Learning Fast Classifiers for Image Spam

Mark Dredze

Computer and Information Sciences Dept.

University of Pennsylvania
Philadelphia, PA 19104
mdredze@seas.upenn.edu

Abstract

Recently, spammers have proliferated “image
spam”, emails which contain the text of the
spam message in a human readable image in-
stead of the message body, making detection
by conventional content filters difficult. New
techniques are needed to filter these mes-
sages. Our goal is to automatically classify
an image directly as being spam or ham. We
present features that focus on simple prop-
erties of the image, making classification as
fast as possible. Our evaluation shows that
they accurately classify spam images in ex-
cess of 90% and up to 99% on real world
data. Furthermore, we introduce a new fea-
ture selection algorithm that selects features
for classification based on their speed as well
as predictive power. This technique produces
an accurate system that runs in a tiny frac-
tion of the time. Finally, we introduce Just
in Time (JIT) feature extraction, which cre-
ates features at classification time as needed
by the classifier. We demonstrate JIT extrac-
tion using a JIT decision tree that further in-
creases system speed. This paper makes im-
age spam classification practical by providing
both high accuracy features and a method to
learn fast classifiers.

1 Introduction

For nearly a decade, content filtering using machine
learning has been a cornerstone of anti-spam systems
(Sahami et al., 1998). Content filters, often based on
naive Bayes models, use features extracted from an
email’s text to classify a message as spam or ham.
Over time spammers have attempted to outsmart con-
tent filtering by obscuring text, obfuscating words with
symbols, and including neutral text to confuse fil-

Reuven Gevaryahu
Philadelphia, PA 19104
reuven@alumni.upenn.edu

Ari Elias-Bachrach
Philadelphia, PA 19104
ari@angelsofsecurity.com

ters. Each attack solicits new tricks from anti-spam
researchers to restore filtering effectiveness. A new
potentially devastating attack on content filters has
emerged. Instead of obscuring the message’s text,
spammers have removed the text completely, neutral-
izing text analysis techniques. The spammer’s adver-
tisement appears in an attached image, readable to a
human but hidden from the filter. Typically called
image spam, the message text is now random, often
extracted from web sources, such as news articles and
message boards. Image spam has allowed spammers
to design spam as CAPTCHASs against anti-spam sys-
tems. Since embedded text extraction and analysis
is a difficult problem, filters cannot properly analyze
these emails, allowing them to pass through to the user
(Goodman et al., 2005; Secure Computing, 2006).

This work restores content filters through the creation
of a new feature for content filters, namely attached
image is spam. This feature allows the content filter to
incorporate knowledge about image attachments into
classification decisions. The new feature is generated
by our system, which, given an image, predicts if the
image is spam or ham based on simple and fast image
tests. Our system performs on-par or beyond existing
results in the literature.

While our system, as well as other approaches (Arad-
hye et al., 2005; Fumera et al., 2006; Wu et al., 2005),
effectively classify images in a research environment,
they present a logistical problem for production sys-
tems. Even with relatively fast feature tests, image
processing is inherently slower than text feature ex-
traction, making these research systems impractically
slow for production use on critical systems. Worse yet,
as image sizes increase, system speed will degrade.

We present a new algorithm designed to learn fast clas-
sifiers. Speed sensitive feature selection allows for the
construction of features that are both fast and accu-
rate, allowing image spam classification to function in
a production environment. Additionally, we modify
the standard implementation of learning systems to

yield further increases in classification speed with Just
in Time (JIT) feature extraction, extracting features
as needed on a per image basis. Our empirical eval-
uation shows our methods reduce computational cost
of image processing to a tiny fraction of our baseline
system, making practical deployment of systems a re-
ality.

Our paper is structured as follows. First, we discuss
image spam and describe the features we use for classi-
fication. We then present results from our system and
compare them to previously published work. Next,
we describe our speed sensitive feature selection al-
gorithm, which yields a dramatic reduction in image
processing time. Finally, we present JIT feature ex-
traction to further reduce computation time. We then
compare our approach to related methods and con-
clude with a discussion.

