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Abstract

The structured language model (SLM) of [1] was one of the
first to successfully integrate syntactic structure into language
models. We extend the SLM framework in two new directions.
First, we propose a new syntactic hierarchical interpolation that
improves over previous approaches. Second, we develop a gen-
eral information-theoretic algorithm for pruning the underlying
Jelinek-Mercer interpolated LM used in [1], which substantially
reduces the size of the LM, enabling us to train on large data.
When combined with hill-climbing [2] the SLM is an accurate
model, space-efficient and fast for rescoring large speech lat-
tices. Experimental results on broadcast news demonstrate that
the SLM outperforms a large 4-gram LM.

1. Introduction

Automatic Speech Recognition (ASR) relies on a language
model (LM) to provide a strong linguistic prior on word se-
quences. Most language models rely on simple n-gram statis-
tics and a wide range of smoothing and backoff techniques. De-
spite being simple and efficient, it is widely believed that limit-
ing the context to only the (n—1) most recent words ignores the
structure of language, and several statistical frameworks have
been proposed to incorporate the “syntactic structure of lan-
guage back into language modeling” [1, 3,4]. The Structured
Language Model (SLM) [1] was one of the first successful at-
tempts to build a statistical language model based on syntactic
information. The SLM assigns a joint probability P(W,T") to
every word sequence W and every possible binary parse tree 7',
where 71”s terminals are words W with part-of-speech (POS)
tags, and its internal nodes comprise non-terminal labels and
lexical “heads” of phrases. Other approaches include using the
exposed headwords in a maximum-entropy based LM [5], us-
ing exposed headwords from full-sentence parse tree in a neu-
ral network based LM [3], and the use of syntactic features in
discriminative training [6]. However, most previous SLMs are
large, complex and impractical for real-life applications.

We propose a new SLM based on dependency structures
derived using a state-of-the-art probabilistic shift-reduce parser
[7], in contrast to the original SLM which parametrizes the
parser component with a conditional model. Two key improve-
ments are also made to the SLM. First, we propose a simple
hierarchical interpolation of syntactic parameters that achieves
better performance without significant model complexity. Sec-
ond, we maintain model efficiency on a large training corpus
by using a general information-theoretic pruning method to re-
duce the size of the underlying Jelinek-Mercer LM [8]. When
combined with fast hill-climbing rescoring [6], our framework
is accurate, space efficient and practical for ASR.
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Figure 1: Actions of a shift-reduce parser to produce the depen-
dency structure (up to the word president) shown above.

2. Dependency Language Models

Syntactic information can be encoded in terms of headwords
and headtags of phrases, which are extracted from a syntactic
analysis of a sentence [1, 3], such as a dependency structure. A
dependency in a sentence holds between a dependent (or mod-
ifier) word and a head (or governor) word: the dependent de-
pends on the head. These relations are encoded in a dependency
tree (Figure 1), a directed graph where each edge (arc) encodes
a head-dependent relation.

We use the shift-reduce incremental dependency parser
of [7], which constructs a tree from sequence of transitions gov-
erned by a maximum-entropy classifier. Shift-reduce parsing
places input words into a queue ) and partially built structures
are organized by a stack S. Shift and reduce actions consume
the queue and build the output parse on the stack. The classifier
g assigns probabilities to each action, and the probability of a
state py (7) can be computed as the product of the probabilities
of a sequence of actions that resulted in the state.

An incremental parser can provide partial syntactic anal-
yses of the history at each word position. Parser states cor-
responding to the ¢th word w;—states which have w; as the
top word in their queue— are history-states, denoted 11_; =
{n%,, 7k, ,ﬁf{’}, where K is the total number of such
states (others may be eliminated via beam pruning). Given II_;
for all ¢, the probability assignment for w; is:

[T

plwdW-i) = 3 p (wlf(xl, W) ol JW-) - (D
j=1

where, W_; is the word history w1, ..., w;—1 for w;, w];i is

the j*" history-state of position i, py (7’ ;|W_;) is the prob-
ability assigned to state 7 ; by the parser, and f(7/ ,, W_;)
denotes an equivalence classification of the word-history and
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Figure 2: Examples of hierarchal interpolation schemes.

parser history-state, capturing features from . ; and W_; that

are most useful for predicting w;. We will restrict f(7? ,, W_;)
to be based on only the heads of the partial trees {sos1 -}
in the stack. For example, in Figure 1, such a function applied
to the parser state after step 8 yields the conditional probability
p(for|president, NN) for predicting the word for (assum-
ing the top headword president has POS tag NN). Given the
choice of f(.), the parameters of the model p(w;|f (7’ ,, W_;))
are estimated to maximize the log-likelihood of the training data
T using the Baum-Welch algorithm [9].

