Lecture 9: Disjoint Sets / Union-Find

Michael Dinitz

September 28, 2021
601.433/633 Introduction to Algorithms
Introduction

Informal: Universe of elements, want to maintain *disjoint sets*.

Slightly more formally:
- Make-Set(x): create a new set containing just x (i.e., $\{x\}$)
- Union(x, y): Replace set containing x (S) and set containing y (T) with single set $S \cup T$
- Find(x): Return *representative* of set containing x
Introduction

Informal: Universe of elements, want to maintain *disjoint sets*.

Slightly more formally:

- **Make-Set**(x): create a new set containing just x (i.e., \{x\})
- **Union**(x, y): Replace set containing x (S) and set containing y (T) with single set $S \cup T$
- **Find**(x): Return *representative* of set containing x

Rules: every set has a *unique* representative.

- If x and y are in same set, Find(x) = Find(y)
- If x and y are in different sets, then Find(x) \neq Find(y)
- **Make-Set**(x): cannot be called on the same x twice

Note: disjoint (and partition) by construction!
Introduction

Informal: Universe of elements, want to maintain *disjoint sets*.

Slightly more formally:
- Make-Set(\(x\)): create a new set containing just \(x\) (i.e., \(\{x\}\))
- Union(\(x, y\)): Replace set containing \(x\) (\(S\)) and set containing \(y\) (\(T\)) with single set \(S \cup T\)
- Find(\(x\)): Return *representative* of set containing \(x\)

Rules: every set has a *unique* representative.
- If \(x\) and \(y\) are in same set, \(\text{Find}(x) = \text{Find}(y)\)
- If \(x\) and \(y\) are in different sets, then \(\text{Find}(x) \neq \text{Find}(y)\)
- Make-Set(\(x\)): cannot be called on the same \(x\) twice

Note: disjoint (and partition) by construction!
We’ll see a few ways of doing this, from efficient to very efficient. CLRS: extremely efficient.
Introduction (II)

We’ll see a few ways of doing this, from efficient to very efficient. CLRS: extremely efficient

Nice thing about Union-Find: don’t hit a limit to improvement for a very long time!
Introduction (II)

We’ll see a few ways of doing this, from efficient to very efficient.
CLRS: extremely efficient

Nice thing about Union-Find: don’t hit a limit to improvement for a very long time!

Notation and Notes:
- m operations total
- n of which are Make-Sets (so n elements)
- Assume have pointer/access to elements we care about (like last class)
First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)
First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)

![Diagram of linked lists with Make-Set(x) example]

Make-Set(x):
First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)

\[
\text{S: } \begin{array}{c}
\text{x} \\
\text{head} \\
\text{next} \\
\text{z}
\end{array}
\]

Make-Set(x):

Find(x): return \(x \rightarrow \text{head} \)
Union(x, y)

Obvious approach:
- Walk down S to final element z (starting from x)
- Set $z \rightarrow \text{next} = y \rightarrow \text{head}$
- Walk down T, set every element's head pointer to $x \rightarrow \text{head}$
Union(x, y)

Running time: $O(S + T)$

S: Walk down S to final element, then walk down T resetting head pointers.

Since S and T could be $\mathcal{O}(n)$, we can only say $O(n)$ for Unions.
Union(x, y)

Running time: $O(S + T)$

Since S, T could be (n), can only say $O(n)$ for Unions.
Union(x, y)

Running time:

$O(S + T)$

Since S and T could be $\mathcal{O}(n)$, can only say $\mathcal{O}(n)$ for Unions.
Union(x, y)

Running time: $O(|S| + |T|)$
Union\((x, y)\)

Running time: \(O(|S| + |T|)\)

- \(|S|\) to walk down \(S\) to final element
- \(|T|\) to walk down \(T\) resetting head pointers
Union(x, y)

Running time: $O(|S| + |T|)$

- $|S|$ to walk down S to final element
- $|T|$ to walk down T resetting head pointers

Since $|S|, |T|$ could be $\Theta(n)$, can only say $O(n)$ for Unions
Improved Union(x, y)

Observation: don’t need to preserve ordering inside the Union!
Improved Union(x, y)

Observation: don’t need to preserve ordering inside the Union!

