then the triangulation is a Delaunay triangu-
lation.

The incremental-flip algorithm needs to restore Delaunayhood whenever a
new point is added to the triangulation. For this, it identifies triangles that
are not locally Delaunay and tries to flip them. Let VT be such a triangle
bounding the tetrahedral cr~ and u~t. Again, assume T = {p,, p,, p~}, T’ = T
u ( p,,), and T“ = T U {p,,). If m~ U {TT, is convex then the triangle VT can be

~As recently shown, the flip algorithm can be extended to compute regular triangulations in

arbitrary dimensions [Edelsbrunner and Shah 1992]. Regular triangulations are useful for

weighted a-shapes (see Section 3.4 or Edelsbrunner [ 1992b]).
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replaced by the edge connecting pU and p,,. Together with this edge, the
triangles connecting it with the three vertices of T are added. This operation
is called a triangle-to-edge flip. Otherwise, u~ U UT” is not convex. Assume
there is a third tetrahedron u~,,, that is spanned by four of the five points of
T’ U T, for example, T)” = {P,, pj, P., PJ. In this case, the three triangles
incident to the edge connecting pi and pj can be replaced by a single triangle
with endpoints pU, pU, and pk. We call this an edge-to-triangle flip. If ~T8-t
does not exist then there is no flip that can remove cr~.

In spite of possible triangles that are neither locally Delaunay nor can be
flipped according to the above rules, the correctness of the incremental-flip
algorithm can still be established [Joe 1991]. In the worst case, it takes time
and storage 0( n2 ), where n = IS1. Experiments provide evidence that it
performs significantly better for most point sets. However, the worst case of
@(n2 ) cannot be avoided because L? can have up to a quadratic number of
simplices (see Section 4).

5.2 Intervals and Face Classification

For each simplex UT = ~ there is a single interval so that UT is a face of the
a-shape Y. iff a is contained in this interval. This was mentioned in Section
3. It will be convenient to study these intervals for the a-complex %. rather
than the a-shape. Also, we break each interval into three (possibly empty)
parts that correspond to values of a for which the simplex is an interior,
regular, or singular simplex of ~w.

A simplex UT = %. is said to be

[

interior if o~ E AY; ,

regular if UT ● d~m and it bounds some higher-dimensional

simplex in %., and

singular if q~ ● dp~ and it does not bound any higher-dimensional

simplex in &c.

Notice that there are Delaunay edges and triangles that can never be
singular because their smallest circumsphere encloses other points of S.5
Therefore, we call a simplex cr~ =.$2

{

attached if ITI =.2,3, and b~ n S + 0, and

unattached otherwise.

Recall that p~ is the radius of the smallest circumsphere of m~. In order to
break up the interval for which UT belongs to %;, we introduce values p~
and jl~ for which UT changes from singular to regular and from regular-to
interior, respectively. Before that, however, let up( UT) be the set of all

5It is convenient to extend the general-position assumption so that no smallest circumsphere of
two or three points of S contains another point of S. A slightly more general assumption is the
following. If a sphere contains three points of S then no two of them are antipodal, and if it
contains four points then no three lie on a great-circle of the sphere.
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Table I, Intervalsof aValues for which a~=f.?? Belongs t.othe cz-Complex &,,

singular regular interior

tetrahedron (~, m]

edge or triangle, ~ ~conV(S), unattached (pT!~T) (&T,pT) (~T> 00]

@ ~conv(S), attached (~T,FT) (~T> ‘]

E r3conv(S), unattached (pT,pT) (pT, (%3]

6 8conv(S), attached (pT, ml]

vertex, # t?conv(S) [o, &T) (&,~T) @TY ‘1

~ dconv(S) [o,pT) (/AT,00]

simplices in @ that contain a simplex {TT G.9, with IT I s 3, as a proper face,
that is,

up(u~) = {a~ ●@lTc T’}.

If WY is a tetrahedron, define p~ = jl~ = Q~, otherwise,—

~7 = rein{ pTl crT E up( w~ ), unattached]

~7’ = ‘ax{ %’IUT ● Up( ‘T )].

It is sufficient to consider only the set

and

upl(u~) = (cr~. = up(cr~)llT’1 = IT I + 1),

that is, all simplices incident to UT whose dimension is one higher than that
of w?, in order to derive the values ~~ and jl~:—

and

jl~ = max{jiTIOT e Upl(fTT)).