2 Image Spam Classification

A range of ad-hoc solutions to image spam proposed
by the anti-spam community litter anti-spam blogs, in-
cluding blocking gif images from known senders, block-
ing all gif images, using FuzzyOcr! and limiting ad-
vanced image processing to small images. Similarly,
a number of research systems address this problem.
Most rely on simple image processing (Aradhye et al.,
2005; Wu et al., 2005) while others employ full opti-
cal character recognition (OCR) (Fumera et al., 2006).
Most techniques attempt an understanding of the im-
age contents, through embedded text detection, color
analysis, or embedded text extraction. But even these
techniques, which often rely on a one pass linear scan
of the image, are slow since images are far larger than
most emails.

Rapid changes in the composition of spam have
spawned plugin learning systems where communities
develop new rule modules, or features. One of the
most popular anti-spam solutions is SpamAssasin and
there are several sites hosting plugin rule modules. 2.
Our goal is to create a general purpose system com-
patible with a variety of anti-spam filters, such as Spa-
mAssasin. Towards this end, we create a new binary
prediction problem: Is this image spam or ham? The
classification can then be fed into existing content fil-
ters as a feature. Others have followed this approach
(Aradhye et al., 2005) and it has several advantages.
First, it separates image classification from spam email
classification, which is a difficult and well studied prob-
lem. Second, emails can contain multiple images and it

LA plugin for FuzzyOcr is available for SpamAssassin
at http://fuzzyocr.own-hero.net/.

See spamassassin.apache.org and WWW.
rulesemporium.com

is not clear how to combine them towards a single pre-
diction (see Aradhye et al. (2005) for one approach).
We treat each image separately, avoiding this difficulty.
Finally, we do not commit to a specific content filter-
ing system. Rather, we provide a single feature that
can be integrated with any learning based anti-spam
system.

We extend the methodology of text classification to
image spam classification. Rather than using a com-
plex analysis of meaning and intent, modern email text
classification relies on simple features, including bag
of words, header information and message structure
(HTML). Classifiers model textual artifacts of mes-
sages, using the observation that spam messages tend
to use the word “viagra” rather than understanding
the intent of the message. We take a similar approach
to image spam classification, mostly focusing on inci-
dental properties of the image. As a result, our fea-
tures are very fast since many do not require examining
the image contents at all. In addition to these basic
features, we include some more advanced features from
the literature.

Our first group of features relies on metadata and
other simple image properties.

File Format: The file format of the image from its
extension, the actual file format (as determined from
metadata) and whether they match.

File Size: The size of the image file in KB.

Image Metadata: All of the information contained
in the image metadata, including whether the image
has comments, number of images (frames), bits per
pixel, progressive flag, color table entries, index
value, transparent color, logical height and width,
components, bands, etc.3

Image Size: The height, width and aspect ratio of
the image.

The rest of our features perform a simple analysis us-
ing a single pass over the image.

Average Color: Computes the average red, blue and
green color values for the image.

Color Saturation: Tests the color saturation of the
images as described in Aradhye et al. (2005).

Edge Detection: A simplified partial implementa-
tion of a Sobel edge detector using 3 convolution ma-
trices (Duda & Hart, 1973).

Prevalent Color Coverage: How often the most
common color appears in the image. This is a simple
test that may find solid backgrounds.

Random Pixel Test: Generate ten random colors

3For a full listing of the metadata fields in vari-
ous image formats, see the links to detailed descrip-
tions at http://java.sun.com/j2se/1.5.0/docs/api/
javax/imageio/metadata/package-summary.html.

and check to see if they appear in the image. A pic-
ture is more likely to have a wider range of colors.

As is standard in many learning problems, we bina-
rized our feature space by dividing real valued features
into binary feature bins. Feature counts for each type
are listed in Table 5.

3 Corpus

Email corpora are difficult to build due to the private
nature of email communications. Some corpora exist
for spam email classification but there is of yet no cor-
pus for image spam. Therefore, we constructed our
own image spam corpus.

For guidance, we investigated other approaches in the
literature. Both Wu et al. (2005) and Fumera et al.
(2006) construct an email spam corpus that include
images. Both use emails from the SpamArchive cor-
pus, a subset of which contain attached images. They
each report different numbers of images, possibly be-
cause Wu et al. include HTML links to images. Addi-
tionally, Fumera et al. include a private email corpus.
For ham mail, Wu et al. use the Ling-Spam corpus
while Fumera et al. use Enron. However, neither of
these legitimate mail corpora contain images. They
justify their lack of ham images by classifying email
directly. For our task, however, we require ham im-
ages.