- Splice T into S right after x

![Diagram of Improved Union(x, y)]
Improved Union(x, y)

Observation: don’t need to preserve ordering inside the Union!
- Splice T into S right after x

Running time:
Improved Union(x, y)

Observation: don’t need to preserve ordering inside the Union!
- Splice T into S right after x

Running time: $O(|T|)$
Improved Union(x, y)

Observation: don’t need to preserve ordering inside the Union!

- Splice T into S right after x

![Diagram showing Improved Union operation]

Running time: $O(|T|)$

- Still can’t say anything better than $O(n)$
Even more improved $\text{Union}(x, y)$

Observation: Why splice T into S? Could also splice S into T.

- Time $O(|S|)$
Even more improved Union(\(x, y\))

Observation: Why splice \(T\) into \(S\)? Could also splice \(S\) into \(T\).

- Time \(O(|S|)\)

Splice smaller into bigger!

- Store size of set in head node.
- Splice smaller into bigger: time \(O(\min(|S|, |T|))\)
- \textit{Still} only \(O(n)\). But now can make stronger amortized guarantee!
Even more improved Union(x, y)

Observation: Why splice T into S? Could also splice S into T.

- Time $O(|S|)$

Splice smaller into bigger!

- Store size of set in head node.
- Splice smaller into bigger: time $O(\min(|S|, |T|))$
- *Still* only $O(n)$. But now can make stronger amortized guarantee!

Theorem

The amortized cost of Find and Union is $O(1)$, and the amortized cost of Make-Set is $O(\log n)$.

Corollary

The total running time is $O(m + n \log n)$.
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add \(\log n \) tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element e. Starts with $\log n$ tokens. When do we remove a token?
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element e. Starts with $\log n$ tokens. When do we remove a token?

- When in smaller set of a Union.
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element e. Starts with $\log n$ tokens. When do we remove a token?

- When in smaller set of a Union.
- Size of set containing e at least doubles!
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element
- When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element e. Starts with $\log n$ tokens. When do we remove a token?
- When in smaller set of a Union.
- Size of set containing e at least doubles!
- Can only happen at most $\log n$ times.
Amortized Analysis of List Algorithm (cont’d)

Make-Set:
- True cost: \(O(1) \)
- Change in banks: \(\log n \)

\[\implies \text{Amortized cost: } O(1) + O(\log n) = O(\log n) \]

Find:
- True cost: \(O(1) \)
- Change in banks: \(0 \)

\[\implies \text{Amortized cost: } O(1) + 0 = O(1) \]

Union:
- True cost: \(\min(|S|, |T|) \)
- Change in banks: \(-\min(|S|, |T|) \)

\[\implies \text{Amortized cost: } \min(|S|, |T|) - \min(|S|, |T|) = 0 = O(1). \]
Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
- Results in trees rather than lists (can drop next pointer)
Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree
Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

- Use *this* time to “update head” pointers: on Find(\(x\)), change pointers of \(x\) and all ancestors to point to root
- *Path Compression*
Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

- Use this time to “update head” pointers: on Find(x), change pointers of x and all ancestors to point to root
- *Path Compression*

Idea 2: *Union By Rank*

- Size of set was important for lists, less important for trees.
- Choose which set to splice into which by *rank* of trees (related to height)
Main Result

Theorem

When using Path Compression and Union By Rank, total time at most \(O(m \log^* n) \).

\(\log^* \): iterated \(\log_2 \).

- \(\log^* n = \# \) times apply \(\log_2 \) until get to 1
Main Result

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

log^*: iterated \log_2.

- $\log^* n = \#\text{ times apply } \log_2 \text{ until get to 1}$
- $\log^* (2^{65536}) = 1 + \log^* (65536) = 2 + \log^* (16) = 3 + \log^* (4) = 4 + \log^* (2) = 5$

Stronger theorem: total time at most $O(m \cdot \uparrow^1(m, n))$.

$\uparrow^1(m, n)$: inverse Ackermann function. Grows even slower than \log^*.

See CLRS for details.
Main Result

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

log^*: iterated \log_2.

- $\log^* n = \# \text{ times apply } \log_2 \text{ until get to } 1$
- $\log^* (2^{65536}) = 1 + \log^* (65536) = 2 + \log^* (16) = 3 + \log^* (4) = 4 + \log^* (2) = 5$
- Basically $\log^* n$ always ≤ 5.

