Introduction

Informal: Universe of elements, want to maintain *disjoint sets*.

Slightly more formally:

- Make-Set(\(x\)): create a new set containing just \(x\) (i.e., \(\{x\}\))
- Union(\(x, y\)): Replace set containing \(x\) (\(S\)) and set containing \(y\) (\(T\)) with single set \(S \cup T\)
- Find(\(x\)): Return *representative* of set containing \(x\)
Introduction

Informal: Universe of elements, want to maintain *disjoint sets*.

Slightly more formally:

- **Make-Set**(\(x \)): create a new set containing just \(x \) (i.e., \(\{x\} \))
- **Union**(\(x, y \)): Replace set containing \(x \) (\(S \)) and set containing \(y \) (\(T \)) with single set \(S \cup T \)
- **Find**(\(x \)): Return *representative* of set containing \(x \)

Rules: every set has a *unique* representative.

- If \(x \) and \(y \) are in same set, \(\text{Find}(x) = \text{Find}(y) \)
- If \(x \) and \(y \) are in different sets, then \(\text{Find}(x) \neq \text{Find}(y) \)
- **Make-Set**(\(x \)): cannot be called on the same \(x \) twice

Note: disjoint (and partition) by construction!
Introduction

Informal: Universe of elements, want to maintain disjoint sets.

Slightly more formally:

- Make-Set(x): create a new set containing just x (i.e., \{x\})
- Union(x, y): Replace set containing x (S) and set containing y (T) with single set S ∪ T
- Find(x): Return representative of set containing x

Rules: every set has a unique representative.

- If x and y are in same set, Find(x) = Find(y)
- If x and y are in different sets, then Find(x) ≠ Find(y)
- Make-Set(x): cannot be called on the same x twice

Note: disjoint (and partition) by construction!
We’ll see a few ways of doing this, from efficient to very efficient.
CLRS: extremely efficient
We’ll see a few ways of doing this, from efficient to very efficient.
CLRS: extremely efficient

Nice thing about Union-Find: don’t hit a limit to improvement for a very long time!
Introduction (II)

We’ll see a few ways of doing this, from efficient to very efficient. CLRS: extremely efficient

Nice thing about Union-Find: don’t hit a limit to improvement for a very long time!

Notation and Notes:

- m operations total
- n of which are Make-Sets (so n elements)
- Assume have pointer/access to elements we care about (like last class)
First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)

```
S:       T:
```

- **Make-Set**: `x` becomes the head of a new list.
- **Find**: Return `x` as the head of the list.

![Diagram showing a linked list with elements x and z]
First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)

```
S:
   x -> z
```

Make-Set(x):
First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)

![Diagram of linked list]

Make-Set(x):

Find(x): return $x \rightarrow \text{head}$
Union(x, y)

Obvious approach:
- Walk down S to final element z (starting from x)
- Set $z \rightarrow \text{next} = y \rightarrow \text{head}$
- Walk down T, set every elements head pointer to $x \rightarrow \text{head}$
Union(x, y)

Running time: $O(\frac{1}{\text{divides}} S + \frac{1}{\text{divides}} T)$

Since S and T could be $\Theta(n)$, can only say $O(n)$ for unions.
Union(x, y)

S:

T:

S:

T:
Union(x, y)

Running time:

$O\left(\frac{|S|}{|S|} + \frac{|T|}{|T|}\right)$

Since $|S|$, $|T|$ could be $\Theta(n)$, can only say $O(n)$ for Unions.
Union(x, y)

Running time: $O(|S| + |T|)$
Union \((x, y)\)

Running time: \(O(|S| + |T|)\)

- \(|S|\) to walk down \(S\) to final element
- \(|T|\) to walk down \(T\) resetting head pointers
Union(x, y)

Running time: $O(|S| + |T|)$

- $|S|$ to walk down S to final element
- $|T|$ to walk down T
 resetting head pointers

Since $|S|, |T|$ could be $\Theta(n)$, can only say $O(n)$ for Unions
Improved Union(x, y)

Observation: don’t need to preserve ordering inside the Union!
Improved Union(x, y)

Observation: don’t need to preserve ordering inside the Union!