Aradhye et al. (2005) share our task of directly classi-
fying images and construct a pure image corpus. They
collect 1245 spam images from a few hundred spam
emails received by the authors. For ham images, they
downloaded images from Google Images using the key-
words “baby”, “photo”, “graphics” and “screenshot”.
Each one of these sets was used for a separate evalua-
tion. We differ in our ham image collection for several
reasons. A learning system may be able to discern a
spam image from a picture of a baby or general pho-
tographs but not from a wide variety of images. Ad-
ditionally, we have no indication that these images are
representative of actual images in ham mail. In fact,
we found our ham corpus to be significantly more var-
ied, as we discuss below. We also felt that several
hundred images was insufficient for a thorough evalu-
ation.

3.1 Our Corpus

A clear definition of spam and ham images is diffi-
cult. Spam has been defined as unsolicited bulk email,
but how can this definition extend to images? For ex-
ample, many spam emails contain images without or
with a minimal amount of text. Additionally, legiti-
mate emails contain text images as advertisements for

events or text in pictures. To avoid a tricky and sub-
jective annotation, we applied a simple definition: If
an image arrives in an email that is spam, it is spam. If
it arrives in a ham message, it is ham. We rely on the
conventional definition of spam and ham email. This
standard gives a clear labeling of the data.

We constructed two spam datasets, one based on per-
sonal spam and one based on publicly available spam.
For personal spam, we collected spam emails from 10
email accounts across 10 domains and a catch all filter
on two domains over the period of one month. Every
attached image (gif, jpg, png and bmp) was extracted
for the personal spam corpus, including emails that
contained multiple images. Next, we extracted the im-
ages from the subset of the SpamArchive corpus used
by Fumera et al. (2006).* For ham, we collected email
from two users from a two year time frame and ex-
tracted all attached images. Since our ham images
come from actual user email, they are a more realistic
sample. We were unable to build a public ham corpus
since public email image data is unavailable.

Typically in learning tasks, duplicate examples are re-
moved from the evaluation set so that a system does
not learn on instances that appear in the test data.
However, in many spam classification evaluations, du-
plicate or highly similar emails are included to reflect
the real world nature of spam. In fact, we noticed
that the data, especially SpamArchive, contain dupli-
cate or highly similar images. In some cases the same
image appeared twice, such as a corporate logo, but
more commonly two highly similar images appeared
with only minor changes, as is common in image spam.
In keeping with the construction of standard machine
learning corpora, we aggressively removed similar and
duplicate images by constructing a signature for each
image based on its dimensions and the values of 10
pixels drawn from the image. Images with duplicate
signatures were removed. This removed both dupli-
cate and similar images since spammers often use the
same image with small variations, such as changing
the background, the font of the letters, or adding ran-
dom lines or patterns in the image. We also removed
images smaller than 10x10 pixels since these are often
used as blank spacers in HTML documents. In total,
we had 2359 images in our personal ham corpus, 2173
images in our SpamArchive corpus, and 1248 images
in our personal spam. These dataset are summarized
in Table 1.

The personal spam archive contained numerous emails
that were typical of image spam: text written on vary-
ing backgrounds describing stock market scams. The

“The authors would like to thank Giorgio Fumera for
making this data available. SpamArchive.org has been shut
down and is now a parked domain showing advertisements.

Corpus | Unique Images | Total Images
Personal Ham 2359 2550
Personal Spam 1248 3239
SpamArchive Spam 2173 9503

Table 1: A summary of the datasets used in our eval-
uations. We removed duplicates and similar images
with a simple heuristic to construct the unique image
version of each dataset.

SpamArchive corpus contained many advertisements,
some without text. For example, some pictures of
women without text were included in a spam email
advertising an adult web site. Our decision to use
real ham images revealed a wide variety of images be-
yond photographs. While many of the images were
personal pictures, other images included company lo-
gos, flyers, clipart, advertisements for departmental
and extra-curricular events, comics, etc. The diver-
sity of our dataset creates a more realistic scenario to
test our methods. We include a few sample ham and
spam images from our corpus in Figure 1.