Specifying Intervals. The intervals of a values in which WT is an interior,
regular, or singular simplex of %~, are shown in Table I. Because of the
general-position assumption, a is different from all Q values and therefore
also from all p and z values. We can thus define all intervals as open, except
at endpoints T and Z. It is necessary to distinguish simplices that bound the
convex hull of S from the others. The next paragraph briefly explains the
entries of Table I for the case of triangles that do not bound the convex hull of
S. The arguments for tetrahedral, triangles on the convex hull, edges, and
vertices are similar.

Consider a triangle ~T EQ, T = {p,, pj, p~}, that does not bound the con-
vex hull of S; we denote this by ~~ G dconv(S). Let u~ and UT. be the two
incident tetrahedral in 5Z, and assume T’ = T U {pU) and T“ = T U (p,}.

Furthermore, let O < pT < p~,, < CC;in other words, p~ = p~ and jiT = e~.

Now, fix a value for a. If pT < a < x then the triangle UT is not a-exposed.
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It will, however, be part of the interior of ~’j’, because both incident tetrahe-
dral are in ~a. If p~, < a < p~, then the triangle is a-exposed, and u~, is in
%:; but u~,, is not. This means that uTf is a regular triangle of %.. For
~ < p~f, neither UT, nor UT” are tetrahedral of ~,, but UT can still be a
singular triangle; that is, iff p~ < a, and neither pU nor pU are inside b~. If
one of the two points is inside bT, then UT is attached, and UT can never be a
singular triangle of $3:, no matter what a value is selected.

The a-complex consists of all interior, regular, and singular simplices for a
given a value. The interior of the a-shape is triangulated by the interior
simplices. The boundary of the interior is formed by the set of regular
triangles and their edges and vertices.

Consistent with the definition in Section 4, we refer to the endpoints of the
intervals in Table I as cr-thresholds. This does not include O and =. Since all

~T and ~T values are Q values of other simplices, each a-threshold is the
radius of a simplex in Q. More specifically, the set of a-thresholds is exactly
the set of radii of all unattached k-simplices for 1 < k s 3. Define the
a-spectrum as the sorted sequence of a-thresholds. This concept will appear
again in Section 6.

Computing Intervals. Assume that each simplex cr~ = ~ is marked as
either “ = dconv(S )“ or “ ~ dconv(S )“ after the construction of 9. With this,
the above intervals can be computed by classifying UT as attached or
unattached, and by computing pT, p~, and ~~, whenever applicable. We said

that VT is attached iff one of the s~mplices that contains UT has a vertex in
bT, the open ball bounded by the smallest circumsphere of mT. This implies
that crT can be classified in time proportional to Iupl( UT)1,The time it takes
to classify all simplices is proportional to the number of simplices in 9?,
because each simplex has only a constant number of faces. In other words,
assuming that constant time suffices to decide whether or not a point belongs
to bT (see Section 5.3), a simplex can be classified in constant amortized time.

Furthermore, assume that, given T with cr~ = .$2, p~ can be computed in
constant time (again, see Section 5.3). By processing tetrahedral before trian-
gles before edges before vertices, we can get p~ and jlT simply as the
minimum and maximum of the values @T,, PT, ,–and jl~,, for (rTr= Upl( UT).
This also takes only constant amortized time–per simplex.

5.3 Geometric Primitives

What are the primitive operations needed to compute a-shapes in R 3?
Constructing Delaunay triangulations requires two geometric tests: a test for
deciding on which side of a plane spanned by three points a fourth point lies
and one for deciding on which side of a sphere spanned by four points a fifth
point lies. In order to generate the intervals of Table I, we need to compute
the radius of the smallest circumsphere of a tetrahedron, triangle, or edge,
and test whether a point lies inside or outside this sphere. While the two
tests required for Delaunay triangulations are fairly common in geometric
algorithms and computer graphics, the operations involving smallest circum-
spheres of triangles and edges are rather specialized . All operations share
the problem of degenerate cases, which we can ignore because of the general-
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position assumption (see also Section 6). This section gives a formula for each
of the primitive operations mentioned above.

