
On Visual Similarity Based 3D Model Retrieval

Ding-Yun Chen Xiao-Pei Tian Yu-Te Shen Ming Ouhyoung

Department of Computer Science and Information Engineering
National Taiwan University, Taipei

600.658 - Seminar on Shape Analysis and Retrieval

Visual Similarity Based 3D Model Matching

- Image differences in light fields
- Multiple viewing angles
- **Exhaustive search** to find best alignment

Outline

- ① Feature Extraction for Representing 3D Models
 - LightField Descriptor
 - Image Metric
 - Extracting LightField Descriptors for a 3D Model
- ② Retrieval of 3D Models Using LightField Descriptors
- ③ Experimental Results

Outline

- ① Feature Extraction for Representing 3D Models
 - LightField Descriptor
 - Image Metric
 - Extracting LightField Descriptors for a 3D Model
- ② Retrieval of 3D Models Using LightField Descriptors
- ③ Experimental Results

Light Field

Definition

A light field (or plenoptic function) is a 5D function representing the radiance at a given 3D point along a given direction.

- Reduces to 4D in free space
- Collection of 2D images rendered from a 2D array of cameras
- 2D cameras positioned on the vertices of a regular 3D grid
- \vdots
- \vdots

Light Field

Definition

A light field (or plenoptic function) is a 5D function representing the radiance at a given 3D point along a given direction.

- Reduces to 4D in free space
- Collection of 2D images rendered from a 2D array of cameras
- 20 cameras positioned on the vertices of a regular dodecahedron

► Regular Dodecahedron

Light Field

Definition

A light field (or plenoptic function) is a 5D function representing the radiance at a given 3D point along a given direction.

- Reduces to 4D in free space
- Collection of 2D images rendered from a 2D array of cameras
- 20 cameras positioned on the vertices of a regular dodecahedron
 - Images rendered as silhouettes
 - Light field reconstruction from silhouettes

► Regular Dodecahedron

Light Field

Definition

A light field (or plenoptic function) is a 5D function representing the radiance at a given 3D point along a given direction.

- Reduces to 4D in free space
- Collection of 2D images rendered from a 2D array of cameras
- 20 cameras positioned on the vertices of a regular dodecahedron
 - Images rendered as silhouettes
 - Only 10 of the 20 silhouettes need to be used

► Regular Dodecahedron

Light Field

Definition

A light field (or plenoptic function) is a 5D function representing the radiance at a given 3D point along a given direction.

- Reduces to 4D in free space
- Collection of 2D images rendered from a 2D array of cameras
- 20 cameras positioned on the vertices of a regular dodecahedron
 - Images rendered as silhouettes
 - Only 10 of the 20 silhouettes need to be used

► Regular Dodecahedron

Light Field

Definition

A light field (or plenoptic function) is a 5D function representing the radiance at a given 3D point along a given direction.

- Reduces to 4D in free space
- Collection of 2D images rendered from a 2D array of cameras
- 20 cameras positioned on the vertices of a regular dodecahedron
 - Images rendered as silhouettes
 - Only 10 of the 20 silhouettes need to be used

► Regular Dodecahedron

Outline

- ① Feature Extraction for Representing 3D Models
 - LightField Descriptor
 - Image Metric
 - Extracting LightField Descriptors for a 3D Model
- ② Retrieval of 3D Models Using LightField Descriptors
- ③ Experimental Results

A LightField Descriptor for 3D Models

Definition

LightFiled Descriptor is defined as features of 10 images rendered from vertices of dodecahedron over a hemisphere.

- 60 camera positions for each orientation of the dodecahedron

► Regular Dodecahedron

$$\bullet D_A(L_1, L_2) = \min \sum_{i=1}^{60} d(l_{i,1}, l_{i,2})$$

A LightField Descriptor for 3D Models

Definition

LightFiled Descriptor is defined as features of 10 images rendered from vertices of dodecahedron over a hemisphere.