4 Evaluation

We evaluated our feature set with several learning
models. We used Maximum Entropy (logistic regres-
sion in the binary case) which has comparable state
of the art performance with Support Vector Machines
(SVM) on a wide range of tasks. However, since most
real-world spam systems rely on simpler generative
models for classification we also included a naive Bayes
classifier. Discriminative models, such as Maximum
Entropy, tend to outperform simpler generative mod-
els given enough training data (Ng & Jordan, 2002).
We found this to be the case in our setting as well.
We included a third classifier, an ID3 decision tree, to
represent a different learning approach. All three al-
gorithms were implemented with Mallet and we used
the default settings unless otherwise noted (McCallum,
2002). We relied on the Java 1.5 imageio library for
image processing and feature extraction.

Each classifier was evaluated 10 times using an 80,/20
train test split on three permutations of our datasets,
a) personal ham and spam, b) personal ham and Spa-
mArchive and ¢) all data. Results were measured using
both accuracy and the spam F1 score and appear in
Table 2. We choose these metrics so as to provide a
highly accurate feature to a content filter, similar to
Aradhye et al. (2005), which can then be optimized
for the necessary level of precision.

Our system performed very well on this task; Maxi-
mum Entropy accuracy exceeded 89% on all datasets.

For personal ham and spam, performance improves to
98% accuracy. SpamArchive was more difficult. As
expected, naive Bayes performs worse than Maximum
Entropy while the decision tree is a close second. These
results seem to compare well with other approaches in
the literature, although an accurate comparison is dif-
ficult both because of a lack of shared data and differ-
ent evaluation methods. Accuracy results for binary
image classification in Aradhye et al. (2005) varied
in the low to upper 80% range for a SVM, whereas
our comparable Maximum Entropy model varied from
89% to 98% on our three larger datasets.

Additionally, we observed that Wu et al. (2005) and
Fumera et al. (2006) used SpamArchive images with-
out removing duplicates or similar images, instead re-
moving duplicate emails. However, as our analysis
showed, there was considerable duplication in the Spa-
mArchive data. As we discussed above, including du-
plicates or similar messages in spam corpora is com-
mon since it more accurately represents real world set-
tings. For example, consider a content filter that cor-
rectly detects one spam message but misses a second.
If all messages with similar (but not duplicate) content
are removed from a corpus, system accuracy would be
50%. However, if real world spam distributions heavily
favored emails of the second type, the actual accuracy
of this system would be much lower. Therefore, we
considered an evaluation of our system on all available
data without removing duplicate or similar images an
important test of its real world accuracy. Additionally,
we sought a more direct comparison to other systems
evaluated on the SpamArchive dataset that did not re-
move any duplicate or similar images. We re-evaluated
our system on the full version of each of our datasets,
which greatly increased the number of images in the
SpamArchive dataset. Accuracy increased slightly on
personal spam but few new images were added. How-
ever, our accuracy on SpamArchive increased to 97%,
reaching a level comparable to personal spam (Table
3). This evaluation on the observed distribution of
spam images demonstrates that our system is highly
accurate in a real world setting.

4.1 Feature Analysis

To analyze feature predictiveness, we computed the
mutual information for each feature with the target
label (spam/ham). Another common technique for
showing good features is to select features by model
weight. However, this does not measure individual fea-
ture effectiveness; instead it shows one possible weight-
ing of a large set of features working together. A list-
ing of the top 24 features appears in Table 4. The top
features were mostly taken from the metadata of the
image, features that are simple and fast to compute.

T
Country Style
w'Pork =" I

Spare Ribs= '

cialis soft tabs -

Eest prices on softwarel!
Windows XP + Office XP = $80
H tons of other BEST PRICED software
iclick Here

Figure 1: A sample of the ham (left) and spam (right) images in our corpus. Many images are difficult to judge
as spam or ham. Corporate logos and comics are often included in ham messages while the picture of the woman
is from a spam advertisement. We rely on a labeling of the email itself to simplify this decision.

