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Abstract

The structured language model (SLM) of [1] was one of the
first to successfully integrate syntactic structure into language
models. We extend the SLM framework in two new directions.
First, we propose a new syntactic hierarchical interpolation that
improves over previous approaches. Second, we develop a gen-
eral information-theoretic algorithm for pruning the underlying
Jelinek-Mercer interpolated LM used in [1], which substantially
reduces the size of the LM, enabling us to train on large data.
When combined with hill-climbing [2] the SLM is an accurate
model, space-efficient and fast for rescoring large speech lat-
tices. Experimental results on broadcast news demonstrate that
the SLM outperforms a large 4-gram LM.

1. Introduction
Automatic Speech Recognition (ASR) relies on a language
model (LM) to provide a strong linguistic prior on word se-
quences. Most language models rely on simple n-gram statis-
tics and a wide range of smoothing and backoff techniques. De-
spite being simple and efficient, it is widely believed that limit-
ing the context to only the (n−1) most recent words ignores the
structure of language, and several statistical frameworks have
been proposed to incorporate the “syntactic structure of lan-
guage back into language modeling” [1, 3, 4]. The Structured
Language Model (SLM) [1] was one of the first successful at-
tempts to build a statistical language model based on syntactic
information. The SLM assigns a joint probability P (W,T ) to
every word sequenceW and every possible binary parse tree T ,
where T ’s terminals are words W with part-of-speech (POS)
tags, and its internal nodes comprise non-terminal labels and
lexical “heads” of phrases. Other approaches include using the
exposed headwords in a maximum-entropy based LM [5], us-
ing exposed headwords from full-sentence parse tree in a neu-
ral network based LM [3], and the use of syntactic features in
discriminative training [6]. However, most previous SLMs are
large, complex and impractical for real-life applications.

We propose a new SLM based on dependency structures
derived using a state-of-the-art probabilistic shift-reduce parser
[7], in contrast to the original SLM which parametrizes the
parser component with a conditional model. Two key improve-
ments are also made to the SLM. First, we propose a simple
hierarchical interpolation of syntactic parameters that achieves
better performance without significant model complexity. Sec-
ond, we maintain model efficiency on a large training corpus
by using a general information-theoretic pruning method to re-
duce the size of the underlying Jelinek-Mercer LM [8]. When
combined with fast hill-climbing rescoring [6], our framework
is accurate, space efficient and practical for ASR.
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Figure 1: Actions of a shift-reduce parser to produce the depen-
dency structure (up to the word president) shown above.

2. Dependency Language Models
Syntactic information can be encoded in terms of headwords
and headtags of phrases, which are extracted from a syntactic
analysis of a sentence [1, 3], such as a dependency structure. A
dependency in a sentence holds between a dependent (or mod-
ifier) word and a head (or governor) word: the dependent de-
pends on the head. These relations are encoded in a dependency
tree (Figure 1), a directed graph where each edge (arc) encodes
a head-dependent relation.

We use the shift-reduce incremental dependency parser
of [7], which constructs a tree from sequence of transitions gov-
erned by a maximum-entropy classifier. Shift-reduce parsing
places input words into a queue Q and partially built structures
are organized by a stack S. Shift and reduce actions consume
the queue and build the output parse on the stack. The classifier
g assigns probabilities to each action, and the probability of a
state pg(π) can be computed as the product of the probabilities
of a sequence of actions that resulted in the state.