Assume that the points of S are labeled as PI, p2, . . . , p., and that each
point p, is given by the vector (n,, ~, r,, ~, T,, ~) of its three coordinates. To
simplify the notation in the remainder of this section, we use minors, which
are determinants of submatrices of a given matrix. For convenience, define

~l. () = 1 for all i and use the following notation for minors:

Indeed, all geometric primitives are expressed in terms of determinants,
which provide a convenient and compact notation. This does not exclude the
possibility of implementing the primitives using equivalent formulas; these
would be, in some sense, ways of evaluating determinants that differ from the
usual constructive definition.

Plane Test. Let T = { PI, p], Pk) and define h~ as the unique plane that
contains all three points of T. This plane can be oriented if we replace the set
T by the sequence T, for example, T = ( p,, p,~,p~ ). Then one side (or open
half space) of h ~ can be called positive and the other negative. We also refer
to these as the positive and negative sides of the sequence ( p,, pi, ph ).

T = ( p,, p,,, Pk): p,, lies on the positive side of h~ ~.~1:~:$:,~ > 0, (5.1)

and p,, lies on the negative side if the determinant is negative. Intuitively, pu
sees the sequence of three points p,, p], p~ in a clockwise order iff pU lies on
their positive side. Similarly, pu sees the sequence in a counterclockwise
order iff p,, lies on the negative side of the points. The sign of the determi-
nant is called the orientation of the sequence ( p,, pj, pk, p.). Notice that the
determinant equals zero iff the points are in degenerate position, that is, they
lie on a common plane. Observe also that the orientation of a permutation of
a sequence of four points is the same as the orientation of the sequence itself,
provided the number of transpositions is even. Otherwise, it is the opposite.
This follows trivially from the fact that the value of the determinant changes
sign whenever two rows are exchanged.

Sphere Test. Given a set T = {p,, p], pk, pU), we need to decide whether
another point p,, lies inside or outside the sphere db~. We can assume that
the degenerate case where p,, E db~ does not occur. A possible implementa-
tion of this test is discussed in Edelsbrunner and Mucke [ 1990] using an
extension of the lifting map (as mentioned in Section 4) to three-dimensional
spheres. Consider the paraboloid of revolution U: X4 = Z; , ~x; in R4. A
sphere ~b with center c = ( y,, yz, ya ) and radius p is mapped to the hyper-
plane fib[i: X4 = z; ,(2’y, x, – y:) + p ‘. This hyperplane has the property
that U n fib[. projected along the xd-axis into the x,x ~x3-space yields db.
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Moreover, a point p lies inside (outside) db iff pu lies vertically
(above) dbu. The resulting formula assumes that each point pi c S
fourth coordinate Tit~ = E:. ~~~j.

T= {Pispjspk,pu ): p“ lies inside c?b~ e=~:~:~:~ “~~:~:~:f,’~ >0

below
has a

(5.2)

The first minor, ~~:~:$:f, is a corrective term that is necessary because the
sphere does not change if the first four points are permuted. The second
minor, ~~;~ $:$~”, expresses the fact that the lifting map transforms a sphere
test in R3 to a hyperplane test in R4.

Radius of a Smallest Circumsphere. Next, we consider computing the
radius Q~ of db~, the smallest circumsphere of UT, for all h-simplices
cr~ ● S3, with 1 s k <3. The formulas for the square of p~ are given in (5.3)
through (5.5). Note that computing & will be sufficient for our purposes
since QT can never be negative. We distinguish the cases when k = ITI – 1 is
1, 2, or-3.

(~i j 2
~;o) + (W;;J)2 + (tij;J)z

T={pi, pj): p;=
4

(5.3)

(5.4)

(5.5)

In order to explain these three formulas we introduce some notation. Let a,
b, c, and d be points in R 3. We write Iab I for the length of the edge
conv({a, b}), and Iabc I for the area of the triangle conv({a, b, cl). In the case of
two points, p~ is the same as half the distance between pi and Pj. Equation
(5.3) follows because

To handle the case of a triangle, that is, T = {pi, pj, pk), we use the formulas

Ipipjl”lpjpkl”lpkpil and(JT =
4-lpipjpkl

which can be found in any good mathematical handbook. Finally, we obtain
(5.5) using the extension of the lifting map mentioned above. If db is the
sphere through points pi, pj, ph, p= then dbu is the hyperplane through the
fOUr pOiIIt.s Pi, U, PJ, U, Pk, U* Pu, U. The equation for the hyperplane can be
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computed directly from the coordinates of the lifted points. From this equa-
tion it is easy to compute the center and the radius of db.