- 60 camera positions for each orientation of the dodecahedron

► Regular Dodecahedron

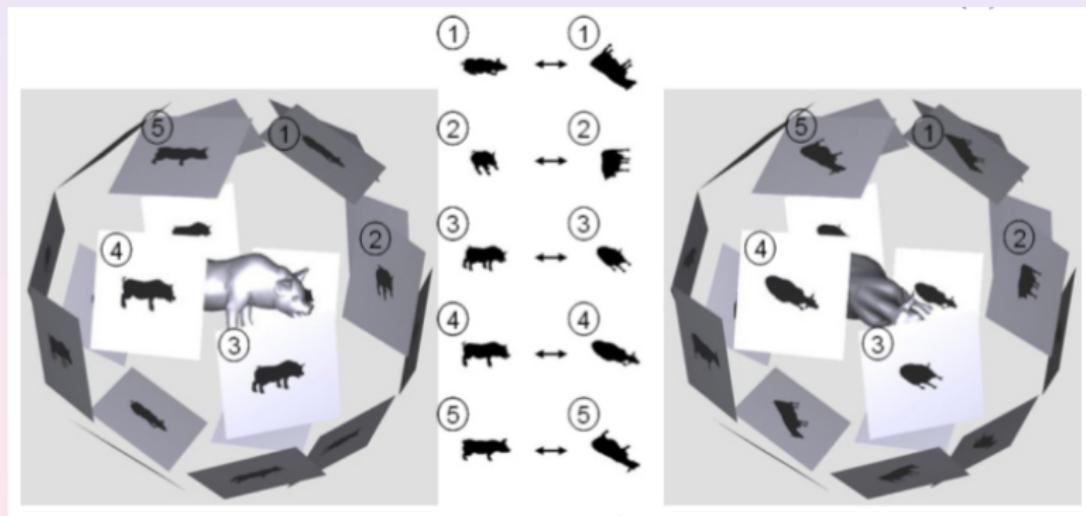
- $D_A(L_1, L_2) = \min_{i=1}^{60} \sum_{k=1}^{10} d(I_{1k}^i, I_{2k}^i)$