Model Corpus Accuracy F1 Model Corpus Accuracy F1
MaxEnt | PHam/PSpam 98 (.004) | .97 (.005) MaxEnt | PHam/PSpam 99 (.003) | .99 (.003)
PHam/SpamArc | .89 (.008) | .89 (.009) PHam/SpamArc | .97 (.003) | .98 (.002)
All 91 (.006) | .93 (.006) All 97 (.004) | .98 (.002)
NB PHam/PSpam .88 (.015) | .85 (.019) NB PHam/PSpam .89 (.011) | .91 (.009)
PHam/SpamArc | .76 (.011) | .74 (.011) PHam/SpamArc | .83 (.008) | .89 (.005)
All 80 (.007) | .83 (.007) All 85 (.004) | .91 (.003)
DT PHam/PSpam .97 (.001) | .95 (.012) DT PHam/PSpam .96 (.007) | .96 (.007)
PHam/SpamArc | .85 (.015) | .84 (.015) PHam/SpamArc | .93 (.007) | .95 (.004)
All 87 (.020) | .89 (.010) All 93 (.007) | .96 (.004)

Table 2: Results for our system using three differ-
ent classifiers: Maximum Entropy (MaxEnt), naive
Bayes (NB) and an ID3 Decision Tree (DT). Each
classifier was evaluated on three datasets: Personal
Ham (PHam) with Personal Spam (PSpam), Personal
Ham with SpamArchive (SpamArc), and all data to-
gether (All). Results are averaged over 10 trials using
an 80/20 train/test split with standard deviation in
parenthesis. Similar/duplicate images were removed
from this evaluation.

5 Learning Fast Classifiers

We now turn our attention to a related problem, im-
age classification speed. While our features do not
include advanced processing tasks, they are still more
time consuming than text processing. Additionally,
anti-spam research is fast paced due to its adversarial
nature. We expect spammers to develop new and un-
foreseen ways to circumvent existing image classifica-
tion systems with clever image tricks. In the future, it

Table 3: Results for our system using the same tests as
in Table 2 only similar/duplicate images are included.

may be necessary to include more complex, and slower,
image processing. Therefore, we not only want to learn
accurate classifiers, but also fast classifiers.

Classification systems typically have two stages, fea-
ture extraction and classification. For a linear clas-
sifier, classification involves a multiplicative computa-
tion with the weight and feature vectors, a fast opera-
tion. Feature extraction can be much more time con-
suming, especially when features depend on complex
tests. Text extraction is very fast; image processing is
slow by comparison. This difference can make image
classification impractical for production systems.

Not all features are needed for classification. A com-
mon technique in machine learning is feature selection,
learning with a subset of features, which can reduce the
feature space dramatically. Only the most predictive
features are kept since a smaller set may be simpler

number_of_bands!=1
meta_green=0
meta_red=0
meta_blue=0
backgroundColorIndex=0
htableld=0
acHuffTable=0
samplePrecision=8
approxHigh=0
QtableSelector=0
componentSelector=1
dcHuffTable=0

pixelAspectRatio=0
transparentClrFlg=fls
imageTopPosition=0
imageLeftPosition=0
interlaceFlag=false
userInputFlag=false
sortFlag=FALSE
file_extension=jpg
disposalMethod=none
index=1

index=0
small_edge_detector

Table 4: The top binary features as computed by mu-
tual information with the target label. Most features
are taken from the image metadata.

to learn. Since feature selection reduces the feature
space, it reduces the amount of time spent in feature
extraction, enabling faster production performance.

The most common technique for feature selection is
greedy inclusion by mutual information, an informa-
tion theoretic measure. Mutual information repre-
sents the knowledge about a random variable (the la-
bel spam/ham), given another random variable (a fea-
ture). The mutual information for two discrete ran-
dom variables is defined as:

MI(X;Y) =Y > pla, y)logpp(x’y)

S (@)p(y)

where p(xz,y) is the joint probability of events z (the
feature) and y (the label), drawn from the event spaces
X and Y. Feature selection computes the mutual in-
formation score for each feature with the label in the
training data and selects the top k features. This does
not, guarantee the best subset but works well in prac-
tice. While other feature selection methods may work
better on this task, a penalty term can be added to
those as well.

While this selection algorithm will yield faster extrac-
tion by reducing the number of features, we can mod-
ify it to be sensitive to the computational cost of fea-
tures. Consider two features, one highly accurate but
slow and another moderately accurate but fast. Nor-
mally, feature selection would favor the former be-
cause of accuracy, but for a fast system the latter is
superior. We augmented the feature selection scor-
ing function to include timing information, yielding
score(z) = (1 — a)(1 — MI(z,y)) + @ X t,, where t,
is the average time to extract feature x in milliseconds
in the training data and « is a tradeoff between speed
and accuracy. We greedily order features by our new
scoring function and select the top k. We will refer to
our new algorithm M I;.