Attached and Unattached Edges and Triangles. We still have to consider
the problem of deciding whether an edge of triangle w~ G.@ is attached or
not. By definition, VT is attached if there is a v~ = up I(cr~) so that the point
in R – T belongs to b~. If UT is an edge, say, T = (p,, p,} and R – T = {pk),
this can be done by comparing p~ with the distance between pk and
(p, + p, )/2. Straightforward algebraic manipulations lead to the following
equation.

T= (p,, p,,): pk •b7~ ~ (.~j:~)z – ~ (.~~~ +.%:: $)2>0. (5.6)
/=1 /.= 1

Now let (TT be a triangle, for example, T = {p,, PI, pk} and R – T = {p.}. To
see whether or not the point pU belongs to b~, we compute the center c of the
circumsphere db~ of the tetrahedron u~. Observe that pU = b~ iff c and pU
do not lie on the same side of the plane through pi, p], ph. In other words, we
need to test whether or not the sequences ( pU, p,, p,, ph ) and (c, P,, p], Pk )

have different orientation. Some rather tedious algebriac manipulations are
needed to derive the following equation which expresses the derivation in
terms of minors.

(5.7)

General Position Revisited. The general-position assumption used in this
article assures that no geometric test is ambiguous. We summarize and
revise the necessary assumptions below and include pointers to the formulas
for which the assumptions are relevant.

—No 4 points lie on a common plane; compare with (5.1).

—No 5 points lie on a common sphere; compare with (5.2).

—No smallest circumsphere of 2, 3, or 4 points has a radius equal to any
given a; compare with (5.3), (5.4), and (5.5).

—No points lie on the smallest circumsphere of 2 or 3 other points; compare
with (5.6) and (5.7).

These assumptions are indeed very restrictive and rarely true for real-Iife
data. We will deal with this apparent shortcoming in Section 6.2.

6. IMPLEMENTATION

Our current implementation of a software tool for a-shapes in R’s consists of
the following three parts:

(1) A program that constructs Delaunay triangulations using flips (see Sec-
tion 5.1).
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(2) A program that computes the a-intervals for all simplices in a Delaunay
triangulation and then sorts the endpoints of these intervals (see Section
5.2).

(3) An a-shape visualizer that enables the user to manually select different
a values and render the corresponding shape on a graphics workstation
(see Figures 1 through 5).

Parts 1 and 2 are preprocessing steps that take time 0(n2 ) and O(m log m),
where n is the number of points and m the number of simplices of 9. The
current code for part 3 takes time 0(m) to render a particular a-shape.
Improvements based on fast data structures for intervals are forthcoming.

One important aspect of the implementation is its robustness. By this we
mean that the program will either produce the correct output for the original
data set S, or, in case of degeneracies, it guarantees to give the correct result
for a set S(•) arbitrarily close to the original input. This is achieved by a
symbolic perturbation scheme briefly described in Section 6.2. The method
avoids possible conflicts between the topological and geometric structure of
the data by using exact arithmetic and by perturbing the original data set
such that all degeneracies disappear. The program can thus be considered to
be purely combinatorial and logical so that correctness in the strict sense is
possible in principle. Note that the perturbation is infinitesimal and symbolic,
that is, S and S(•) can be viewed as arbitrarily close together, and the
computational overhead is independent of c.

6.1 Data Structures

There are two main data structures needed for storing the family of a-shapes
of a given data set. One represents the connectivity and order among the
simplices of the three-dimensional Delaunay triangulations. The other is used
for the intervals assigned to the simplices of ~. A triangle-based data
structure is used to store ~. This is briefly described in the paragraphs
below. An interval tree can be used to store the collection of intervals (see for
example Preparata and Shames [1985]). The current version of our program,
however, stores the a-spectrum using only a linear array. Recall that the
a-spectrum is the sorted sequence of a-thresholds, and for practical reasons,
the implementation adds O and w to this list. Universal hashing (see for
example Cormen et al. [ 1990]) provides the link between the triangle struc-
ture and the array.