We use a hiearachy of fine-to-coarse equivalence classifi-
cations far, far—1,. .., f1 to smooth probability estimates and
handle unseen events via Jelinek-Mercer smoothing [8]. Let

fu(m_s, W_i)  —  fuoa(mo, Woy) —
= fo(mr—i,W_i) = fi(m—i, Woi) ()

be a set of M different equivalence classification of history state
m_;. Jelinek-Mercer smoothing utilizes linear interpolation of
the ML estimated higher-order equivalence classification prob-
abilities pmr, (w] fm) with lower order pavr (W] frm—1):

pinterp(wi|fm(7T_¢W_i))
= Af,pML (Wi frn (T W_3))
+(1 - )\fm )pinterp(wi|fm—1(7T_7;VV_7;))7

for 1 < m < M, where the 0-th order model f; is a uniform
distribution. Coefficients Ay, (r_,w_,) are estimated on a held-
out set using the bucketing algorithm suggested in [10], which
ties Ay, (r_,w_,)’s based on the counts of fr,,(m—;WW_;)’s on
the training data. We use the expected count in 7 of f, — a
specific context feature in the set of all f,, (m—;W_;)’s.

We perform the bucketing algorithm for each level
fi, f2,-++, fm of equivalence classification separately, and
estimate the bucketed A.(y,,) using the Baum-Welch algo-
rithm [9] to maximize the likelihood of held out data, where
the word probability assignment in Eq. 1 is replaced with:

11, |

plw|W-;) = Zpinterp (wi|fM(7‘{i’ Wﬂ)) pg(ﬂ‘Zi|W7¢)
=1

We use two hierarchical interpolation schemes (Figure 2) for
smoothing from [1], although we include larger contexts: equiv-
alence classification of history-states by looking only at the
headwords (HW) and head-tags (HW+HT) of the first 3 partial
trees in the stack. “()” refers to an equivalence classification
where no information is used from history (uni-grams.)

2.1. Preliminary Preplexity Results

Before proceeding to our new methods, we establish a base-
lined perplexity of the SLM using the above two hierarchical
schemes. We consider Broadcast News (BN) recognition with

Language Model Eval | Dev
Kneser-Ney 4-gram | 158 | 165

HW 174 | 183
SLM HW+HT 163 | 174
HW+HT2 159 | 168 | SLM Weight
HW 149 | 154 0.35
Interp. HW+HT 144 150 0.43
HW+HT2 142 | 147 0.48

Table 1: The preplexity of different BN language models.

the EARS BNO3 corpus, which has 42/ words of training text.
1t04 (45K words) is used for evaluation data. To interpolate
our SLM with the baseline 4-gram model, we use rt03+dev04f
(about 40K words) as development data. The vocabulary is
84K words. We sample about 20K sentences from the train-
ing text (excluded from training) to serve as heldout data for
applying the bucketing algorithm and estimating A\’s. For the
dependency parser, data sets are converted to Treebank-style to-
kenization and POS-tagged using the tagger of [11]. Both the
POS tagger and dependency parser are trained on the BN tree-
bank from Ontonotes [12] and the WSJ Penn Treebank (con-
verted to dependency trees), which consists of 1.2M tokens.
Finally, we train a modified Kneser-Ney 4-gram LM on the to-
kenized training text to serve as the baseline LM.

Table 1 shows preplexities obtained for BN . Using headtags
in the equivalence classifications used in the HW+HT interpola-
tion scheme significantly improves the preplexity of the SLM.
It also improves the performance of the interpolated LM.

3. Improved Hierarchical Interpolation

The original SLM hierarchical interpolation scheme is aggres-
sive in that it drops both the tag and headword from the his-
tory. However, in many cases the headword’s tag alone is suf-
ficient, suggesting a more gradual interpolation. We propose
a new interpolation where instead of dropping both the head-
word and headtag of a partial tree in the stack of a history-state
at each level of the HW+HT hierarchical interpolation scheme,
we first drop only the headword. E.g., in the HW+HT hierarchy
of Figure 2, we use (h.woh.to,h.w_1h.t_1,h.w_sh.t_2) —
(h.Woh.to, h.w_1h.t_q, h.tf‘z) — (h.Woh.to7 h.Wflh.tfl)A

Keeping the headtag adds more specific information and at
the same time is less sparse. We refer to this interpolation hi-
erarchy as HW+HT2. A similar idea is found, e.g., in the back-
off hierarchical class n-gram language model [13]. Preplexity
results (Table 1) confirm that the new scheme improves both
interpolated and non-interpolated models.

4. Relative Entropy Pruning of the SLM

A significant drawback to the SLM is its size; the space of
history-states II_; can be exponentially large. To reduce its
size we prune the trained model pinterp (wl| fa(m W_i)),
taking into account accumulated training statistics, as opposed
to pruning parser states locally. Our algorithm is based on the
pruning scheme proposed in [14], which was used for pruning
n-gram backoff language models. The goal is to minimize the
distance between the implied distributions of the original and
pruned models.