Feature Type Feats. | Time (ms)
Average Color 44 162.4
Color Saturation 10 163.0
Edge Detection 32 12.7

File Format 332 1.1

File Size 6 1.1

Image Metadata 7195 14

Image Size 18 1.0
Prevelent Color Coverage | 26 162.7
Random Pixel Test 11 167.3

Table 5: The number of binary features and average
time for each feature type. Feature types were broken
into 23 tests for feature selection.

Computing ¢, presents a problem for binary features
since a single feature test, such as image_height can
generate multiple binary features (image_height<100,
image_height< 200, etc.) Furthermore, groups of fea-
tures are typically computed together since they rely
on a shared processing task, such as extracting all the
information from the metadata. Consistent with these
behaviors, we captured timing information for feature
tests, where a feature test can generate multiple binary
features (ex. all the metadata features are generated
by the metadata test and all of the edge detection fea-
tures are generated by the edge detection test). We
used a total of 23 feature tests. Average time for each
feature was the generating feature test’s average time
in the training data. If a feature was greedily selected,
all other features produced by the same test became
“free” and their time went to 0. A list of the feature
types, number of binary features, and average time per
type is shown in Table 5.5

6 Evaluation

We compared our speed sensitive feature selection al-
gorithm (M) against two baselines: our existing sys-
tem (baseline) and standard mutual information fea-
ture selection (M), equivalent to a = 0. For M T and
MI; we set k = 500 and for MI; we set « = .1. For
each trial, we measured system accuracy and average
extraction time per image. Timing information was es-
timated on an Intel Xeon 3.20 GHz CPU with 4 GB of
RAM using standard Java 1.5 timing functions. For
clarity, Table 6 shows results for Maximum Entropy
classification only since timing information is identical
for all classifiers. For regular feature selection, we ob-
serve a speed gain of 20% since fewer features are used.

SWe did not capture processing time that was common

to all features, such as reading the image from disk, since
we are concerned with the relative speed reduction between
approaches. Such information is difficult to measure with-
out an instrumentation of the Java library itself.

However, our speed sensitive method yields a dramatic
speed increase, reducing computation time from sec-
onds per image to just 3-4 milliseconds, about 1/1000
the time of our baseline system. While performance
drops slightly, about 1-3 percentage points, our sys-
tem is now fast enough to be practical in a production
environment.

In further experiments, a revealed itself insensitive to
tuning because of our feature set’s composition. Our
features tended to be either very fast or slow. Includ-
ing any amount of timing information eliminated the
slow features (edge detection, color saturation, etc.)
and left mostly metadata features. Increasing o only
slightly reordered the remaining fast features. A wider
variety of advanced slower features may increase the
sensitivity of . Given this information, it may be pos-
sible for our feature set to manually eliminate features.
Since we know which features are slow we can simply
exclude them manually. However, as features become
more we obviously prefer an automated method. As
image spam becomes more complex, it will become
difficult to manually find a balance between speed and
accuracy. Our approach allows a system designer to in-
clude all possible features and then automatically tune
speed and accuracy, rather than doing so manually.

7 Just in Time Feature Extraction

We now explore a complementary approach to feature
selection for increasing system speed. Regardless of
the size of our feature set, not all features are needed
to classify a single image. For example, there may ex-
ist a high precision feature that identifies an image as
spam if the feature is present but indicates no iden-
tification if absent. Similarly, the system may need
to observe just a few features of a spam image to de-
termine that it is spam. In content filters, a single
feature, such as a blacklisted sender, is sufficient for
correct classification.

This intuition is best captured in a decision tree model.
A decision tree classifier is a binary tree where each
node corresponds to a feature and each edge corre-
sponds to the feature value (e.g. positive or negative).
Classification begins with the root node, moving to
the left or right child depending on the feature’s value.
The classifier recurses down the tree until reaching a
leaf, which contains the predicted label. For an n node
tree, a classifier need only examine the log n features
on the traveled path on average.