A LightField Descriptor for 3D Models

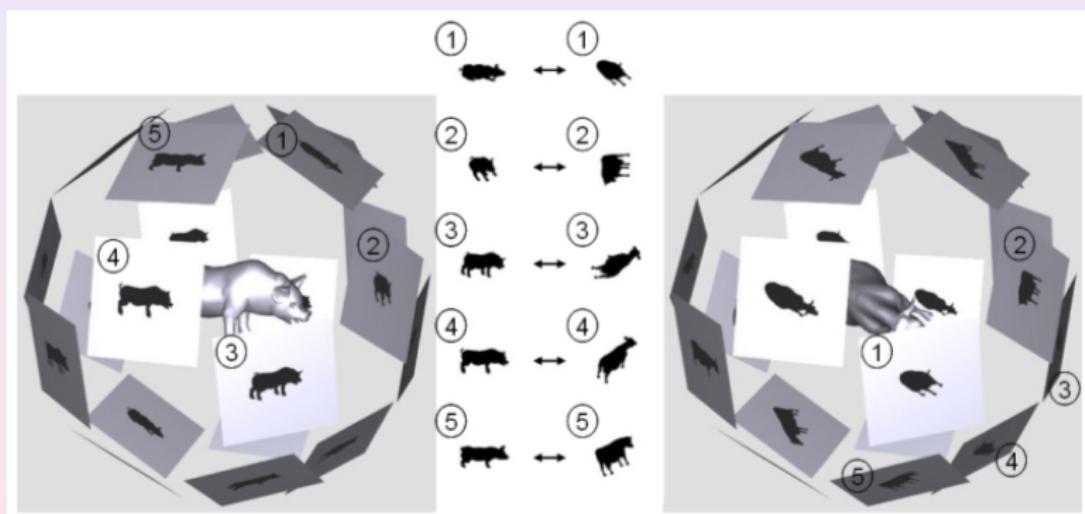
Definition

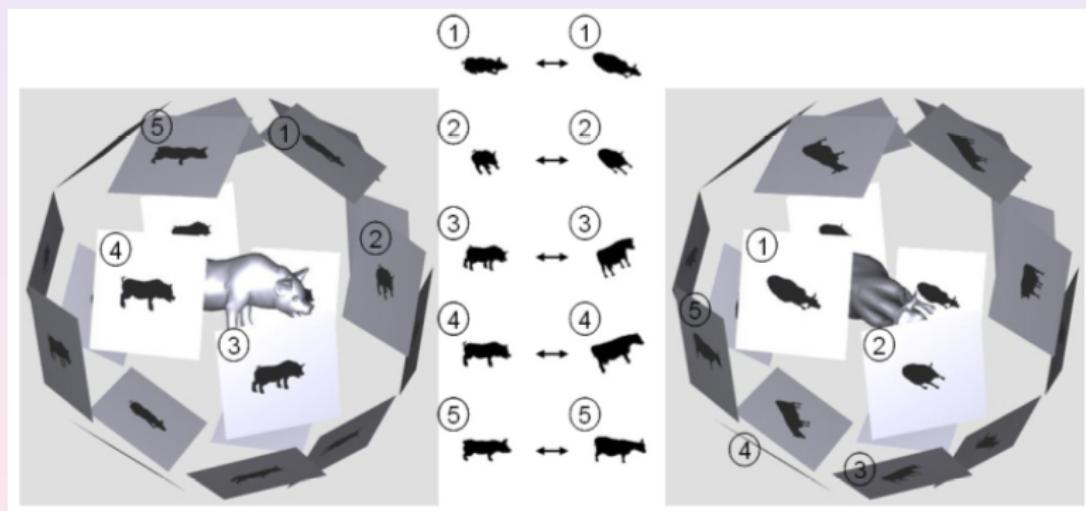
LightFiled Descriptor is defined as features of 10 images rendered from vertices of dodecahedron over a hemisphere.

- 60 camera positions for each orientation of the dodecahedron

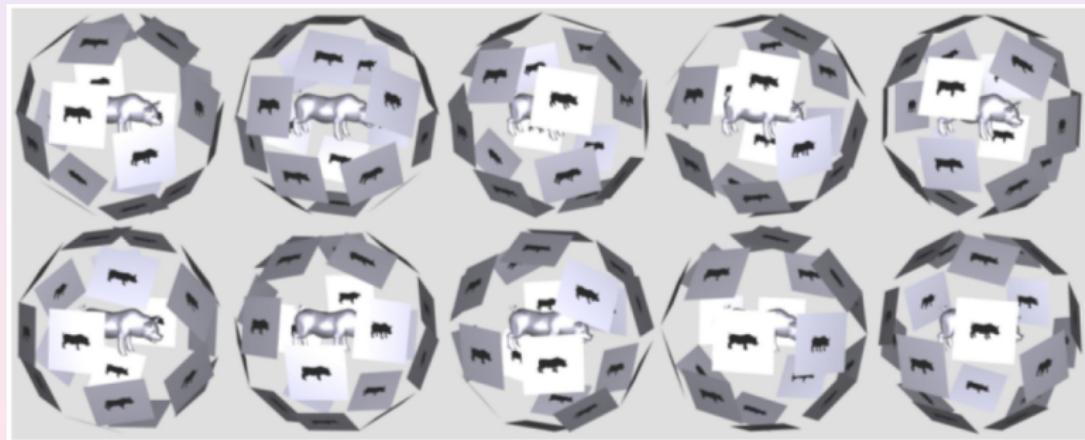

► Regular Dodecahedron

$$\bullet D_A(L_1, L_2) = \min_{i=1}^{60} \sum_{k=1}^{10} d(I_{1k}^i, I_{2k}^i)$$