The m'"-level model in a hierarchical Jelinek-Mercer in-
terpolated LM consists of the following parts:

1. fm € {fm}: The m!"-level contextual features which are
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Figure 3: The data structure used for representing m*" level
parameters of a Jelinek-Mercer LM.

observed in training.
2. ¢(fm): The (empirical expected) count of fr, in training.
3. A(fm): The interpolation weights which are functions of

context-feature counts and are used to interpolate m'"-level
ML probabilities with the (m — 1)*"-level probabilities.

4. pmr (w|fm): Explicit maximum-likelihood probability of a
word w given the context-feature fi,.

The probability of w given the highest order context-feature
fi is calculated through the recursive interpolation scheme of
Jelinek-Mercer smoothing:

pinterp(wlfm)
= Ae(fe)PML (W[fm) + (1 = A(g) ) Pinterp (W|fm—1),

for1 <m < M, where f;m — fm—1 — - -+ — i1 represents
the context-features used in each level of the hierarchical in-
terpolation scheme. Figure 3 depicts the data structure used for
representing m'" level parameters of a Jelinek-Mercer LM. The
context-features, fm, and ML probabilities, pmr (w|fm ), are ef-
ficiently represented using a trie. We refer to pre-leaf and leaf
nodes in the trie as “context-nodes” and “probability-nodes”,
respectively. For a given m®" level context-feature fo,, let

S(fm) = {w|w cV S.t pML (w|fm) > 0} 3)

represent all the words in the vocabulary for which there exist
an explicit ML estimated probability given the context-feature,
i.e. pmL (w|fm) > 0. In our Jelinek-Mercer pruning scheme,
we want to remove those fi,s and their corresponding explicit
ML probabilities par, (w|fm) (for w € S (fm)) which have
the least impact on the LM distributions. Following [14] we
use Kullback-Leibler (KL) divergence to measure the distance
between the original and pruned LM. Let pinterp(.].) denote
the original conditional probabilities and pipe,p (-|.) the pruned
ones. The KL divergence using m*" level probabilities is:

D) = 3 $fm) pinsery (] i) log Peerel1Em) g

pintcrp(w|fm) ’

fm,w

where p(fm) = %
context-feature f,,. Ideally, we should minimize Eq. 4 over all
possible subsets of fiy, that are candidates for removal, but this
is computationally intractable. Instead, we assume that each fy,
effects D(-) independently and prune those with smallest im-
pact. Removing fy,, changes the model(s) as follows:

(i) For w € S (fm), the m'"-level probability is completely re-

placed by the lower-level interpolated model. That is,

is the empirical probably of a

Ac(fm) PML (w|frr)
+ (1 - )‘c(fm))pinterp(w‘fm_l)
/
Pinterp(W|fm) = Dinterp(W|fm—1) 5)

Pinterp (U} ‘ fm) =

Algorithm 1 Relative-entropy pruning of Jelinek-Mercer LM

0: pruning threshold
M min: minimum hierarchical level for pruning
T': number of iterations
Algorithm:
for iter in 1.7 do
for m in M..My,;,, do
for f,, € fin do
calculate D(p||p”) due to removing £y, (Eq. 7)
ifeD(:DHP/) —1< %

prune i, and make ¢(fim) = 0
end for
end for
if anything pruned
recompute buckets and A’s on the heldout data.
else exit

end for

This is because when the context-feature fy, is removed, it is
as if it has not been observed in the training data and c¢(fm)
becomes zero. Therefore, A.(¢,,) = 0.

(ii) Forw ¢ S (fm), pmr (w|fm) is zero, so that

pinterp(w|fm) = (1 - Ac(fm))pinterp(wlfmfl)
pinterp(w|fm) = DPinterp (U)|fm_1) (6)

(iii) Since we assume ¢(fm) = 0 after removing the context-node

fim, the buckets used to tie \’s—and therefore, the maximum-
likelihood estimates of A’s on the heldout data—will be af-
fected. This could affect piyer, (w|fn) even for £, # fm
and is hence computationally difficult to measure. Therefore,
we use an iterative algorithm: each iteration measures only
the changes in D(p||p’) due to effects (i) and (ii), ignoring
(iii). After pruning f,’s, we run the bucketing algorithm and
re-estimate the As for the new pruned LM on held out data.
By ignoring (iii) all estimates not involving context-feature fi,
remain unchanged, so the KL divergence from removing fy, is:

inter wfm
DY) = plEm) |3 pinse (1fin) log 2221

wES (fm) pinterp(wlfm)

Pinterp (W fm
+ pimerp(w\fm)log%

wES (Fm) interp

For the first and second sum we use probabilities in Eq. 5 and
Eq. 6, respectively. The above thus simplifies to

D@llp) =p(fm) | D Dinterp(w[fm)log(A)

wWES(fm)
+ 1-— Z pinterp(w‘fm) log(l - Ac(fm)) (7)
wWES(fm)
where the term A is,
pur (w|fm)

A= Ae(tm + (1= Ae(em))

) Pinterp ('LU | fn'l— 1 )
Note that a single iteration over all w € S (fim) is needed to cal-
culate both the first sumin Eq. 7and 3 - s¢ ) Pinterp (w|fm).