Stronger theorem: total time at most $O(m \cdot \uparrow^2(m,n))$.

$\uparrow^2(m,n)$: inverse Ackermann function. Grows even slower than \log^*.

See CLRS for details.
Main Result

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

\log^*: iterated \log_2.

- $\log^* n = \#$ times apply \log_2 until get to 1
- $\log^*(2^{65536}) = 1 + \log^*(65536) = 2 + \log^*(16) = 3 + \log^*(4) = 4 + \log^*(2) = 5$
- Basically $\log^* n$ always ≤ 5.

Stronger theorem: total time at most $O(m \cdot \alpha(m, n))$.

- $\alpha(m, n)$: inverse Ackermann function. Grows even slower than \log^*.
- See CLRS for details
Formal Procedures: Make-Set and Find

Make-Set(x): Set $x \rightarrow \text{rank} = 0$ and $x \rightarrow \text{parent} = x$

- Running time: $O(1)$.
Formal Procedures: Make-Set and Find

Make-Set(x): Set $x \rightarrow \text{rank} = 0$ and $x \rightarrow \text{parent} = x$
 ▶ Running time: $O(1)$.

Find(x): Walk from x to root, and return root. Set parent pointers of x and all ancestors to root.
 ▶ If $x \rightarrow \text{parent} = x$ then return x
 ▶ $x \rightarrow \text{parent} = \text{Find}(x \rightarrow \text{parent})$
 ▶ Return $x \rightarrow \text{parent}$
Formal Procedures: Make-Set and Find

Make-Set(x): Set $x \rightarrow \text{rank} = 0$ and $x \rightarrow \text{parent} = x$

- Running time: $O(1)$.

Find(x): Walk from x to root, and return root. Set parent pointers of x and all ancestors to root.

- If $x \rightarrow \text{parent} = x$ then return x
- $x \rightarrow \text{parent} = \text{Find}(x \rightarrow \text{parent})$
- Return $x \rightarrow \text{parent}$

Running time of Find: depth of x (distance to root)
Find example
Find example
Formal Procedure: Union

Link\((r_1, r_2)\): Only applied to root nodes

- If \(r_1 \rightarrow \text{rank} > r_2 \rightarrow \text{rank}\), set \(r_2 \rightarrow \text{parent} = r_1\)
- If \(r_2 \rightarrow \text{rank} > r_1 \rightarrow \text{rank}\), set \(r_1 \rightarrow \text{parent} = r_2\)
- If \(r_1 \rightarrow \text{rank} = r_2 \rightarrow \text{rank}\), set \(r_2 \rightarrow \text{parent} = r_1\) and increment \(r_1 \rightarrow \text{rank}\).
Formal Procedure: Union

Link(r_1, r_2): Only applied to root nodes
- If $r_1 \rightarrow \text{rank} > r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$
- If $r_2 \rightarrow \text{rank} > r_1 \rightarrow \text{rank}$, set $r_1 \rightarrow \text{parent} = r_2$
- If $r_1 \rightarrow \text{rank} = r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$ and increment $r_1 \rightarrow \text{rank}$.

Running time of Link: $O(1)$
Formal Procedure: Union

Link(r_1, r_2): Only applied to root nodes

- If $r_1 \rightarrow \text{rank} > r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$
- If $r_2 \rightarrow \text{rank} > r_1 \rightarrow \text{rank}$, set $r_1 \rightarrow \text{parent} = r_2$
- If $r_1 \rightarrow \text{rank} = r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$ and increment $r_1 \rightarrow \text{rank}$.

Running time of Link: $O(1)$

Union(x, y): Link(Find(x), Find(y))
Formal Procedure: Union

\[
\text{Link}(r_1, r_2): \text{ Only applied to root nodes}
\]

- If \(r_1 \rightarrow \text{rank} > r_2 \rightarrow \text{rank} \), set \(r_2 \rightarrow \text{parent} = r_1 \)
- If \(r_2 \rightarrow \text{rank} > r_1 \rightarrow \text{rank} \), set \(r_1 \rightarrow \text{parent} = r_2 \)
- If \(r_1 \rightarrow \text{rank} = r_2 \rightarrow \text{rank} \), set \(r_2 \rightarrow \text{parent} = r_1 \) and increment \(r_1 \rightarrow \text{rank} \).