On orientations of pigs and cows


On orientations of pigs and cows

On orientations of pigs and cows


On orientations of pigs and cows

A Set of LightField Descriptors to Counter Rotational Variations

- Use N different camera system orientations
 - Ensure uniform camera distribution
 - Obtains a total of $(N \times (N - 1) + 1) \times 60$ different rotations between 2 models
 - $$D_B = \min_{j,k=1}^N D_A(L_{1j}, L_{2k})$$
 - Current work uses $N = 10$ (5460 different rotations)

A Set of LightField Descriptors to Counter Rotational Variations

Outline

1 Feature Extraction for Representing 3D Models

- LightField Descriptor
- Image Metric
- Extracting LightField Descriptors for a 3D Model

2 Retrieval of 3D Models Using LightField Descriptors

3 Experimental Results

Combine Different Shape Descriptors

- Combine a “region-based” and a “contour-based” shape descriptor
- Region-based descriptors:
 - Combine information from all pixels within the region
 - Do not emphasize boundary features
 - Zernike Moment Descriptors (ZMD) [Details](#)
- Contour-based descriptors:
 - Exploits only boundary information, ignoring the interior
 - Fourier Descriptors (FD) [Details](#)

- 35 ZMD and 10 FD coefficients (8 bits)

$$\bullet d(l_1, l_2) = \sum_{j=1}^{45} |C_{1j} - C_{2j}|$$

Combine Different Shape Descriptors

- Combine a “region-based” and a “contour-based” shape descriptor
- Region-based descriptors:
 - Combine information from all pixels within the region
 - Do not emphasize boundary features
 - Zernike Moment Descriptors (ZMD) [► Details](#)
- Contour-based descriptors:
 - Exploits only boundary information, ignoring the interior
 - Fourier Descriptors (FD) [► Details](#)

- 35 ZMD and 10 FD coefficients (8 bits)

$$d(I_1, I_2) = \sum_{j=1}^{45} |C_{1j} - C_{2j}|$$

Combine Different Shape Descriptors

- Combine a “region-based” and a “contour-based” shape descriptor
- Region-based descriptors:
 - Combine information from all pixels within the region
 - Do not emphasize boundary features
 - Zernike Moment Descriptors (ZMD) [▶ Details](#)
- Contour-based descriptors:
 - Exploits only boundary information, ignoring the interior
 - Fourier Descriptors (FD) [▶ Details](#)

- 35 ZMD and 10 FD coefficients (8 bits)

$$d(l_1, l_2) = \sum_{j=1}^{45} |C_{1j} - C_{2j}|$$

Combine Different Shape Descriptors

- Combine a “region-based” and a “contour-based” shape descriptor
- Region-based descriptors:
 - Combine information from all pixels within the region
 - Do not emphasize boundary features
 - Zernike Moment Descriptors (ZMD) [▶ Details](#)
- Contour-based descriptors:
 - Exploits only boundary information, ignoring the interior
 - Fourier Descriptors (FD) [▶ Details](#)

- 35 ZMD and 10 FD coefficients (8 bits)

$$d(l_1, l_2) = \sum_{j=1}^{45} |C_{1j} - C_{2j}|$$

Outline

- ① Feature Extraction for Representing 3D Models
 - LightField Descriptor
 - Image Metric
 - Extracting LightField Descriptors for a 3D Model
- ② Retrieval of 3D Models Using LightField Descriptors
- ③ Experimental Results

Extracting LightField Descriptors for a 3D Model

Algorithm

- ① Normalize for translation and scaling
- ② Obtain *LightField Descriptors* for 10 different camera system orientation
- ③ For each *LightField Descriptor* store 10 views of the image
- ④ For each of the 100 images store the corresponding image metric

