[Theory Seminar] Jalaj Upadhyay

When:
February 6, 2019 @ 12:00 pm – 1:00 pm
2019-02-06T12:00:00-05:00
2019-02-06T13:00:00-05:00

Speaker: Jalaj Upadhyay
Affiliation: Johns Hopkins Universit

Title: Towards Robust and Scalable Private Data Analysis

Abstract:
In the current age of big data, we are constantly creating new data which is analyzed by various platforms to improve service and user’s experience. Given the sensitive and confidential nature of these data, there are obvious security and privacy concerns while storing and analyzing such data. In this talk, I will discuss the fundamental challenges in providing robust security and privacy guarantee while storing and analyzing large data. I will also give a brief overview of my contributions and future plans towards addressing these challenges.

To give a glimpse of these challenges in providing a robust privacy guarantee known as differential privacy, I will use spectral sparsification of graphs as an example. Given the ubiquitous nature of graphs, differentially private analysis on graphs has gained a lot of interest. However, existing algorithms for these analyses are tailored made for the task at hand making them infeasible in practice. In this talk, I will present a novel differentially private algorithm that outputs a spectral sparsification of the input graph. At the core of this algorithm is a method to privately estimate the importance of an edge in the graph. Prior to this work, there was no known privacy preserving method that provides such an estimate or spectral sparsification of graphs.

Since many graph properties are defined by the spectrum of the graph, this work has many analytical as well as learning theoretic applications. To demonstrate some applications, I will show more efficient and accurate analysis of various combinatorial problems on graphs and the first technique to perform privacy preserving manifold learning on graphs.