Three-Dimensional α Shapes Herbert Edelsbrunner and Ernst P. Mücke ACM Tran. Graph. 13(1), 1994

Presented by Matthew Bolitho

20 September 2005

- Theory
 - Background
 - Intuition
 - Definition
 - Delaunay Triangulation
- 2 Implementation
 - α -Complexes
 - Edelsbrunner's Algorithm
- 3 Applications
 - Properties
 - Surface Reconstruction

Background Intuition Definition Delaunay Triangulation

Shape

Question

Given a set of points, how can we determine its "shape"?

Shape

Question

Given a set of points, how can we determine its "shape"?

The convex hull

Shape

Question

Given a set of points, how can we determine its "shape"?

- The convex hull
- Something else?

Shape

Question

Given a set of points, how can we determine its "shape"?

- The convex hull
- Something else?
- ullet The lpha-shape

A generalisation of the convex hull

- A generalisation of the convex hull
- \bullet The $\alpha\text{-shape}$ is actually a family of shapes, parameterised by the α value

- A generalisation of the convex hull
- \bullet The $\alpha\text{-shape}$ is actually a family of shapes, parameterised by the α value
 - As $\alpha \to \infty$, the α -shape is the convex hull
 - As $\alpha \to 0$, the α -shape is the point set S

- A generalisation of the convex hull
- The α -shape is actually a family of shapes, parameterised by the α value
 - As $\alpha \to \infty$, the α -shape is the convex hull
 - As $\alpha \to 0$, the α -shape is the point set S
 - ullet Other values for lpha give shapes somewhere in-between

- A generalisation of the convex hull
- \bullet The $\alpha\text{-shape}$ is actually a family of shapes, parameterised by the α value
 - As $\alpha \to \infty$, the α -shape is the convex hull
 - As $\alpha \to 0$, the α -shape is the point set S
 - ullet Other values for lpha give shapes somewhere in-between
- α -shape may be concave or disjoint

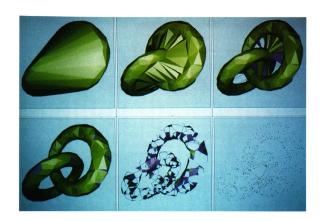


Figure from Edelsbrunner94

• Imagine a spherical scoop, with size α .

- Imagine a spherical scoop, with size α .
- *P* defines a set of points in space that the scoop cannot pass through.

- Imagine a spherical scoop, with size α .
- P defines a set of points in space that the scoop cannot pass through.
- The general idea is to carve out as much of space as possible:

- Imagine a spherical scoop, with size α .
- P defines a set of points in space that the scoop cannot pass through.
- The general idea is to carve out as much of space as possible:
 - There are places that the scoop is blocked i.e. $|p_i p_j| < \alpha, i \neq j$ At these positions there are at least d points in P touching the
 - ullet An edge of the lpha-shape is defined by connecting those points.

scoop.

- Imagine a spherical scoop, with size α .
- P defines a set of points in space that the scoop cannot pass through.
- The general idea is to carve out as much of space as possible:
 - There are places that the scoop is blocked i.e. $|p_i p_j| < \alpha, i \neq j$
 - At these positions there are at least d points in P touching the scoop.
 - \bullet An edge of the $\alpha\mbox{-shape}$ is defined by connecting those points.
 - ullet Then boundary of the lpha-shape is a collection of these edges

Basic Definitions

Let $P \subset \mathbb{R}^d$ be a set of n points

Basic Definitions

Let $P \subset \mathbb{R}^d$ be a set of n points

Let $S_{\alpha}(P)$ be the α -shape of P for a given α value

For simplicity, we assume that P is in *general position* form:

For simplicity, we assume that P is in *general position* form:

• No 4 points in P may lie in the same line

For simplicity, we assume that P is in general position form:

- No 4 points in P may lie in the same line
- No 5 points in P may lie on the same sphere

For simplicity, we assume that P is in *general position* form:

- No 4 points in P may lie in the same line
- No 5 points in P may lie on the same sphere
- For a fixed α , the smallest sphere through any 2,3 or 4 points in P has a radius different to α

For simplicity, we assume that P is in *general position* form:

- No 4 points in P may lie in the same line
- No 5 points in *P* may lie on the same sphere
- For a fixed α , the smallest sphere through any 2,3 or 4 points in P has a radius different to α