The data structure used to store the three-dimensional triangulation is a
specialized version of the edge-facet structure introduced by Dobkin and
Laszlo [1989]. Related data structures are the quad-edge structure due to
Guibas and Stolfi [1985], which can be used to model two-dimensional
manifolds, and the cell -tuple structure by Brisson [1993], which works in
arbitrary dimensions. The edge-facet structure is” designed for general cell
complexes in three dimensions. By reducing the scope to simplicial com-
plexes, it is possible to improve the compactness and the speed of the
structure. We refer to the result as the triangie+dge structure.
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The atomic unit of the triangle-edge structure is the so-called triangle-edge
pair a = (m, i), with O s i <5. It identifies six versions of the triangle w,
one for each of its six directed edges. Each triangle defines two edge rings.
One edge ring traverses the edges of u in a counterclockwise order; the other
traverses them in a clockwise order. Similarly, each edge defines two triangle
rings traversing the incident triangles in the two opposite orders. Each
triangle edge a belongs to exactly one edge ring and exactly one triangle ring.

The internal representation of the structure takes advantage of the fact
that all edge rings have length three. It is thus possible to avoid actual
pointers for the edge rings by merging the six triangle-edge pairs of two
opposite edge rings into one record. Such a record allocates 30 (36) bytes per
triangle, assuming that 2-byte (4-byte) integers and are used as indices to the
vertices, and 4-byte integers for triangle-edge pairs. Further details are
omitted.

6.2 Simulated Perturbation

For implementation purposes it is no longer appropriate to assume that the
input points are in general position. This assumption would be too restrictive.
On the other hand, in the context of three-dimensional a-shapes, it would be
rather tedious to deal with the large number of special cases in ad hoc
manner. For this reason, we apply a general technique, known as Simulation
of Simplicity, or SOS [Edelsbrunner and Mucke 1990], which acts as a black
box between the implementation of a geometric algorithm and the input data.
It allows a systematic treatment of all special cases on the level of geometric
primitive operations. The SOS library consists of a set of carefully imple-
mented primitives. It provides the programmer with the illusion of simple
data while the actual input is in arbitrary and thus possibly degenerate
position ! This section can only sketch the basic idea of SOS (refer to Edels-
brunner and Mucke [ 1990]).

The idea of SOS is to perturb the given objects ever so slightly, in a manner
that all degeneracies disappear. The perturbation should be small enough so
that the nondegenerate position of objects relative to each other remains
unchanged. Since it is usually rather dificult and costly to actually come up
with such a perturbation, SOS performs it symbolically by substituting poly-
nomials in c for the parameters specifying each object. In the context of this
article, the coordinate rrl , of the input point p, = S is replaced by its1,
perturbed version

77,,,(E) = 7T1,, + ●(i, j),

where ●(i, j) = ●fi’r ‘, and 8 is a sufficiently large constant. The choice of
E(i, j ) implies that general position of the perturbed input set S(•) is
guaranteed if ● is positive and arbitrarily small. Thus, c can be treated as an

bThe terms “simple,” “general position,” and “nondegenerate position” are used as synonyms.
Notice how the “general case” of the algorithm designer is usually the “simple case” for the
implementing programmer.
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indeterrninant in the symbolic evaluation of the primitive operations which
are now based on S(c).

The expreseions that correspond to primitive operations are polynomials in
~. The coefficients of these polynomial are expressions in the coordinates of
the original data. For example, in order to determine whether the sequence
( pi, Pj, Pk, Pu) with i c j < k c U, has positive orientation, the sign of the
polynomial

must be evaluated. Assume that the terms in the polynomial are sorted in
order of increasing exponents of ●. We say the evaluation has depth t if the
coefficient of the (t+ l)st term is the first one that does not vanish. Because
● is assumed to be arbitrarily small, this term decides the sign of the entire
polynomial. Notice, that the coefficient at depth O is the same as the expres-
sion of the primitive for the original data. This implies that S(•) is consistent
with S as far as nondegenerate configurations are concerned. Observe also
that the polynomial never evaluates to zero since there is always a term with
nonzero coefficient. In other words, S( .E)is simple.

The code that implements the polynomial of a given primitive operation
can be generated automatically. The overhead for the symbolic perturbation
as such is thus neglectable. However, the perturbation can only be stimulated
when exact arithmetic is used to compute the coefflciente of the polynomials.
More precisely, we need to be able to tell when a coefficient vanishes. Of
course, exact arithmetic entails a somewhat higher cost for the low-level
computations, but we believe that this is an adequate price for a compact and
robust implementation of a rather involved geometric algorithm.