Extracting LightField Descriptors for a 3D Model

Algorithm

- ① Normalize for translation and scaling
- ② Obtain *LightField Descriptors* for 10 different camera system orientation
- ③ For each *LightField Descriptor* store 10 views of the image
- ④ For each of the 100 images store the corresponding image metric

Extracting LightField Descriptors for a 3D Model

Algorithm

- ① Normalize for translation and scaling
- ② Obtain *LightField Descriptors* for 10 different camera system orientation
- ③ For each *LightField Descriptor* store 10 views of the image
- ④ For each of the 100 images store the corresponding image metric

Extracting LightField Descriptors for a 3D Model

Algorithm

- ① Normalize for translation and scaling
- ② Obtain *LightField Descriptors* for 10 different camera system orientation
- ③ For each *LightField Descriptor* store 10 views of the image
- ④ For each of the 100 images store the corresponding image metric

Outline

- 1 Feature Extraction for Representing 3D Models
 - LightField Descriptor
 - Image Metric
 - Extracting LightField Descriptors for a 3D Model
- 2 Retrieval of 3D Models Using LightField Descriptors
- 3 Experimental Results

Retrieval of 3D Models from Large Database

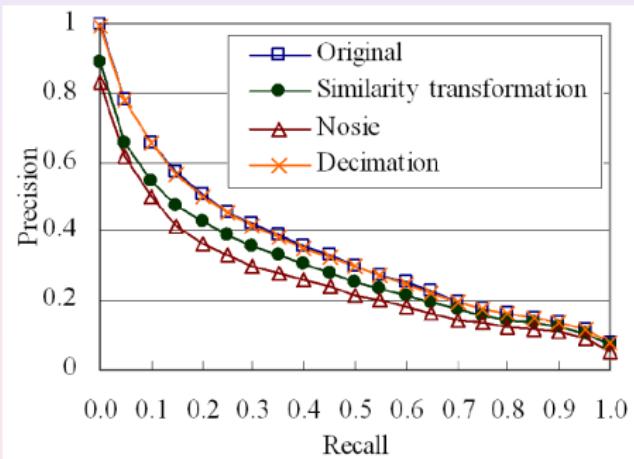
Baseic Idea

- Use a few *LightField Descriptors* and only a few highly quantized coefficients while comparing all images in the database
- Set the threshold to be the mean of similarity
- Progressively refine the comparison by:
 - Increasing the number of *LightField Descriptors* to compare
 - Increasing the number of coefficients used to calculate similarity


Outline

- 1 Feature Extraction for Representing 3D Models
 - LightField Descriptor
 - Image Metric
 - Extracting LightField Descriptors for a 3D Model
- 2 Retrieval of 3D Models Using LightField Descriptors
- 3 Experimental Results

Test Set

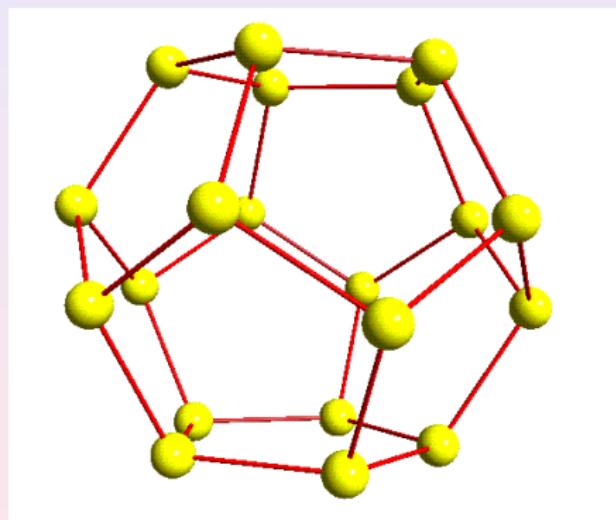

- Database of 1,833 3D models
- Annotated by a single human evaluator
- Models classified according to “functional similarities”
 - 47 “classes”, covering 549 models
 - Rest 1,284 models classified as “miscellaneous”