An incremental parser can provide partial syntactic anal-
yses of the history at each word position. Parser states cor-
responding to the ith word wi—states which have wi as the
top word in their queue— are history-states, denoted Π−i =
{π0
−i, π

1
−i · · · , πKi−i }, where Ki is the total number of such

states (others may be eliminated via beam pruning). Given Π−i
for all i, the probability assignment for wi is:

p(wi|W−i) =

|Π−i|∑
j=1

p
(
wi|f(πj−i,W−i)

)
pg(π

j
−i|W−i) (1)

where, W−i is the word history w1, . . . , wi−1 for wi, πj−i is
the jth history-state of position i, pg(πj−i|W−i) is the prob-
ability assigned to state πj−i by the parser, and f(πj−i,W−i)
denotes an equivalence classification of the word-history and
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Figure 2: Examples of hierarchal interpolation schemes.

parser history-state, capturing features from πj−i and W−i that
are most useful for predicting wi. We will restrict f(πj−i,W−i)
to be based on only the heads of the partial trees {s0 s1 · · · }
in the stack. For example, in Figure 1, such a function applied
to the parser state after step 8 yields the conditional probability
p(for|president,NN) for predicting the word for (assum-
ing the top headword president has POS tag NN). Given the
choice of f(.), the parameters of the model p(wi|f(πj−i,W−i))
are estimated to maximize the log-likelihood of the training data
T using the Baum-Welch algorithm [9].

We use a hiearachy of fine-to-coarse equivalence classifi-
cations fM , fM−1, . . . , f1 to smooth probability estimates and
handle unseen events via Jelinek-Mercer smoothing [8]. Let

fM (π−i,W−i) → fM−1(π−i,W−i) → . . .

→ f2(π−i,W−i) → f1(π−i,W−i) (2)

be a set ofM different equivalence classification of history state
π−i. Jelinek-Mercer smoothing utilizes linear interpolation of
the ML estimated higher-order equivalence classification prob-
abilities pML (w|fm) with lower order pML (w|fm−1):

pinterp(wi|fm(π−iW−i))
= λfmpML(wi|fm(π−iW−i))

+(1− λfm)pinterp(wi|fm−1(π−iW−i)),

for 1 ≤ m ≤ M , where the 0-th order model f0 is a uniform
distribution. Coefficients λfm(π−iW−i) are estimated on a held-
out set using the bucketing algorithm suggested in [10], which
ties λfm(π−iW−i)’s based on the counts of fm(π−iW−i)’s on
the training data. We use the expected count in T of fm — a
specific context feature in the set of all fm(π−iW−i)’s.

We perform the bucketing algorithm for each level
f1, f2, · · · , fM of equivalence classification separately, and
estimate the bucketed λc(fm) using the Baum-Welch algo-
rithm [9] to maximize the likelihood of held out data, where
the word probability assignment in Eq. 1 is replaced with:

p(wi|W−i) =

|Πi|∑
j=1

pinterp

(
wi|fM (πj−i,W−i)

)
pg(π

j
−i|W−i)

We use two hierarchical interpolation schemes (Figure 2) for
smoothing from [1], although we include larger contexts: equiv-
alence classification of history-states by looking only at the
headwords (HW) and head-tags (HW+HT) of the first 3 partial
trees in the stack. “()” refers to an equivalence classification
where no information is used from history (uni-grams.)

2.1. Preliminary Preplexity Results

Before proceeding to our new methods, we establish a base-
lined perplexity of the SLM using the above two hierarchical
schemes. We consider Broadcast News (BN) recognition with

Language Model Eval Dev
Kneser-Ney 4-gram 158 165

SLM
HW 174 183

HW+HT 163 174
HW+HT2 159 168 SLM Weight

Interp.
HW 149 154 0.35

HW+HT 144 150 0.43
HW+HT2 142 147 0.48

Table 1: The preplexity of different BN language models.

the EARS BN03 corpus, which has 42M words of training text.
rt04 (45K words) is used for evaluation data. To interpolate
our SLM with the baseline 4-gram model, we use rt03+dev04f
(about 40K words) as development data. The vocabulary is
84K words. We sample about 20K sentences from the train-
ing text (excluded from training) to serve as heldout data for
applying the bucketing algorithm and estimating λ’s. For the
dependency parser, data sets are converted to Treebank-style to-
kenization and POS-tagged using the tagger of [11]. Both the
POS tagger and dependency parser are trained on the BN tree-
bank from Ontonotes [12] and the WSJ Penn Treebank (con-
verted to dependency trees), which consists of 1.2M tokens.
Finally, we train a modified Kneser-Ney 4-gram LM on the to-
kenized training text to serve as the baseline LM.

