[Theory Seminar] Samson Zhou

When:
November 29, 2017 @ 12:00 pm – 1:00 pm
2017-11-29T12:00:00-05:00
2017-11-29T13:00:00-05:00

Speaker: Samson Zhou
Affiliation: Purdue University

Title: Pattern Matching over Noisy Data Streams

Abstract: The identification of low-complexity structure in strings is a fundamental building block for many algorithms in computational biology or natural language processing. The general paradigm in these algorithms is to find either highly repetitive structure, in the form of periodicity or palindromes in a pre-processing stage, to filter out locations where a certain pattern cannot occur, thus improving efficiency.

Unfortunately, we must expect massive data to contain a number of small imperfections, such as through human error or mutations. This motivates the need to study structure in models of sublinear space, resilient to sources of noise. In this talk, we introduce several types of structure and noise, and discuss efficient algorithms to identify these structures over data streams.

As a warm-up, we provide an algorithm for identifying a longest common aligned substring of two inputs, resilient up to d errors of insertions, substitutions, or deletions. We then present a streaming algorithm for identifying the longest palindrome, resilient up to a threshold of d substitution errors. Finally, we discuss the problem of finding all periods of a string including up to d persistent changes or erasures. For each of these scenarios, we also provide complementary lower bounds.

Joint work with Funda Ergun, Elena Grigorescu, and Erfan Sadeqi Azer.

BIO:
Samson is a PhD candidate in the Department of Computer Science at Purdue University, under the supervision of Greg Frederickson and Elena Grigorescu. He received his undergraduate education at MIT, where he obtained a Bachelor’s in math and computer science, as well as a Master’s in computer science. He is a member of the Theory Group at Purdue, and his current research interests are sublinear and approximation algorithms, with an emphasis on streaming algorithms.