- Splice T into S right after x

![Diagram showing the union operation]

Running time: $O(\text{divides}(T))$

Still can't say anything better than $O(n)$
Improved Union(x, y)

Observation: don’t need to preserve ordering inside the Union!

- Splice T into S right after x

Running time:
Improved Union(x, y)

Observation: don’t need to preserve ordering inside the Union!

- Splice T into S right after x

Running time: $O(|T|)$
Improved Union(x, y)

Observation: don’t need to preserve ordering inside the Union!

- Splice T into S right after x

Running time: $O(|T|)$

- Still can’t say anything better than $O(n)$
Even more improved \text{Union}(x, y)

Observation: Why splice \textbf{T} into \textbf{S}? Could also splice \textbf{S} into \textbf{T}.

- Time $O(|S|)$
Even more improved $\text{Union}(x, y)$

Observation: Why splice T into S? Could also splice S into T.

- Time $O(|S|)$

Splice smaller into bigger!

- Store size of set in head node.
- Splice smaller into bigger: time $O(\min(|S|, |T|))$
- *Still* only $O(n)$. But now can make stronger amortized guarantee!
Even more improved Union(x, y)

Observation: Why splice T into S? Could also splice S into T.

- Time $O(|S|)$

Splice smaller into bigger!

- Store size of set in head node.
- Splice smaller into bigger: time $O(\min(|S|, |T|))$
- *Still* only $O(n)$. But now can make stronger amortized guarantee!

Theorem

*The amortized cost of Find and Union is $O(1)$, and the amortized cost of Make-Set is $O(\log n)$.***

Corollary

*The total running time is $O(m + n \log n)$.***
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element e. Starts with $\log n$ tokens. When do we remove a token?

- When in smaller set of a Union.
- Size of set containing e at least doubles!
- Can only happen at most $\log n$ times.
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element e. Starts with $\log n$ tokens. When do we remove a token?
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element
- When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element e. Starts with $\log n$ tokens. When do we remove a token?
- When in smaller set of a Union.
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element
 ▶ When an element is created (via Make-Set), add $\log n$ tokens to its bank
 ▶ Find does not affect banks
 ▶ When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element e. Starts with $\log n$ tokens. When do we remove a token?
 ▶ When in smaller set of a Union.
 ▶ Size of set containing e at least doubles!
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element e. Starts with $\log n$ tokens. When do we remove a token?

- When in smaller set of a Union.
- Size of set containing e at least doubles!
- Can only happen at most $\log n$ times.
Amortized Analysis of List Algorithm (cont’d)

Make-Set:
- True cost: $O(1)$
- Change in banks: $\log n$

\Rightarrow Amortized cost: $O(1) + O(\log n) = O(\log n)$

Find:
- True cost: $O(1)$
- Change in banks: 0

\Rightarrow Amortized cost: $O(1) + 0 = O(1)$

Union:
- True cost: $\min(|S|, |T|)$
- Change in banks: $-\min(|S|, |T|)$

\Rightarrow Amortized cost: $\min(|S|, |T|) - \min(|S|, |T|) = 0 = O(1)$.
Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
- Results in trees rather than lists (can drop next pointer)

Idea 2: Union By Rank

Size of set was important for lists, less important for trees.

Choose which set to splice into which by rank of trees (related to height)
Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree
Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

- Use this time to “update head” pointers: on Find(x), change pointers of x and all ancestors to point to root
- Path Compression
Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

- Use this time to “update head” pointers: on Find(x), change pointers of x and all ancestors to point to root
- Path Compression

Idea 2: Union By Rank

- Size of set was important for lists, less important for trees.
- Choose which set to splice into which by rank of trees (related to height)
Main Result

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

log^*: iterated \log_2.

- $\log^* n = \# \text{ times apply } \log_2 \text{ until get to } 1$
Main Result

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

log^*: iterated log_2.