This allows us to ignore special cases

α -balls

Let $B_{\alpha}(p)$ be an open half ball with radius α covering a space p for $0 \le \alpha \le \infty$, $p \subset \mathbb{R}^d$

α -balls

Let $B_{\alpha}(p)$ be an open half ball with radius α covering a space p for $0 \le \alpha \le \infty$, $p \subset \mathbb{R}^d$

- $B_0(p)$ is the point p
- $B_{\infty}(p)$ is the half-space p

α -balls

Let $B_{\alpha}(p)$ be an open half ball with radius α covering a space p for $0 < \alpha < \infty$, $p \subset \mathbb{R}^d$

- $B_0(p)$ is the point p
- $B_{\infty}(p)$ is the half-space p

$$B_{\alpha}(p)$$
 is empty if $p \cap P = 0$

Simplices I

- An *n-simplex* is an *n*-dimensional analogue of a triangle:
 - The 0-simplex is a point
 - The 1-simplex is a line
 - The 2-simplex is a triangle
 - The 3-simplex is a tetrahedron
- A n-simplex has n+1 vertices

Simplices II

Let
$$T \subset P$$
, and $|T| = k + 1 \le d + 1$

The polytope $\triangle_T = conv(T)$ has dimension k and is therefore a k-simplex

Exposed Simplices

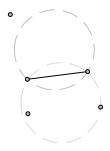
Let δp be the surface of $B_{\alpha}(p)$

A k-simplex \triangle_T is said to be *exposed* if there is an empty $B_{\alpha}(p)$ where $T \in \delta p$

Exposed Simplices

Let δp be the surface of $B_{\alpha}(p)$

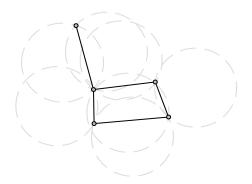
A *k*-simplex \triangle_T is said to be *exposed* if there is an empty $B_{\alpha}(p)$ where $T \in \delta p$



Building the α -shape

• $S_{\alpha}(P)$ is constructed from all exposed simplices:

$$\delta S_{\alpha}(P) = \{ \triangle_T | T \subset P, |T| \le d \text{ and } \triangle_T \text{ is exposed } \}$$



Properties

Observations

It is easy to show:

- $\lim_{\alpha\to\infty} S_{\alpha}(P)$ is the convex hull of P
- $\lim_{\alpha\to 0} S_{\alpha}(P)$ is the original set P

Properties

Observations

It is easy to show:

- $\lim_{\alpha\to\infty} S_{\alpha}(P)$ is the convex hull of P
- $\lim_{\alpha\to 0} S_{\alpha}(P)$ is the original set P

Claim

 $S(\alpha)$ is a subset of the Delaunay triangulation of P

Delaunay Triangulation Equivelence

Let DT(P) be a set of k-simplices $0 \le k \le d$ such that $\triangle_T = conv(T)$, $T \subset P$, |T| = k + 1

Delaunay Triangulation Equivelence

Let
$$DT(P)$$
 be a set of k -simplices $0 \le k \le d$ such that $\triangle_T = conv(T)$, $T \subset P$, $|T| = k + 1$

• For k=d, an α -ball $B_{\alpha}(p)$ coincides with the circumsphere of $\triangle_{\mathcal{T}}$

Delaunay Triangulation Equivelence

Let
$$DT(P)$$
 be a set of k -simplices $0 \le k \le d$ such that $\triangle_T = conv(T)$, $T \subset P$, $|T| = k + 1$

- For k=d, an α -ball $B_{\alpha}(p)$ coincides with the circumsphere of $\triangle_{\mathcal{T}}$
- By definition, this does not contain any other points from P, therefore $B_{\alpha}(p)$ is empty

Delaunay Triangulation Equivelence

Let
$$DT(P)$$
 be a set of k -simplices $0 \le k \le d$ such that $\triangle_T = conv(T)$, $T \subset P$, $|T| = k + 1$

- For k=d, an α -ball $B_{\alpha}(p)$ coincides with the circumsphere of \triangle_T
- By definition, this does not contain any other points from P, therefore $B_{\alpha}(p)$ is empty
- Thus the simplices that form the edges of the d-simplex are exposed, and form the boundary for some α -shape.