Performance Evaluation

- **3D Harmonics:** discussed yesterday
- **Shape 3D Descriptor:** curvature histograms (MPEG 7 standard)
- **Multiple View Descriptor:** align using PCA

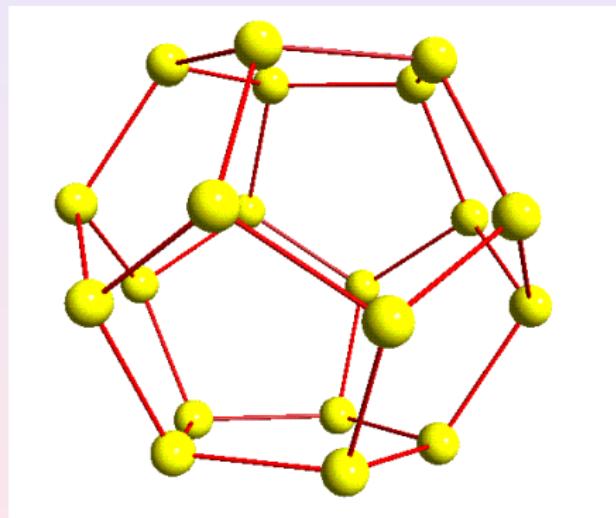
Robustness Evaluation

- **Similarity transformation:** rotation, translation & scaling
- **Noise:** vertex coordinates changed
- **Decimation:** randomly delete 20% polygons


► Examples

Summary

- Not very concise
- Quick to compute (?)
- Not very efficient to match
- Good discrimination
- Invariant to transformations
- Invariant to deformations
- Insensitive to noise
- Insensitive to topology (?)
- Robust to degeneracies



Regular Dodecahedron

Picture courtesy: <http://btm2xl.mat.uni-bayreuth.de>

◀ Return

Regular Dodecahedron

Picture courtesy: <http://btm2xl.mat.uni-bayreuth.de>

◀ Return

Zernike Moment Descriptors

- Zernike polynomials
 - A set of complex-valued functions over the unit circle
- Zernike moments of order n with repetition m

- $V_{nm}(x, y) = V_{nm}(\rho \cos \theta, \rho \sin \theta) = R_{nm}(\rho) \exp(jm\theta)$
- $R_{nm}(\rho) = \sum_{s=0}^{(n-|m|)/2} (-1)^s \frac{(n-s)!}{s!(\frac{n+|m|}{2}-s)!(\frac{n-|m|}{2}-s)!} \rho^{n-2s}$
- $A_{nm} = \frac{n+1}{\pi} \sum_{x,y: x^2+y^2 \leq 1} f(x, y) V_{nm}^*(x, y)$

◀ Return

Zernike Moment Descriptors

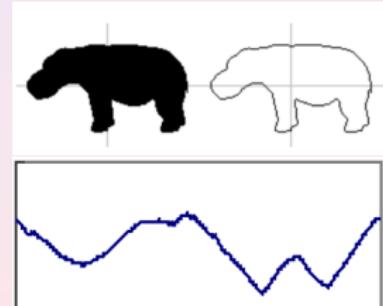
- Zernike polynomials
 - A set of complex-valued functions over the unit circle
- Zernike moments of order n with repetition m

- $V_{nm}(x, y) = V_{nm}(\rho \cos \theta, \rho \sin \theta) = R_{nm}(\rho) \exp(jm\theta)$
- $R_{nm}(\rho) = \sum_{s=0}^{(n-|m|)/2} (-1)^s \frac{(n-s)!}{s! (\frac{n+|m|}{2}-s)! (\frac{n-|m|}{2}-s)!} \rho^{n-2s}$
- $A_{nm} = \frac{n+1}{\pi} \sum_{x,y: x^2+y^2 \leq 1} f(x, y) V_{nm}^*(x, y)$

◀ Return

Fourier Descriptors

- Fourier transform of a shape signature
- Centroid distance used as the shape signature
- Use only the magnitude of Fourier coefficients