- $\log^* n = \#$ times apply \log_2 until get to 1
- $\log^* (2^{65536}) = 1 + \log^* (65536) = 2 + \log^* (16) = 3 + \log^* (4) = 4 + \log^* (2) = 5$
Main Result

Theorem
When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

log^*: iterated \log_2.

- $\log^* n = \# \text{ times apply } \log_2 \text{ until get to } 1$
- $\log^* (2^{65536}) = 1 + \log^* (65536) = 2 + \log^* (16) = 3 + \log^* (4) = 4 + \log^* (2) = 5$
- Basically $\log^* n$ always ≤ 5.

See CLRS for details
Main Result

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

\log^*: iterated \log_2.
- $\log^* n = \#$ times apply \log_2 until get to 1
- $\log^*(2^{65536}) = 1 + \log^*(65536) = 2 + \log^*(16) = 3 + \log^*(4) = 4 + \log^*(2) = 5$
- Basically $\log^* n$ always ≤ 5.

Stronger theorem: total time at most $O(m \cdot \alpha(m, n))$.
- $\alpha(m, n)$: inverse Ackermann function. Grows even slower than \log^*.
- See CLRS for details
Formal Procedures: Make-Set and Find

Make-Set(x): Set $x \rightarrow \text{rank} = 0$ and $x \rightarrow \text{parent} = x$

- Running time: $O(1)$.
Formal Procedures: Make-Set and Find

Make-Set(x): Set $x \rightarrow \text{rank} = 0$ and $x \rightarrow \text{parent} = x$

- Running time: $O(1)$.

Find(x): Walk from x to root, and return root. Set parent pointers of x and all ancestors to root.

- If $x \rightarrow \text{parent} = x$ then return x
- $x \rightarrow \text{parent} = \text{Find}(x \rightarrow \text{parent})$
- Return $x \rightarrow \text{parent}$
Formal Procedures: Make-Set and Find

Make-Set(x): Set \(x \rightarrow \text{rank} = 0 \) and \(x \rightarrow \text{parent} = x \)
 ▸ Running time: \(O(1) \).

Find(x): Walk from \(x \) to root, and return root. Set parent pointers of \(x \) and all ancestors to root.
 ▸ If \(x \rightarrow \text{parent} = x \) then return \(x \)
 ▸ \(x \rightarrow \text{parent} = \text{Find}(x \rightarrow \text{parent}) \)
 ▸ Return \(x \rightarrow \text{parent} \)
Running time of Find: depth of \(x \) (distance to root)
Find example
Find example
Formal Procedure: Union

Link(r_1, r_2): Only applied to root nodes
- If $r_1 \rightarrow \text{rank} > r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$
- If $r_2 \rightarrow \text{rank} > r_1 \rightarrow \text{rank}$, set $r_1 \rightarrow \text{parent} = r_2$
- If $r_1 \rightarrow \text{rank} = r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$ and increment $r_1 \rightarrow \text{rank}$.

Running time of Link:
$O(1)$

Union(x, y): Link(Find(x), Find(y))

Running time: depth(x) + depth(y)
Formal Procedure: Union

Link(r_1, r_2): Only applied to root nodes

- If $r_1 \rightarrow \text{rank} > r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$
- If $r_2 \rightarrow \text{rank} > r_1 \rightarrow \text{rank}$, set $r_1 \rightarrow \text{parent} = r_2$
- If $r_1 \rightarrow \text{rank} = r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$ and increment $r_1 \rightarrow \text{rank}$.

Running time of Link: $O(1)$
Formal Procedure: Union

Link(r_1, r_2): Only applied to root nodes
- If $r_1 \rightarrow \text{rank} > r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$
- If $r_2 \rightarrow \text{rank} > r_1 \rightarrow \text{rank}$, set $r_1 \rightarrow \text{parent} = r_2$
- If $r_1 \rightarrow \text{rank} = r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$ and increment $r_1 \rightarrow \text{rank}$.