α -Complexes

• In order to compute the α -shape, we use the α -complex

α -Complexes

- In order to compute the α -shape, we use the α -complex
- The α -complex is a simplicial complex that is a subset of DT(P)

α -Complexes

- In order to compute the α -shape, we use the α -complex
- The α -complex is a simplicial complex that is a subset of DT(P)
- The subset of DT(P) is determined by α

Definitions

Let $\sigma_{\mathcal{T}}$ be the radius of the circumsphere of a simplex $\triangle_{\mathcal{T}}$

Definitions

Let $\sigma_{\mathcal{T}}$ be the radius of the circumsphere of a simplex $\triangle_{\mathcal{T}}$

Let $\mu_{\mathcal{T}}$ be the center of the circumsphere of a simplex $\triangle_{\mathcal{T}}$

Definitions

Let σ_T be the radius of the circumsphere of a simplex \triangle_T

Let μ_T be the center of the circumsphere of a simplex \triangle_T

- A simplex \triangle_T from DT(P) is in $C_{\alpha}(P)$ if either:
 - $\sigma_T < \alpha$ and the α -ball at μ_T is empty
 - \triangle_T is the face of another \triangle_T in $C_\alpha(P)$

• Compute the Delaunay Triangulation

- Compute the Delaunay Triangulation
- Generate the α -complex
 - \bullet The algorithm actually computes the $\alpha\text{-complex}$ for all α values.

- Compute the Delaunay Triangulation
- Generate the α -complex
 - \bullet The algorithm actually computes the $\alpha\text{-complex}$ for all α values.

- Compute the Delaunay Triangulation
- Generate the α -complex
 - \bullet The algorithm actually computes the $\alpha\text{-complex}$ for all α values.
- Extract the boundary of the α -shape from the α -complex

- Compute the Delaunay Triangulation
- Generate the α -complex
 - The algorithm actually computes the α -complex for all α values.
- Extract the boundary of the α -shape from the α -complex
- Steps 1 and 2 can be precomputed for a given P

Complexity

- Delaunay Triangulation: $O(n \log n)$
- Generate α -complex: $O(m \log m)$
- Extract boundary of α -shape: O(m) (could be better?)

General Position Assumption

• We assumed that P was in general position form

General Position Assumption

- We assumed that P was in general position form
- In reality, point sets often break these contraints

General Position Assumption

- We assumed that P was in general position form
- In reality, point sets often break these contraints
- Solution: Simulation of simplicity H. Edelsbrunner and E. P. Mcke, ACM Trans. Graph. 9(1) 1990

Properties of α -Shapes

•
$$S_{\infty}(P) = conv(P)$$

•
$$S_0(P) = P$$

Properties of α -Shapes

- $S_{\infty}(P) = conv(P)$
- $S_0(P) = P$
- $S_{\alpha_1}(P) \subset S_{\alpha_2}(P)$ if $\alpha_1 < \alpha_2$

Properties of α -Shapes

•
$$S_{\infty}(P) = conv(P)$$

•
$$S_0(P) = P$$

•
$$S_{\alpha_1}(P) \subset S_{\alpha_2}(P)$$
 if $\alpha_1 < \alpha_2$

•
$$S_{\alpha}(P) \subset DT(P)$$

Advantages

- ullet α -shape reconstructions can have arbitrary topology
- The α -shape interpolates the set P

Disadvantages

- The choice of α -value is non-intuative
- The reconstruction may not be water tight
- The reconstruction may be disjoint

• Given a point set P, one can only choose a single α value.

- Given a point set P, one can only choose a single α value.
 - The α -value is determined by the smallest feature in the reconstruction

- Given a point set P, one can only choose a single α value.
 - The α -value is determined by the smallest feature in the reconstruction
 - ullet Thus, the lpha-value determines the sampling density everywhere

- Given a point set P, one can only choose a single α value.
 - ullet The lpha-value is determined by the smallest feature in the reconstruction
 - ullet Thus, the lpha-value determines the sampling density everywhere

P must be uniformly sampled, at a resolution constrained by the locally highest resoultion desired.

- ullet Given a point set P, one can only choose a single lpha value.
 - The α -value is determined by the smallest feature in the reconstruction
 - ullet Thus, the lpha-value determines the sampling density everywhere

P must be uniformly sampled, at a resolution constrained by the locally highest resoultion desired.

- What about blending several α -shapes together?
- What about defining $\alpha(q)$ for $q \in \mathbb{R}^d$ such that $\alpha(q)$ is proportional to sampling density near q