Running time of Link: \(O(1) \)

\[
\text{Union}(x, y): \text{ Link}(\text{Find}(x), \text{Find}(y))
\]

- Running time: \(\text{depth}(x) + \text{depth}(y) \)
Union example

If $z \rightarrow \text{rank} \geq w \rightarrow \text{rank}$,
then $(z \rightarrow \text{rank})++.
Union example

If \(z \rightarrow \text{rank} \geq w \rightarrow \text{rank} \), then \((z \rightarrow \text{rank})++ \)
If $z \rightarrow \text{rank} \geq w \rightarrow \text{rank}$
If $z \rightarrow \text{rank} \geq w \rightarrow \text{rank}$

If $z \rightarrow \text{rank} = w \rightarrow \text{rank}$, then $(z \rightarrow \text{rank})++$
Properties of Ranks

1. If x not a root, then $(x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})$

2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent

3. $x \rightarrow \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.
Properties of Ranks

1. If \(x \) not a root, then \((x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})\)

2. When doing path compression, if parent of \(x \) changes, new parent has rank strictly larger than old parent

3. \(x \rightarrow \text{rank} \) can change only if \(x \) a root, and once \(x \) is a non-root it never becomes a root again.

4. When \(x \) first reaches rank \(r \), there are at least \(2^r \) nodes in tree rooted at \(x \).
Properties of Ranks

1. If x not a root, then $(x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})$

2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent

3. $x \rightarrow \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.

4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $r = 0$.
Properties of Ranks

1. If x not a root, then $(x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})$

2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent.

3. $x \rightarrow \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.

4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $r = 0$. ✓
Properties of Ranks

1. If x not a root, then $(x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})$
2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent
3. $x \rightarrow \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.
4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $r = 0$. ✓
Inductive case: Suppose true for $r - 1$.
Properties of Ranks

1. If \(x \) not a root, then \((x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank}) \)

2. When doing path compression, if parent of \(x \) changes, new parent has rank strictly larger than old parent

3. \(x \rightarrow \text{rank} \) can change only if \(x \) a root, and once \(x \) is a non-root it never becomes a root again.

4. When \(x \) first reaches rank \(r \), there are at least \(2^r \) nodes in tree rooted at \(x \).

Proof of Property 4.

Induction. Base case: \(r = 0 \). ✓

Inductive case: Suppose true for \(r - 1 \).
When \(x \) first gets rank \(r \), must be because \(x \) had rank \(r - 1 \) (and was root), unioned with another set with root \(z \) of rank \(r - 1 \).
Properties of Ranks

1. If \(x \) not a root, then \((x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})\)

2. When doing path compression, if parent of \(x \) changes, new parent has rank strictly larger than old parent.

3. \(x \rightarrow \text{rank} \) can change only if \(x \) a root, and once \(x \) is a non-root it never becomes a root again.

4. When \(x \) first reaches rank \(r \), there are at least \(2^r \) nodes in tree rooted at \(x \).

Proof of Property 4.

Induction. Base case: \(r = 0 \). ✓

Inductive case: Suppose true for \(r - 1 \).

When \(x \) first gets rank \(r \), must be because \(x \) had rank \(r - 1 \) (and was root), unioned with another set with root \(z \) of rank \(r - 1 \).

\[\implies \text{By induction, at least } 2^{r-1} \text{ nodes in each tree} \]
Properties of Ranks

1. If x not a root, then $(x \to \text{rank}) < (x \to \text{parent} \to \text{rank})$

2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent.

3. $x \to \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.

4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $r = 0$. ✓
Inductive case: Suppose true for $r - 1$.
When x first gets rank r, must be because x had rank $r - 1$ (and was root), unioned with another set with root z of rank $r - 1$.

\implies By induction, at least 2^{r-1} nodes in each tree

\implies At least $2^{r-1} + 2^{r-1} = 2^r$ nodes in combined tree.
Nodes of rank r

Lemma

There are at most $\frac{n}{2^r}$ nodes of rank at least r.

Proof.

Let x node of rank at least r. Let S_x be descendants of x when it first got rank r.