Running time of Link: $O(1)$

Union(x, y): Link$(\text{Find}(x), \text{Find}(y))$
Formal Procedure: Union

Link(r_1, r_2): Only applied to root nodes
 - If $r_1 \rightarrow \text{rank} > r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$
 - If $r_2 \rightarrow \text{rank} > r_1 \rightarrow \text{rank}$, set $r_1 \rightarrow \text{parent} = r_2$
 - If $r_1 \rightarrow \text{rank} = r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$ and increment $r_1 \rightarrow \text{rank}$.

Running time of Link: $O(1)$

Union(x, y): Link(Find(x), Find(y))
 - Running time: $\text{depth}(x) + \text{depth}(y)$
Union example
Union example

If \(z \rightarrow \text{rank} \geq w \rightarrow \text{rank} \)}
Union example

If $z \rightarrow \text{rank} \geq w \rightarrow \text{rank}$
Union example

If \(z \rightarrow \text{rank} \geq w \rightarrow \text{rank} \)

If \(z \rightarrow \text{rank} = w \rightarrow \text{rank} \),
then \((z \rightarrow \text{rank}) + +\)
Properties of Ranks

1. If x not a root, then $(x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})$

2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent

3. $x \rightarrow \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.

Proof of Property 4.
Induction. Base case: $r = 0$.

Inductive case: Suppose true for $r - 1$.
When x first gets rank r, must be because x had rank $r - 1$ (and was root), unioned with another set with root z of rank $r - 1$.

/Leftrightarrow/ By induction, at least 2^{r-1} nodes in each tree
/Leftrightarrow/ At least $2^{r-1} + 2^{r-1} = 2^r$ nodes in combined tree.
Properties of Ranks

1. If x not a root, then $(x \to \text{rank}) < (x \to \text{parent} \to \text{rank})$

2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent

3. $x \to \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.

4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $r = 0$.

Inductive case: Suppose true for $r - 1$.

When x first gets rank r, must be because x had rank $r - 1$ (and was root), unioned with another set with root z of rank $r - 1$.

$Leftrightarrow$ By induction, at least $2^{r-1} + 2^{r-1} = 2^r$ nodes in combined tree.
Properties of Ranks

1. If x not a root, then $(x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})$

2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent

3. $x \rightarrow \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.

4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $r = 0$.
Properties of Ranks

1. If x not a root, then $(x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})$

2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent

3. $x \rightarrow \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.

4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $r = 0$. ✓
Properties of Ranks

1. If x not a root, then $(x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})$

2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent.

3. $x \rightarrow \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.

4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $r = 0$. ✓

Inductive case: Suppose true for $r - 1$.
Properties of Ranks

1. If \(x \) not a root, then \((x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})\)

2. When doing path compression, if parent of \(x \) changes, new parent has rank strictly larger than old parent

3. \(x \rightarrow \text{rank} \) can change only if \(x \) a root, and once \(x \) is a non-root it never becomes a root again.

4. When \(x \) first reaches rank \(r \), there are at least \(2^r \) nodes in tree rooted at \(x \).

Proof of Property 4.

Induction. Base case: \(r = 0 \). ✓

Inductive case: Suppose true for \(r - 1 \).
When \(x \) first gets rank \(r \), must be because \(x \) had rank \(r - 1 \) (and was root), unioned with another set with root \(z \) of rank \(r - 1 \).
Properties of Ranks

1. If x not a root, then $(x \to \text{rank}) < (x \to \text{parent} \to \text{rank})$

2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent.

3. $x \to \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.

4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $r = 0$. ✓

Inductive case: Suppose true for $r - 1$.
When x first gets rank r, must be because x had rank $r - 1$ (and was root), unioned with another set with root z of rank $r - 1$.

\implies By induction, at least 2^{r-1} nodes in each tree.
Properties of Ranks

1. If \(x \) not a root, then \((x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})\)

2. When doing path compression, if parent of \(x \) changes, new parent has rank strictly larger than old parent

3. \(x \rightarrow \text{rank} \) can change only if \(x \) a root, and once \(x \) is a non-root it never becomes a root again.

