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Abstract Methods and Analyses Analyses —-Cont

Purpose: Relevance and Sentiment: Spatial:
» Vaccines are critical technology to control disease spread, but vaccine * Support Vector Machines, Python + sklearn, modified parameters on precision-recall curves + ArcGIS 10.2, Getis-Ord Gi* (statistical hotspot analysis) [6]
refusal compromises efforts towards this end. « Favored precision over recall when necessary (e.g. neutral vs non-neutral sentiment) » Topic 46 — anti: gov't mandate
¢ Recent StUdieS fOCUS on the SOCiaI ratiOnaleS underlying VaCCine refusal [1]’ o Precision-Recall relevant: AUC=0.95 o Precision-Recall sentiment: AUC=0.52 _ N Precision-Recall sentiment_nonneutral: AUC=0.78 Hotspots Negative Tweets Topic 46
but effective techniques to address these rationales remain unclear. N
* \We use big data to analyze these sociotechnical interactions by studying the o8| (I 1 og
distribution of the public’s rationales regarding vaccine technology in the » e [ | .l _ e
 The journal Vaccine indicated with a special issue that social media ) | oa | os - ey e R N (W
influence patients’ behaviors related to vaccines [5] © + Best prec. 2t (018, 098 .+ Best prec. 20,03, 0.67) « + Best prec. 5t (0.55. 0.6 U S I B W e o < WY 1
« And, Twitter has proven effective in disease surveillance [2] B [ s pemrraioss 0o | o o perracioee o7y | N T T Y JPe i
« So we use Twitter to collect and track social trends about vaccine refusal ol P R 2 | polm et B BT ] | I T | B R VL) S AT A
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Data Source and Methods: Location augmentation: il ﬂ“
* To obtain social information about vaccine technology, we employ machine - Carmen system infers locations using geocoding tools and automatic and manual alias a Aot Ao 9 .
learning processes to filter Twitter data described in previous work [3]. This resolution [3] RN
yields - Initial foray yielded 44% data with location info (limitations section for improvements) - P 55 G
* @) It atweet s relevant to vaccination or not, - Where available: lat-lon, city, county, state, country SE—
* D) if a vaccine tweet is of neutral or non-neutral sentiment, and * Topic 34 — anti: autism and adverse reactions in kids

« () if a non-neutral vaccine tweet is of positive or negative sentiment. otspots Negatlve Tweets lopic.o%

* We also ensure tweets are geotagged using machine learning [4].

Analyses:
« Temporal, spatial, and social:
« Use machine learning to detect topics automatically
« Specific vaccination sub-conversations within various communities % h Y
4

* Maps of the US detailing in which places topics are discussed

« Automatic identification of social media users’ demographics . .
* e.g.age, gender, parent status, income, education [6] Topics: Legend
. .y . . . o . . . hotspot_neg_topic34
* By user: maps of the US detalling who discusses vaccination and where - Latent Dirichlet Allocation run over all vaccine tweets for 50 topics can
Co.mblnlng this information WIII a”OW us 1o _p_lnpqlnt hOW vaccine refusal Topic ID | Parameter | Category | Descriptions /samples of keywords from topic S
rationales vary across and within communities, in addition to when and TS o Confaence
where they vary, change, or appear. vaccine, kid, AMP{qu,‘gmd, dehaTtE, vaccination, anti, n:hTiIdren, love, jenny, © ot St -50% Conienc
30 0.00521 mccarthy, bad, poisoning, <expletives>, shot, research, sick, baby, ::22::;2:
End goal: herd immunity important = anti, Feaple, measles, autism, science, vaxxers, Limitations / Improvements:
» Such analyses will contribute towards understanding the interactions ” 000501 | pro E_:;'mﬁ‘::’:t ?;”T:;T;mp* stupid, outbreak, bad, vaccineswork, herd, +  Group and analyze by available granularity of location
between the spread of a disease, the associated social dynamics, and how « Inspect and deal with mistaken or mislabeled lat-lons -> improve Carmen
technology may be used to reduce overall disease prevalence. vascine, sclence; :”tl';;]ﬂdﬁw':'“'et"”‘f“ autism, ”"'E:'ﬂ: f?f;tﬂl tannersdad, « Check for bot accounts reverberating information
CRAte, BOLLOTS, NEAT, Pro, tHmp, prarma, researeh, Teatty, » Improve topics on subsets of tweets, ‘de-trend' the general debate
39 0.00325 pro vaccineswork

« Supervised topic models
Incorporate demographics

vaccinated, measles, mmr, cdcgov, preventable, polio, risk, recently

Data Source: Social Media :

vaccine, ebola, trial, monkey, effective, hiv, highly, promise, success, show,

24 0.00263 pro world, experimental, hope, development Refe re n CeS
° Data CO”eCted beg|nn|ng from o Vaccine Tweet Counts by Classified Category cdcwhistlehlnwer, uaccine, autism, cdcfraud, autismwarrinrny,
November 2014 20 0.00236 anti ageofautism, blacklivesmatter
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