Algorithm 1 summarizes our proposed pruning procedure.
In each iteration, we iterate over all context-features, from level
M t0 Mimin, and remove nodes for which (e (! ") _1) < L.
Dividing the threshold 6 by number of iterations reduces prun-
ing in each iteration and distributes pruning across 7" iterations,
where we re-estimate \’s after each iteration to take into ac-
count changes due to (iii) above.



Threshold [ Eval | Dev | #Param. | Mem. Size
SLM

0 159 168 413.5M 12.5GB
1x107"7 159 175 1433 M 4.4 GB
5x 1077 | 161 | 183 90 M 2.8 GB

Interpolated

0 142 147 | (413.5439)M | (12.5+1.7) GB
1x 1077 141 148 | (143.3439)M | (4.4+1.7) GB
5x 1077 141 149 (90+39) M (2.8+1.7) GB

Table 2: Preplexity and memory size of the HW+HT2 SLMs.

4.1. Pruning Experiments and Results

We evaluate the effect of pruning using the setup described in
Section 2.1. We apply pruning to our best model, the Jelinek-
Mercer SLM with HW+HTo, with M = 7, T = 5 and Muyin =
4. The lowest hierarchy level that we considered for pruning
is (h.woh.to, h.t_1). We prune the non-interpolated SLM and
then interpolate it with the Kneser-Ney 4-gram model. Our goal
is to reduce the SLM to a comparable size to the baseline model,
which stores 39M n-grams in 1.7GB memory.

Pruning reduces the size of the SLMs significantly, as seen
in Table 2. SLM size drops from 12.5GB to 2.8GB without
much loss in test-set perplexity. In fact, when interpolated with
the Kneser-Ney 4-gram, the Dev-data perplexity is almost un-
changed. For the Eval-data, the performance ever so slightly
better, possibly due to over-fitting of the unpruned LM.

5. Speech Recognition Experiments

We conclude with experiments using our improved SLM for
speech recognition. Since the SLM uses equivalence classifi-
cation of histories based on dependency structures, it is a long-
span model, which excludes the ability for direct lattice rescor-
ing. Therefore we use the SLM as the long-span model in the
hill-climbing algorithm of [2], which is demonstrably better
than NN-best rescoring.

Since the hill climbing algorithm is a greedy search with
no guarantees of global optimality, we use 20 random-restarts,
repeating hill climbing with different initial word sequences
sampled from the speech lattice, and output the best scoring
final output. The hypotheses in the original lattices are not
in Treebank-style tokenization, so we tokenize each hypothe-
sis during hill climbing to the Treebank style for POS-tagging,
dependency parsing and SLM scoring. The final output is con-
verted back to standard tokenization for WER computation.

We use the SLM with HW+HT3 interploated with the base-
line 4-gram LM. Lattices are generated using a pruned Kneser-
ney 4-gram LM (trained on untokenized training text.) The lat-
tice generating LM has 15.4% WER and our baseline 4-gram
LM (unpruned) has 15.1% on the evaluation data. We consider
both the unpruned and pruned (6 = 5 x 10~7) SLM.

The recognition results in Table 3 show that the interpo-
lated SLM significantly improves the baseline performance: a
0.6% absolute improvement in WER. In addition, our proposed
pruning method does not degrade performance, despite signifi-
cantly reducing LM size. Finally, we observe that hill-climbing
with 1 and 20 initial paths results in an average of only 40
and 300 hypotheses evaluated per utterance, a big saving over
N-best rescoring schemes traditionally employed for long-span
language models.

LM Pruned | Unpruned
Kneser-Ney 4-gram 15.4% 15.1%

1 initial path 14.7% 14.7%
Interp. SLM | 5 T paths | 14.5% | 14.5%

Table 3: Word error rates for speech recognition using the pro-
posed SLM with HW+HT> in the hill-climbing algorithm.

6. Conclusions

This paper presents useful extensions to the original structured
language model to make it more accurate, space efficient and
practical for speech recognition. It introduces a simple hierar-
chical interpolation scheme which improves the preplexity of
the SLM. Furthermore, a general information-theoretic prun-
ing algorithm is developed to reduce model size in the Jelinek-
Mercer LM smoothing framework. Experiments indicate that
this extended SLM framework, when combined with an effi-
cient hill-climbing algorithm, improves recognition accuracy
over regular n-gram models.
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