Note that SOS does not allow the user to selectively remove certain types of
degeneracies, while others remain. Rather it fully implements what theoreti-
cians call “general position.” Observe that algorithms employing SOS produce
results for the perturbed data and not for the original one. Some postprocess-
ing can be used to remove or repair parts of the output that collapse to a
degenerate state because of the degeneracy of the input data. This is men-
tioned in Edelsbrunner and Mucke [1990]. As an example, consider the case
of Delaunay triangulations and coplanar points on the boundary of the
convex hull. The perturbation will move some points toward the inside and
some toward the outside. In the Delaunay triangulation, the points that
moved from the convex-hull boundary inside will be covered by flat tetrahe-
dral. These tetrahedral have infinitesimal thickness in the perturbed setting
and are completely flat in the original setting. It is easy to identify and
remove these tetrahedral in a postprocessing step.

6.3 Performance

Table 11 shows the performance of the incremental-flip algorithm (see Section
5.1) for a number of test runs. We count the number of flips and the number
of neceseary evaluations of 5-by-5 and 4-by-4 determinants. The “max” and
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“mean” depth columns count the “depths” of the corresponding evaluations
(see Section 6.2). These columns give a measure of how degenerated a data
set is. The experiments were run on Silicon Graphics workstations with 50
MHz MIPS R4000 CPUS and 48 Mb or more of main memory. Sample frames
for the data sets molecule, tori, universe, bust, and phone_ 1 can be found in
Figures 1 through 5.

The running time for the presented examples is much better than predicted
by the quadratic worst case. This is due to the fact that Delaunay triangula-
tions usually do not reach their worst-case upper bounds of 6)( nz ) faces (see
Section 4). Table II shows running times that seem to be roughly proportional
to n(log n )2. An exception to this rule are volumetric data with points on a
regular grid or parallel slices (as in the data sets gridl, ku2, rat_T2a, and
hsr). The incremental-flip algorithm is certainly less than ideal for such
distributions and should possibly be replaced by a randomized version (see
Edelsbrunner and Shah [ 1992] ).7

Observe the positive correlation between the number of determinant evalu-
ations or long-integer operations and CPU seconds. Indeed, run-time profiles
of the C code suggest that the majority of CPU cycles are used for the
long-integer arithmetic computing determinants. We estimate that approxi-
mately 75Vc of the time is spent on long-integer arithmetic. The multiplica-
tion routine is responsible for more than half of it.

Table III shows the performance of the program that generates the a-inter-
vals for all simplices in the Delaunay triangulation (see Section 5.2). The
number of simplices in a triangulation is denoted by I$3I = Ei ~IFk1.A large

portion of the memory requirement is due to the fact that, in order to achieve
robustness, we need to compute the a-thresholds with long-integer arith-
metic. The integers involved can get fairly long because the corresponding
expressions are rather involved (see expressions (5.3) through (5.5) in Section
5.3). However, as soon as their correct order is determined, the exact values of
the a-thresholds, which are long-integer rationals, are no longer needed. For
rendering purposes, standard floating-point accuracy is certainly sut%cient.
Duplicate a-thresholds, including the ones caused by attached simplices, are
eliminated in the sorting phase. The size of the a-spectrum, that is, the final
number of u-thresholds, plus the values O and Z, is usually considerably
smaller than the number of simplices in the triangulation.

7. APPLICATIONS AND FURTHER ILLUSTRATIONS

It is important to point out that a-shapes are a fairly generic tool that can be
used in many applications that have to do with shape, including automatic
mesh generation and geometric modeling (see Figure 3). Indeed, they can be
used as a concrete expression of shape, which is often all that is needed.
Similarly, three-dimensional a-shapes can be used to identify clusters in
trivariate data. Beyond these generic applications, there are others that rely

‘Recently, the second author implemented a variant of the randomized algorithm, achieving
performance numbers roughly twice as fast than the ones in Table II (see Miicke [ 1993]).
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Fig. 3. Phone. [n = 6070, IF21  = 801311. The points are obtained from a public domain data set
for modeling and rendering programs. All connectivity information (edges and triangles) is
removed, and in order to generate more points, the centroids of all triangles are added. As
described in Section 3, each n-shape  is triangulated by the tetrahedra of the corresponding
a-complex.  This might be useful in the automatic generation of meshes for objects with noncon-
vex surfaces.

on particular properties of a-shapes.  For these applications, it would be
difficult to replace n-shapes  by any other reasonable notion of shape. Two
such applications are briefly addressed.