$\implies |S_x| \geq 2^r$ by property 4.
Nodes of rank r

Lemma

There are at most $n/2^r$ nodes of rank at least r.

Proof.

Let x node of rank at least r. Let S_x be descendants of x when it first got rank r. $\implies |S_x| \geq 2^r$ by property 4.

Let z some other node of rank $\geq r$. Without loss of generality, suppose x got rank r before z. Consider some $e \in S_x$. Then e can’t be in S_z (already in tree with rank $\geq r$). So $S_x \cap S_z = \emptyset$.

Michael Dinitz

Lecture 9: Union-Find

September 28, 2021
Nodes of rank r

Lemma

There are at most $n/2^r$ nodes of rank at least r.

Proof.

Let x node of rank at least r. Let S_x be descendants of x when it first got rank r.

$\implies |S_x| \geq 2^r$ by property 4.

Let z some other node of rank $\geq r$. Without loss of generality, suppose x got rank r before z. Consider some $e \in S_x$. Then e can’t be in S_z (already in tree with rank $\geq r$). So $S_x \cap S_z = \emptyset$.

\implies At most $n/2^r$ nodes of rank $\geq r$.

Michael Dinitz
Lecture 9: Union-Find
September 28, 2021 18 / 21
Main Result I

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

- **Make-Set:** $O(1)$ time each
- **Union:** two Find operations, plus $O(1)$ other work.
- **Find(x):** proportional to depth of x. Count number of parent pointers followed, call this the time.

So at most $2m$ Finds, want to bound total # parent pointers followed.

- At most one parent pointer to root per Find \Rightarrow at most $O(m)$ parent pointers to roots.
- So only need to worry about parent pointers to non-roots.
Main Result I

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^ n)$.***

m operations total. Analyze each type separately:

- **Make-Set:** $O(1)$ time each
- **Union:** two Find operations, plus $O(1)$ other work.
- **Find(x):** proportional to depth of x. Count number of parent pointers followed, call this the time.
Main Result I

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^ n)$.

m operations total. Analyze each type separately:

- **Make-Set**: $O(1)$ time each
- **Union**: two Find operations, plus $O(1)$ other work.
- **Find(x)**: proportional to depth of x. Count number of parent pointers followed, call this the time.

So at most $2m$ Finds, want to bound total # parent pointers followed.
Main Result I

Theorem

When using Path Compression and Union By Rank, total time at most \(O(m \log^* n) \).

\(m \) operations total. Analyze each type separately:

- **Make-Set**: \(O(1) \) time each
- **Union**: two Find operations, plus \(O(1) \) other work.
- **Find(\(x \))**: proportional to depth of \(x \). Count number of parent pointers followed, call this the time.

So at most \(2m \) Finds, want to bound total \(\# \) parent pointers followed.

- At most one parent pointer to root per Find \(\implies \) at most \(O(m) \) parent pointers to roots.
- So only need to worry about parent pointers to non-roots.
Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: \(2 \uparrow i \) denote a tower of \(i \) 2’s

- \(2 \uparrow 1 = 2, \quad 2 \uparrow 2 = 2^2 = 4, \quad 2 \uparrow 3 = 2^{2^2} = 2^4 = 16, \quad 2 \uparrow 4 = 2^{2^{2^2}} = 2^{16} = 65536 \)
- \(\log^* (2 \uparrow i) = i \)
Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2's

- $2 \uparrow 1 = 2$, \quad $2 \uparrow 2 = 2^2 = 4$, \quad $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$, \quad $2 \uparrow 4 = 2^{2^{2^2}} = 2^{16} = 65536$
- $\log^*(2 \uparrow i) = i$

$B(i)$ (Bucket i): All elements of rank at least $2 \uparrow (i - 1)$, at most $(2 \uparrow i) - 1$

- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535

At most $\log^* n$ buckets.