Table 1 shows preplexities obtained for BN . Using headtags
in the equivalence classifications used in the HW+HT interpola-
tion scheme significantly improves the preplexity of the SLM.
It also improves the performance of the interpolated LM.

3. Improved Hierarchical Interpolation
The original SLM hierarchical interpolation scheme is aggres-
sive in that it drops both the tag and headword from the his-
tory. However, in many cases the headword’s tag alone is suf-
ficient, suggesting a more gradual interpolation. We propose
a new interpolation where instead of dropping both the head-
word and headtag of a partial tree in the stack of a history-state
at each level of the HW+HT hierarchical interpolation scheme,
we first drop only the headword. E.g., in the HW+HT hierarchy
of Figure 2, we use (h.w0h.t0, h.w−1h.t−1, h.w−2h.t−2) →
(h.w0h.t0, h.w−1h.t−1,h.t−2)→ (h.w0h.t0, h.w−1h.t−1).

Keeping the headtag adds more specific information and at
the same time is less sparse. We refer to this interpolation hi-
erarchy as HW+HT2. A similar idea is found, e.g., in the back-
off hierarchical class n-gram language model [13]. Preplexity
results (Table 1) confirm that the new scheme improves both
interpolated and non-interpolated models.

4. Relative Entropy Pruning of the SLM
A significant drawback to the SLM is its size; the space of
history-states Π−i can be exponentially large. To reduce its
size we prune the trained model pinterp

(
wi|fM (πj−i,W−i)

)
,

taking into account accumulated training statistics, as opposed
to pruning parser states locally. Our algorithm is based on the
pruning scheme proposed in [14], which was used for pruning
n-gram backoff language models. The goal is to minimize the
distance between the implied distributions of the original and
pruned models.

The mth-level model in a hierarchical Jelinek-Mercer in-
terpolated LM consists of the following parts:

1. fm ∈ {fm}: The mth-level contextual features which are
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Figure 3: The data structure used for representing mth level
parameters of a Jelinek-Mercer LM.

observed in training.
2. c(fm): The (empirical expected) count of fm in training.
3. λc(fm): The interpolation weights which are functions of

context-feature counts and are used to interpolatemth-level
ML probabilities with the (m− 1)th-level probabilities.

4. pML (w|fm): Explicit maximum-likelihood probability of a
word w given the context-feature fm.

The probability of w given the highest order context-feature
fM is calculated through the recursive interpolation scheme of
Jelinek-Mercer smoothing:

pinterp(w|fm)
= λc(fm)pML (w|fm) + (1− λc(fm))pinterp(w|fm−1),

for 1 ≤ m ≤ M , where fM → fM−1 → · · · → f1 represents
the context-features used in each level of the hierarchical in-
terpolation scheme. Figure 3 depicts the data structure used for
representingmth level parameters of a Jelinek-Mercer LM. The
context-features, fm, and ML probabilities, pML (w|fm), are ef-
ficiently represented using a trie. We refer to pre-leaf and leaf
nodes in the trie as “context-nodes” and “probability-nodes”,
respectively. For a given mth level context-feature fm, let

S (fm) = {w|w ∈ V s.t pML (w|fm) > 0} (3)

represent all the words in the vocabulary for which there exist
an explicit ML estimated probability given the context-feature,
i.e. pML (w|fm) > 0. In our Jelinek-Mercer pruning scheme,
we want to remove those fms and their corresponding explicit
ML probabilities pML (w|fm) (for w ∈ S (fm)) which have
the least impact on the LM distributions. Following [14] we
use Kullback-Leibler (KL) divergence to measure the distance
between the original and pruned LM. Let pinterp(.|.) denote
the original conditional probabilities and p′interp(.|.) the pruned
ones. The KL divergence using mth level probabilities is:

D(p||p′) =
∑
fm,w

p̂(fm) pinterp(w|fm) log
pinterp(w|fm)

p′interp(w|fm)
, (4)

where p̂(fm) = c(fm)∑
f′m

c(fm)
is the empirical probably of a

context-feature fm. Ideally, we should minimize Eq. 4 over all
possible subsets of fm that are candidates for removal, but this
is computationally intractable. Instead, we assume that each fm
effects D(·) independently and prune those with smallest im-
pact. Removing fm changes the model(s) as follows:

(i) For w ∈ S (fm), the mth-level probability is completely re-
placed by the lower-level interpolated model. That is,

pinterp(w|fm) = λc(fm)pML (w|fM)
+ (1− λc(fm))pinterp(w|fm−1)

p′interp(w|fm) = pinterp(w|fm−1) (5)

Algorithm 1 Relative-entropy pruning of Jelinek-Mercer LM
θ: pruning threshold
Mmin: minimum hierarchical level for pruning
T : number of iterations
Algorithm:
for iter in 1..T do

form inM..Mmin do
for fm ∈ fm do

calculateD(p||p′) due to removing fm (Eq. 7)

if eD(p||p′) − 1 < θ
T

prune fm and make c(fm) = 0
end for

end for
if anything pruned

recompute buckets and λ’s on the heldout data.
else exit

end for

This is because when the context-feature fm is removed, it is
as if it has not been observed in the training data and c(fm)
becomes zero. Therefore, λc(fm) = 0 .

(ii) For w /∈ S (fm), pML (w|fM) is zero, so that

pinterp(w|fm) = (1− λc(fm))pinterp(w|fm−1)

p′interp(w|fm) = pinterp(w|fm−1). (6)

(iii) Since we assume c(fm) = 0 after removing the context-node
fm, the buckets used to tie λ’s—and therefore, the maximum-
likelihood estimates of λ’s on the heldout data—will be af-
fected. This could affect p′interp(w|f ′m) even for f ′m 6= fm
and is hence computationally difficult to measure. Therefore,
we use an iterative algorithm: each iteration measures only
the changes in D(p||p′) due to effects (i) and (ii), ignoring
(iii). After pruning fm’s, we run the bucketing algorithm and
re-estimate the λs for the new pruned LM on held out data.

By ignoring (iii) all estimates not involving context-feature fm
remain unchanged, so the KL divergence from removing fm is:

D(p||p′) = p(fm)

 ∑
w∈S(fm)

pinterp(w|fm) log
pinterp(w|fm)

p′interp(w|fm)

+
∑

w 6∈S(fm)

pinterp(w|fm) log
pinterp(w|fm)

p′interp(w|fm)


For the first and second sum we use probabilities in Eq. 5 and
Eq. 6, respectively. The above thus simplifies to

D(p||p′) = p(fm)

 ∑
w∈S(fm)

pinterp(w|fm) log(A)

+

1−
∑

w∈S(fm)

pinterp(w|fm)

 log(1− λc(fm))

 (7)

where the term A is,

A = λc(fm)
pML (w|fm)

pinterp(w|fm−1)
+ (1− λc(fm))

Note that a single iteration over allw ∈ S (fm) is needed to cal-
culate both the first sum in Eq. 7 and

∑
w∈S(fm) pinterp(w|fm).

Algorithm 1 summarizes our proposed pruning procedure.
In each iteration, we iterate over all context-features, from level
M to Mmin, and remove nodes for which (eD(p||p′) − 1) < θ

T
.

Dividing the threshold θ by number of iterations reduces prun-
ing in each iteration and distributes pruning across T iterations,
where we re-estimate λ’s after each iteration to take into ac-
count changes due to (iii) above.