Molecular Structures. Molecules are usually modeled as conglomerates of
atoms with fixed relative positions. Each atom is represented by a ball
around a center point, and the radius of the ball depends on what the model
is supposed to express. For example, in the so-called space-filling diagram
(see Section 3.1) the balls encompass the idealized locations of the electrons
so that balls of nearby atoms typically overlap. This diagram, defined as a
union of balls, is in a strict geometric sense dual to the a-shape of the center
points, assuming each ball has radius equal to CY. The a-shape  can thus be
used to compute structural properties of the space-tilling diagram, such as its
connectivity. Alternatively, the a-shape itself, for this value of (Y, can be used
to model and manipulate the molecule. When different atoms are represented
by balls of different sizes then weighted a-shapes  need to be used (see
Section 3.4).

Molecules with interesting a-shapes arise in the study of proteins and how
they fold (see Figure 4). The geometric locations of the atoms of about 500

ACM Transactions  on Graphics,  Vol. 13, No. 1, January  1994.
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Fig. 4. Molecule.  [n = 318,  IF21  = 40001.  The data represents a time-averaged  molecular  dy-
namics structure of gramicidin A, a peptide that forms a channel for  ion and water movement
across lipid membranes.  The major structural motif  is a right-handed beta-bonded  helix. The
tunnel of the macrostructure  can be detected  using relatively  large  n values. Smaller  values  of (I
result in (t-shapes  with larger  numbers  of isolated triangles  and edges.  These (r-shapes  reveal
the helix of the microstructure.

proteins  are know  today. However, there  are many more  gene  sequences  that
can be determined.  One of the goals  of theoretical  molecular biology  is to
obtain  three-dimensional  positional  information from the knowledge of these
sequences.  This is the problem  of protein  folding [Ghelis  and Yon 1982;
Richards  19911.  Since  the n-shape  is computationally inexpensive  and be-
cause  it closely  reflects  the physical  reality  of molecules,  it is hoped  that
e-shapes prove to be a useful  tool  in future  protein-folding research.

Distribution  of a Point Set. An interesting though  ill-defined  geometric
problem  arises  in the study  of the distribution of galaxies  in our universe.  As
observed  in studies  such as Cen et al. [1990]  and Geller  and Huchra [19891,
the galaxies  are distributed  in an unexpected  and rather nonuniform  manner
(see Figure  51. Astronomers have  measured  the location  of about  170,000
galaxies,  each one represented  by a point  in three-dimensional space. It
appears  that  a large  number of galaxies  are located  on or close  to sheet-like
and to filament-shaped structures.  In other words,  large  subsets  of the points
are distributed  in a predominantly two- or one-dimensional manner.

How can this intuitive notion  of the dimension of a point  distribution be
captured?  A possible  answer  can be given  by considering the entire  family  of

ACM Transactions on Graphics.  Vol 13, No 1. January  1 9 9 4 .



68 - H. Edelsbrunner  and E. P. Miicke

Fig.  5. Universe.  [n = 1717, IF21  = 213211.  This data represents  a simulation of the positions  of
galaxies  within  our  universe.  The  theory  is that galaxies first clustered  into  sheet-like  structures,
then progressed  to filament-shaped structures  at the intersection  of multiple sheets.  As filaments
began  to intersect,  global  clusters appeared.  It is interesting to investigate the macro-  and
micro-structure  of the galaxies, including the detection  of large  voids  and local  or global  clusters.
The full spectrum  of a-shapes promises  to be useful  in this  study.

a-shapes.  Let A( a) be the surface  area of the a-shape, and let V(a) be its
volume.  To measure the degree  to which  the points  are two-dimensionally
distributed,  it might be interesting to investigate the relative  variation of A
and  V over the range of (Y values  between  0 and *. More  generally, it would
be interesting to study  the relationship between a-shapes and the notion  of
fractals and fractal dimension.  Through the availability of signatures of
measures (see Section  81, the a-shape gives  comparably efficient access  to
metric information over  a range  of detail  monitored by a. Resulting quantifi-
cations  can be useful  in the comparative study of the actually observed  galaxy
distribution  and simulation data (see  Dyksterhouse [1992]  for first steps in
this direction).