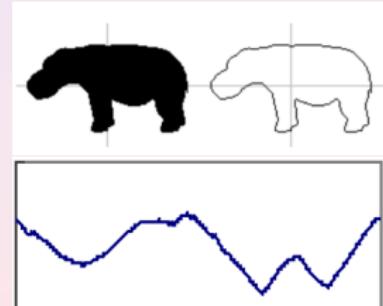

- $r(t) = ([x(t) - x_c]^2 + [y(t) - y_c]^2)^{1/2}$
- $x_c = \frac{1}{N} \sum_{t=0}^N x(t), \quad y_c = \frac{1}{N} \sum_{t=0}^N y(t)$
- $a_n = \frac{1}{N} \sum_{t=0}^N r(t) \exp\left(\frac{-j2\pi nt}{N}\right)$
- $\mathbf{f} = \left\{ \frac{|a_1|}{|a_0|}, \frac{|a_2|}{|a_0|}, \dots, \frac{|a_{N/2}|}{|a_0|} \right\}$

[◀ Return](#)

Fourier Descriptors

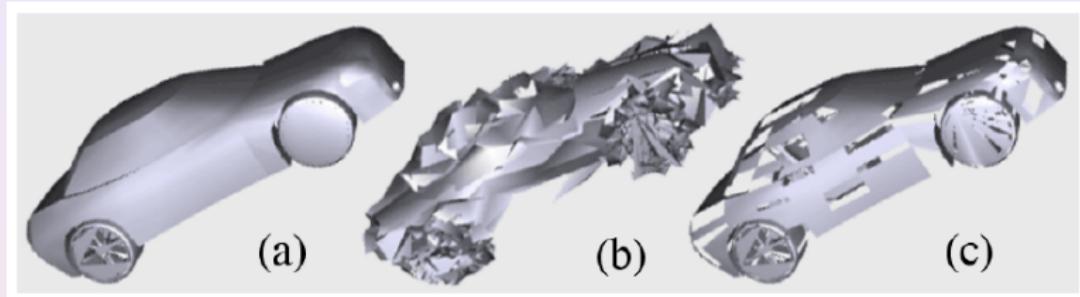
- Fourier transform of a shape signature
- Centroid distance used as the shape signature
- Use only the magnitude of Fourier coefficients

- $r(t) = ([x(t) - x_c]^2 + [y(t) - y_c]^2)^{1/2}$
- $x_c = \frac{1}{N} \sum_{t=0}^N x(t), \quad y_c = \frac{1}{N} \sum_{t=0}^N y(t)$
- $a_n = \frac{1}{N} \sum_{t=0}^N r(t) \exp\left(\frac{-j2\pi nt}{N}\right)$
- $\mathbf{f} = \left\{ \frac{|a_1|}{|a_0|}, \frac{|a_2|}{|a_0|}, \dots, \frac{|a_{N/2}|}{|a_0|} \right\}$



[◀ Return](#)

Fourier Descriptors


- Fourier transform of a shape signature
- Centroid distance used as the shape signature
- Use only the magnitude of Fourier coefficients

- $r(t) = ([x(t) - x_c]^2 + [y(t) - y_c]^2)^{1/2}$
- $x_c = \frac{1}{N} \sum_{t=0}^N x(t), \quad y_c = \frac{1}{N} \sum_{t=0}^N y(t)$
- $a_n = \frac{1}{N} \sum_{t=0}^N r(t) \exp\left(\frac{-j2\pi nt}{N}\right)$
- $\mathbf{f} = \left\{ \frac{|a_1|}{|a_0|}, \frac{|a_2|}{|a_0|}, \dots, \frac{|a_{N/2}|}{|a_0|} \right\}$

[◀ Return](#)

Model Corruption

- Ⓐ Original 3D model
- Ⓑ Effect of noise
- Ⓒ Effect of decimation

[◀ Return](#)