From Lemma: at most $n \cdot (2 \uparrow (i - 1)) = n \cdot (2 \uparrow i)$ elements in bucket i.
Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2’s

- $2 \uparrow 1 = 2$, $2 \uparrow 2 = 2^2 = 4$, $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$, $2 \uparrow 4 = 2^{2^2} = 2^{16} = 65536$
- $\log^*(2 \uparrow i) = i$

$B(i)$ (Bucket i): All elements of rank at least $2 \uparrow (i-1)$, at most $(2 \uparrow i) - 1$

- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535
- At most $\log^* n$ buckets.
Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2’s

- $2 \uparrow 1 = 2$, $2 \uparrow 2 = 2^2 = 4$, $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$, $2 \uparrow 4 = 2^{2^2^2} = 2^{16} = 65536$
- $\log^* (2 \uparrow i) = i$

$B(i)$ (Bucket i): All elements of rank at least $2 \uparrow (i - 1)$, at most $(2 \uparrow i) - 1$

- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535
- At most $\log^* n$ buckets.

From Lemma: at most $n/(2^{2\uparrow(i-1)}) = n/(2 \uparrow i)$ elements in bucket i.
Main Result III

Want to bound total # parent pointers (to non-roots) followed over all \(\leq 2m \) Finds.
Main Result III

Want to bound total # parent pointers (to non-roots) followed over all $\leq 2m$ Finds.

Type 1: Parent pointers that cross buckets

- $\leq \log^* n$ buckets $\implies \leq \log^* n$ per Find $\implies \leq 2m \log^* n = O(m \log^* n)$ total
Main Result III

Want to bound total # parent pointers (to non-roots) followed over all $\leq 2m$ Finds.

Type 1: Parent pointers that cross buckets

- $\leq \log^* n$ buckets $\implies \leq \log^* n$ per Find $\implies \leq 2m \log^* n = O(m \log^* n)$ total

Type 2: Parent pointers that do not cross buckets

- For each x, let $\alpha(x) = \#$ times follow parent point from x to parent in same bucket, not root. Want to show $\sum_x \alpha(x) \leq O(m \log^* n)$.
- Since x not root when following pointers, always has same rank

Michael Dinitz

Lecture 9: Union-Find

September 28, 2021
Main Result III

Want to bound total \# parent pointers (to non-roots) followed over all \(\leq 2m \) Finds.

Type 1: Parent pointers that cross buckets

- \(\leq \log^* n \) buckets \(\implies \leq \log^* n \) per Find \(\implies \leq 2m \log^* n = O(m \log^* n) \) total

Type 2: Parent pointers that do not cross buckets

- For each \(x \), let \(\alpha(x) = \# \) times follow parent point from \(x \) to parent in same bucket, not root. Want to show \(\sum_x \alpha(x) \leq O(m \log^* n) \).
- Since \(x \) not root when following pointers, always has same rank
- Whenever \(x \)'s pointer followed, gets new parent (path compression)
 \(\implies \) rank of parent goes up by at least 1 (properties of rank)
 \(\implies \) happens at most \(2^{\uparrow i} \) times if \(x \) in bucket \(i \)
 \(\implies \alpha(x) \leq 2^{\uparrow i} \).
Main Result III

Want to bound total \# parent pointers (to non-roots) followed over all \(\leq 2m \) Finds.

Type 1: Parent pointers that cross buckets

- \(\leq \log^* n \) buckets \(\implies \leq \log^* n \) per Find \(\implies \leq 2m \log^* n = O(m \log^* n) \) total

Type 2: Parent pointers that do not cross buckets

- For each \(x \), let \(\alpha(x) = \# \) times follow parent point from \(x \) to parent in same bucket, not root. Want to show \(\sum_x \alpha(x) \leq O(m \log^* n) \).
- Since \(x \) not root when following pointers, always has same rank
- Whenever \(x \)'s pointer followed, gets new parent (path compression)
 \(\implies \) rank of parent goes up by at least 1 (properties of rank)
 \(\implies \) happens at most \(2 \uparrow i \) times if \(x \) in bucket \(i \)
 \(\implies \alpha(x) \leq 2 \uparrow i \).

\[
\sum_x \alpha(x) = \sum_{i=0}^{O(\log^* n)} \sum_{x \in B(i)} \alpha(x) \leq \sum_{i=0}^{O(\log^* n)} \sum_{x \in B(i)} (2 \uparrow i) \leq \sum_{i=0}^{O(\log^* n)} \frac{n}{2 \uparrow i} (2 \uparrow i) = O(n \log^* n)
\]

\(\leq O(m \log^* n) \),