8. SUMMARY  AND OPEN PROBLEMS

The main  contribution of this article  is the introduction of a sound  framework
that formally captures the rather intuitive notion  of the “shape” of a point  set
in space. This is the concept of three-dimensional a-shapes.  A prototype
version of a robust a-shape tool has been implemented. The authors  of this
article  hope that  this tool will  find many users  within the engineering and
ACM  Transactions  on Graphics,  Vol. 13, No. 1, January 1994.
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the scientific computing and visualization communities. However, there is
still a lot of work to be done. For example, the extensions mentioned in
Section 3.4 are worthwhile implementing, and this is planned in the near
future. The extensions mentioned below are either less specific or theoreti-
cally not well understood.

Improving the Running Time. A large fraction of the time used to con-
struct a-shapes is needed for computing the Delaunay triangulation of the
points. The algorithm used in our implementation takes time 0( nz ) in the
worst case, independent of the number of simplices of ~. However, it rarely
exhibits worst-case behavior. Still, it would be useful to have an algorithm
whose running time is roughly proportional to the size of .@. Is it possible to
construct $7 in time 0( n log n + m), where m = IFI u Fz u F~1?A first step
toward such an algorithm is the output-sensitive convex-hull algorithm of
Seidel [ 1986]. If combined with the methods of Matou.5ek and Schwarzkopf
[ 1992] it runs in time 0( n4/’ +‘ + m log n) for n points in 5!3. By randomiza-
tion, one can also achieve an expected running time roughly proportional to
the expected number of simplices, if an underlying distribution is assumed.
This is explained in Edelsbrunner and Shah [ 1992].

On a different level, the running time of our program can be improved by
speeding up the geometric primitives which all reduce to integer computa-
tions (see Section 6). According to our experimental studies, about 75% of the
time is spent doing integer arithmetic. This implies that appropriate hard-
ware support might have a significant impact on the running time.

Maintaining Alpha Shapes. In some applications it is necessary to con-
struct a-shapes across a number of different point sets, and often these point
sets are very similar to each other. For example, a point set might undergo
local changes within an iterative process, and the a-shape or some feature of
it is to be constructed at each step of the iteration, A local change might be
the insertion of a new point, the deletion of an old point, the dislocation of one
point, the dislocation of a subset of the points, etc. The development of
efficient update algorithm that reuse available structure as much as possible
can lead to dramatic improvements of the overall running time.

Features and Signatures. Individual a-shapes are interesting geometric
objects, and it would be useful to have efficient algorithms that can analyze
its geometric and topological properties or features. For example, computing
the volume is fairly straightforward because the a-complex provides a trian-
gulation of the a-shape, and the volume of the a-shape is simply the sum of
the volumes of the tetrahedral. More challenging is the computation of the
connectivity of the a-shape as expressed by its first three homology groups
(see for example Giblin [ 1981]).

As suggested by the second application discussed in Section 7, the history
of a feature, over all values of a from O through X, is of interest. Consider
some specific feature, say, the number of connected components of the
a-shape. The corresponding signature is a function c: [0, + ~] + R, so that
C(a) is the number of components of 9.. This function reflects the evolution

ACM Transactions on Graphics, Vol. 13, No. 1, January 1994.
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of the number of components as a changes continuously from O to + ~. Given
the a-spectrum, it is fairly easy to compute c. Start at a = O and maintain a
union-find data structure (see for example [Cormen et al 1990]) storing the
components as threshold values are processed in increasing order. A more
challenging task is the computation of the signatures for higher-order homol-
ogy groups. Such signatures might be handy in the selection of an appropri-
ate a value which typically depends on the application and the user’s
momentary focus of attention.

Available Software

The implementation mentioned in Section 6 is called “Alvis-A 3D Alpha
Shape Visualizer.” This tool allows the user to interactively select a-values
and display the corresponding shape. A small collection of signatures aids the
selection process. We see the program as an extension to the article, as an
“animated figure,” so to speak. One of its purposes is to effectively convey the
concept of a-shapes to the engineering and scientific computing community.
It is available via anonymous ftp from ftp.ncsa.uiuc.edu (141.142.20.50).
The latest release of the code, including the code for three-dimensional
Delaunay triangulations, can be found in the directory SGI / Alpha-shape.
The code requires a Silicon Graphics workstation, running Irix 4.0, or later,
32 Mb main memory, or more, are advisable. This code is a new kind of
shareware: you share with us your experience in applying Alvis to engineer-
ing and science problems, and we do our best to develop the software so it can
meet your needs. For questions contact (alpha@ ncsa.uiuc.edu).
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“Don’t look like a convex hull.. . get yourself in a-shaper
—David Knapp.
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