Threshold Eval Dev # Param. Mem. Size
SLM

0 159 168 413.5 M 12.5 GB
1× 10−7 159 175 143.3 M 4.4 GB
5× 10−7 161 183 90 M 2.8 GB

Interpolated
0 142 147 (413.5+39) M (12.5+1.7) GB

1× 10−7 141 148 (143.3+39) M (4.4+1.7) GB
5× 10−7 141 149 (90+39) M (2.8+1.7) GB

Table 2: Preplexity and memory size of the HW+HT2 SLMs.

4.1. Pruning Experiments and Results

We evaluate the effect of pruning using the setup described in
Section 2.1. We apply pruning to our best model, the Jelinek-
Mercer SLM with HW+HT2, with M = 7, T = 5 and Mmin =
4. The lowest hierarchy level that we considered for pruning
is (h.w0h.t0,h.t−1). We prune the non-interpolated SLM and
then interpolate it with the Kneser-Ney 4-gram model. Our goal
is to reduce the SLM to a comparable size to the baseline model,
which stores 39M n-grams in 1.7GB memory.

Pruning reduces the size of the SLMs significantly, as seen
in Table 2. SLM size drops from 12.5GB to 2.8GB without
much loss in test-set perplexity. In fact, when interpolated with
the Kneser-Ney 4-gram, the Dev-data perplexity is almost un-
changed. For the Eval-data, the performance ever so slightly
better, possibly due to over-fitting of the unpruned LM.

5. Speech Recognition Experiments
We conclude with experiments using our improved SLM for
speech recognition. Since the SLM uses equivalence classifi-
cation of histories based on dependency structures, it is a long-
span model, which excludes the ability for direct lattice rescor-
ing. Therefore we use the SLM as the long-span model in the
hill-climbing algorithm of [2], which is demonstrably better
than N -best rescoring.

Since the hill climbing algorithm is a greedy search with
no guarantees of global optimality, we use 20 random-restarts,
repeating hill climbing with different initial word sequences
sampled from the speech lattice, and output the best scoring
final output. The hypotheses in the original lattices are not
in Treebank-style tokenization, so we tokenize each hypothe-
sis during hill climbing to the Treebank style for POS-tagging,
dependency parsing and SLM scoring. The final output is con-
verted back to standard tokenization for WER computation.

We use the SLM with HW+HT2 interploated with the base-
line 4-gram LM. Lattices are generated using a pruned Kneser-
ney 4-gram LM (trained on untokenized training text.) The lat-
tice generating LM has 15.4% WER and our baseline 4-gram
LM (unpruned) has 15.1% on the evaluation data. We consider
both the unpruned and pruned (θ = 5× 10−7) SLM.

The recognition results in Table 3 show that the interpo-
lated SLM significantly improves the baseline performance: a
0.6% absolute improvement in WER. In addition, our proposed
pruning method does not degrade performance, despite signifi-
cantly reducing LM size. Finally, we observe that hill-climbing
with 1 and 20 initial paths results in an average of only 40
and 300 hypotheses evaluated per utterance, a big saving over
N -best rescoring schemes traditionally employed for long-span
language models.

LM Pruned Unpruned
Kneser-Ney 4-gram 15.4% 15.1%

Interp. SLM 1 initial path 14.7% 14.7%
20 initial paths 14.5% 14.5%

Table 3: Word error rates for speech recognition using the pro-
posed SLM with HW+HT2 in the hill-climbing algorithm.

6. Conclusions
This paper presents useful extensions to the original structured
language model to make it more accurate, space efficient and
practical for speech recognition. It introduces a simple hierar-
chical interpolation scheme which improves the preplexity of
the SLM. Furthermore, a general information-theoretic prun-
ing algorithm is developed to reduce model size in the Jelinek-
Mercer LM smoothing framework. Experiments indicate that
this extended SLM framework, when combined with an effi-
cient hill-climbing algorithm, improves recognition accuracy
over regular n-gram models.
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