We present Just in Time (JIT) feature extraction,
which only extracts the features needed on a per image
basis. This replaces the standard two stage classifica-
tion pipeline (extraction and prediction), with a single
prediction stage that runs extraction only when the

features are needed. Since only a subset of features
may be needed for prediction, this reduces the time
spent on extraction. JIT feature extraction does not
depend on feature selection as a JIT classifier can re-
duce processing time no matter the feature space.

We evaluated JIT extraction by constructing a JIT de-
cision tree classifier whereby the scoring method used
by the decision tree is M I;. This ensures that faster
features appear higher in the tree. Other standard
modifications to decision tree creation can be used,
but we limit our study to our single modification. All
other decision tree settings are the same as above (the
default used in Mallet.) Features are extracted when
a feature’s node is reached and processing time per
image is computed as in Section 5. We chose to eval-
uate JIT extraction using a decision tree since it is
intuitive to understand. However, a similar approach
exists for linear classifiers, like Maximum Entropy and
naive Bayes. By sorting the weight vectors in non-
increasing order, a classifier could compute when the
predicted label would not change through inclusion of
unseen smaller weighted features.

We constructed a JIT decision tree and evaluated it on
the feature sets produced by our three feature selec-
tion algorithms: all features (baseline), M I and M.
For baseline and M I, we used mutual information and
for M I; we used our speed sensitive measure to select
the nodes in the ID3 decision tree learning algorithm.
For each of our ten trials we computed the average
feature extraction time per test image for a normal
decision tree and our JIT decision tree. Table 7 shows
the timing information for each feature set for both a
normal decision tree and our JIT decision tree. We do
not show accuracy numbers since JIT extraction does
not affect classifier accuracy. In every case, JIT ex-
traction reduced the processing time per image, even
for our already fast system. Processing time per im-
age approaches 2 milliseconds, which is close to the
resolution of instrumentation of the Java runtime en-
vironment.

8 Related Work

Several attempts have been made to address image
spam. Wu et al. (2005) and Wu (2005) use a combi-
nation of visual features of the image to detect char-
acteristics common in spam images, such as embedded
text and banner features. Their features are combined
with message text features and a one-class SVM distin-
guishes when ham emails are outside the spam class.
Similarly, Aradhye et al. (2005) develop features to
detect embedded text and certain background types
consistent with spam. They use an SVM to discern be-
tween a collection of ham and spam images. Fumera

Baseline MI MI,;
Corpus | Acc. | Time | Acc. | Time | Acc. | Time
PHam/PSpam | .98 | 5008 | .97 | 3156 | .96 4.4
PHam/SpamArc | .89 | 4660 | .87 | 4390 | .87 3.9
All | 91 | 3629 | .88 | 2915 | .88 3.8

Table 6: Results for feature selection using the Maximum Entropy classifier.

For

each dataset, the accuracy

and average time per test image in milliseconds is shown for our three methods: All features (baseline), feature
selection (M) and speed sensitive feature selection (MI;). We removed duplicate and similar images for this

evaluation.
Baseline MI MI,
Corpus | Norm. | JIT | Norm. | JIT | Norm. | JIT
PHam/PSpam | 4934 | 1213 | 3209 | 1455 4.4 3.6
PHam/SpamArc | 4660 11.5 | 4389 10.7 3.9 2.6
All 2730 12.6 2119 6.1 3.5 2.5

Table 7: Results for a decision tree classifier using our three methods of feature selection compared with a JIT
feature selection decision tree. For each dataset, average processing time per test image in milliseconds is show
for a normal (Norm.) and JIT classifier averaged over 10 runs. In each case, the JIT classifier speeds up the

baseline method.

et al. (2006) take a different approach to the prob-
lem, processing each spam image using OCR to extract
embedded text instead of surface features. Extracted
terms are combined with terms in the message and fed
into a SVM for classification.

These approaches use some form of embedded text de-
tection since most spam images contain text. Text de-
tection and extraction from images and video has been
studied extensively in the vision community (Agni-
hotri & Dimitrova, 1999; Du et al., July 2003; Gllavata
et al., 2003).

Other approaches rely on existing alternatives to con-
tent filtering, such as reputation based filtering (Secure
Computing, 2006). Additionally, they develop an im-
age fingerprinting technique to identify similar text in
multiple images.

