Sampling and Reconstruction with Adaptive Meshes

Demetri Terzopoulos and M. Vasilescu

Presented by Yuan Chen

Outline

- Problem
- Background
 - -- Numerical Grid Generation
- Dynamic Meshes
- Adaptive Meshes
- Algorithm
- Results
- Advantages & Disadvantages

Problem

- Adaptively sample the data to lower resolution
 - --- for compression or simplification
- Conventional approaches: uniformly sampling

Background (Numerical Grid Generation)

- A tool for numerical solution of partial differential equations on arbitrarily shaped regions.
- The numerical solution is built on those grids.
- Make best use of those finite grids to represent the physical solution with sufficient accuracy.
- The grid is influenced by both the geometric configuration and by the physical solution being done thereon.

Dynamic Mesh

- Essential component of adaptive mesh
- Constructed from physically-based nodes and springs
- Finite elements: spring and its attached nodes

Dynamic Mesh (Node)

- Node: i, i = 1,N
 - -- mass: m_i
 - -- position : $X_i(t) = [x_i(t), y_i(t), z_i(t)]$
 - -- velocity: $v_i = dX_i/dt$
 - -- acceleration: $a_i = d^2 X_i / dt^2$
 - -- force $f_i^n(t)$
- Be subject to a net nodal force: $f_i^n(t)$

Dynamic Mesh (Spring)

- Spring: *ij*
 - -- connect node j to node i
 - -- natural length l_{ij}
 - -- stiffness Cij
- Force exerted on node *i*: *i* •

$$s_{ij} = \frac{c_{ij}e_{ij}}{\|r_{ij}\|} r_{ij},$$

$$r_{ij} = X_j - X_i$$
, $eij = ||rij|| - lij$

Dynamic Mesh (Motion equations)

For each node:

$$m_i \frac{d^2 X_i}{dt^2} + \gamma_i \frac{dX_i}{dt} + g_i = f_i; i = 1,..., N$$

 m_i : mass X_i : position γ_i : damping coefficient g_i : the total force exerted from all connected springs f_i : an external force applied at node i

Dynamic Mesh (Numerical time-integration)

At each time step t:

$$1.f_i^{nt} = f_i^t - \gamma_i v_i^t - g_i^t$$

$$2.a_i^t = \frac{B_i f_i^{nt}}{}$$

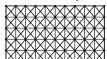
$$2.a_i^t = \frac{B_i f_i^{nt}}{m_i} \qquad \boxed{ _{m_i \frac{d^2 X_i}{dt^2} + \gamma_i \frac{d X_i}{dt} + g_i = f_i; \ i = 1, \dots, N} }$$

$$3.v_i^{t+\Delta t} = v_i^t + \Delta t a_i^t$$

$$3.v_i^{t+\Delta t} = v_i^t + \Delta t a_i^t$$
$$4.X_i^{t+\Delta t} = X_i^t + \Delta t v_i^{t+\Delta t}$$

Dynamic Mesh (Utilized in this paper)

 Quadrilateral elements are assembled into bounded surfaces (actually rectanglar)



Boundary condition: The boundary nodes can only move along the boundary in (x,y) visual

Adaptive Meshes

- Dynamic meshes with an adaptation function
 - -- stiffness of springs are changed according to the adaptation function during the process.
 - -- stiffness of spring increases in regions with rapid variation.

Adaptive Meshes (Adaptation functions)

■ Adaptation function, $a^{(k)} \in [0^{k}]$

$$a_2(\xi) = G(\xi) * H(d(\xi))$$

G is a normalized spatial filter; H is some function of partial derivative of the input data field.

■ Nodal Observation, **(3)**

$$O_i(d) = a_i(\Pi X_i)$$

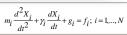
Adaptive Meshes (Feedback procedure)

Feedback procedure

$$\begin{split} c_{ij}^t &= (1-\rho_{ij}^t) c_{\min} + \rho_{ij}^t c_{\max} \ , \\ \rho_{ij}^t &= \frac{1}{2} (O_i^t + O_j^t) \end{split} \label{eq:cij}$$

More interesting area \rightarrow Higher $H^{l} \otimes H^{l} \rightarrow$ larger $G^{l} \otimes G^{l} \rightarrow$ larger $G^{l} \otimes G^{l} \rightarrow$

Algorithm



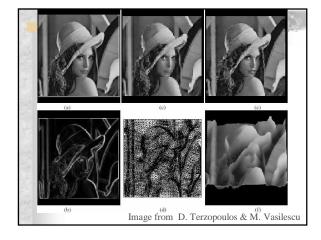
- Input: A 2D scalar-valued intensity or range image *d*(*k*,*l*)
- \blacksquare At each time step t:
 - 1. Evaluate the adaptation function and nodal observation for each node i
 - 2. Adjust the stiffness for each spring ij
 - 3. Compute the total force from springs for each node *i*
 - 4. Evaluate the current nodal forces, acceleration, the new velocity, and the new position.

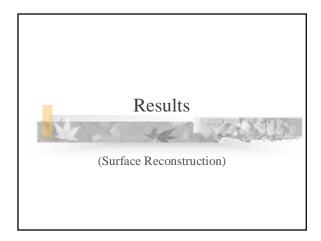
Algorithm (Data forces)

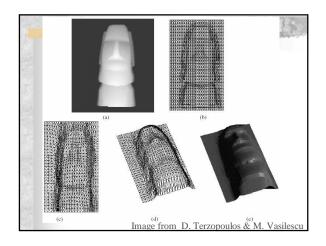
- External data force at time t:
 - $f_i^t = [0,0,\alpha(d(\Pi X_i^t) z_i^t)]$
- The only trigger to shift nodes in z direction.
- For surface reconstruction, it deflects the mesh to fit the input data.

Results

(Image Reconstruction)







Advantages Applicable to arbitrary dimensional data sets Nodes are optimally distributed to preserve the interesting properties of the input data. Interactive rates (no actual timing data)

Disadvantages

- Not suitable for arbitrary mesh in 3D-- Assume a planar surface as initial guess
- No theoretical justification