To our knowledge, we present the first algorithm for
speed sensitive feature selection. However, others have
considered learning with limited resources. Viola and
Jones (2002) use a method similar to JIT feature ex-
traction for real time object detection. A set of high
precision features test for the presence of an object in
an image. Boosting orders the features in a cascade,
running them sequentially until one of the rules fire.
This setup enables real time recognition since most
of the tests do not run for correct detection. Other
work has focused on developing learning algorithms
with memory constraints (Dekel et al., 2004).

9 Conclusion

We have presented a feature set that accurately identi-
fies image spam across multiple datasets and classifica-
tion models. The prediction from our system exceeds
90% accuracy, achieves 99% accuracy on our personal
spam and ham messages, and can be used to enhance
existing content filters for more robust spam classifica-
tion in the presence of image spam. Additionally, eval-
uations on data reflecting a real world distribution over
spam images yielded upwards of 97% accuracy. Our re-
sults compare favorably to existing systems and offer
a new approach towards the problem. Additionally,
we presented two methods to improve classification
speed. First, we modified a popular feature selection
algorithm to be speed sensitive. Our new algorithm
reduces the feature set so that overall performance is
maintained and computation time per image is greatly
reduced. We then introduced JIT feature extraction,
which selects features at test time for classification.
This method does not affect system performance but
greatly reduces the average processing time per image.
We demonstrated JIT feature extraction by creating a
JIT decision tree. Combining our two methods yields
a highly accurate system that processes images in 2-3
milliseconds instead of 3-4 seconds. Overall, our ap-
proach makes real time classification of image spam
a reality, both in terms of effectiveness and practical-
ity. Despite the efficacy of our features on a range
of spam over several years, we anticipate that spam-
mers will eventually circumvent our features, like most
spam systems. However, our feature selection methods
ensure that the most effective and fastest features are
used, including features developed in future systems.

10 Acknowledgments

The authors would like to thank all those who supplied
spam to our corpus. Dredze is supported by a NDSEG
fellowship.

References

Agnihotri, L., & Dimitrova, N. (1999). Text detec-
tion for video analysis. Proc. IEEE Workshop on

Content-Based Access of Image and Video Libraries.
CBAIVL 99.

Aradhye, H. B., Myers, G. K., & Herson, J. A.
(2005). Image analysis for efficient categorization of
image-based spam e-mail. Proceedings of the 2005

Eighth International Conference on Document Anal-
ysis and Recongition (ICDAR '05).

Dekel, O., Shalev-Shwartz, S., & Singer, Y. (2004).
The power of selective memory: Self-bounded learn-
ing of prediction suffix trees. NIPS.

Du, Y., Chang, C.-I., & Thouin, P. D. (July 2003).
Automated system for text detection in individual
video images. Journal of Electronic Imaging, 12,

410-422.

Duda, R., & Hart, P. (1973). Paitern classification
and scene analysis. John Wiley and Sons.

Fumera, G., Pillai, I., & Roli, F. (2006). Spam filtering
based on the analysis of text information embedded
into images. Journal of Machine Learning Research,
7, 2699-2720.

Gllavata, J., Ewerth, R., & Freisleben, B. (2003). A
robust algorithm for text detection in images. Pro-
ceedings of the 3rd International Symposium on Im-
age and Signal Processing and Analysis.

Goodman, J., Heckerman, D., & Rounthwaite, R.
(2005). Stopping spam: What can be done to stanch
the flood of junk e-mail messages? Scientific Amer-
ican.

McCallum, A. K. (2002). Mallet: A machine learning
for language toolkit. http://mallet.cs.umass.edu.

Ng, A. Y., & Jordan, M. (2002). On discriminative
vs. generative classifiers: A comparison of logistic
regression and naive bayes. NIPS.

Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E.
(1998). A bayesian approach to filtering junk email.
AAAI Workshop on Learning for Text Categoriza-
tion.

Secure Computing (2006). Image spam:
The latest attack on the enterprise inbox.
http://www.securecomputing.com/image_spam -
WP.cfm.

Viola, P., & Jones, M. (2002). Robust real-time ob-
ject detection. International Journal of Computer
Vision.

Wu, C.-T. (2005). Embedded-text detection and its
application to anti-spam filtering. Master’s thesis,
University of California- Santa Barbara.

Wu, C.-T., Cheng, K.-T., Zhu, Q., & Wu, Y .-L. (2005).
Using visual features for anti-spam filtering. IEEE
International Conference on Image Processing.