4. When \(x \) first reaches rank \(r \), there are at least \(2^r \) nodes in tree rooted at \(x \).

Proof of Property 4.

Induction. Base case: \(r = 0 \). ✓

Inductive case: Suppose true for \(r - 1 \).

When \(x \) first gets rank \(r \), must be because \(x \) had rank \(r - 1 \) (and was root), unioned with another set with root \(z \) of rank \(r - 1 \).

\[\implies \] By induction, at least \(2^{r-1} \) nodes in each tree

\[\implies \] At least \(2^{r-1} + 2^{r-1} = 2^r \) nodes in combined tree.
Nodes of rank r

Lemma

There are at most $\frac{n}{2^r}$ nodes of rank at least r.

Proof.

Let x node of rank at least r. Let S_x be descendants of x when it first got rank r.
\[|S_x| \geq 2^r\] by property 4.
Nodes of rank r

Lemma

*There are at most $n/2^r$ nodes of rank at least r.***

Proof.

Let x node of rank at least r. Let S_x be descendants of x when it first got rank r.

$\implies |S_x| \geq 2^r$ by property 4.

Let z some other node of rank $\geq r$. Without loss of generality, suppose x got rank r before z.
Consider some $e \in S_x$. Then e can’t be in S_z (already in tree with rank $\geq r$). So $S_x \cap S_z = \emptyset$.
Nodes of rank r

Lemma

There are at most $n/2^r$ nodes of rank at least r.

Proof.

Let x node of rank at least r. Let S_x be descendants of x when it first got rank r.

$\implies |S_x| \geq 2^r$ by property 4.

Let z some other node of rank $\geq r$. Without loss of generality, suppose x got rank r before z. Consider some $e \in S_x$. Then e can’t be in S_z (already in tree with rank $\geq r$). So $S_x \cap S_z = \emptyset$.

\implies At most $n/2^r$ nodes of rank $\geq r$.

\square
Main Result I

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

Main Result I

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

m operations total. Analyze each type separately:

- Make-Set: $O(1)$ time each
- Union: two Find operations, plus $O(1)$ other work.
- Find(x): proportional to depth of x. Count number of parent pointers followed, call this the time.
Main Result 1

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^ n)$.*

m operations total. Analyze each type separately:

- **Make-Set**: $O(1)$ time each
- **Union**: two Find operations, plus $O(1)$ other work.
- **Find(x)**: proportional to depth of x. Count number of parent pointers followed, call this the time.

So at most $2m$ Finds, want to bound total # parent pointers followed.
Main Result I

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

m operations total. Analyze each type separately:

- **Make-Set:** $O(1)$ time each
- **Union:** two Find operations, plus $O(1)$ other work.
- **Find(x):** proportional to depth of x. Count number of parent pointers followed, call this the time.

So at most $2m$ Finds, want to bound total # parent pointers followed.

- At most one parent pointer to root per Find \Rightarrow at most $O(m)$ parent pointers to roots.
- So only need to worry about parent pointers to non-roots.
Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2’s

- $2 \uparrow 1 = 2$, $2 \uparrow 2 = 2^2 = 4$, $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$, $2 \uparrow 4 = 2^{2^{2^2}} = 2^{16} = 65536$
- $\log^* (2 \uparrow i) = i$
Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2’s

- $2 \uparrow 1 = 2$, $2 \uparrow 2 = 2^2 = 4$, $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$, $2 \uparrow 4 = 2^{2^{2^2}} = 2^{16} = 65536$
- $\log^*(2 \uparrow i) = i$

$B(i)$ (Bucket i): All elements of rank at least $2 \uparrow (i - 1)$, at most $(2 \uparrow i) - 1$

- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535

At most $\log^* n$ buckets.

From Lemma: at most $n / 2^{2^i - i}$ elements in bucket i.

Michael Dinitz
Lecture 9: Union-Find
September 28, 2021 20 / 21
Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: \(2 \uparrow i\) denote a tower of \(i\) 2’s

- \(2 \uparrow 1 = 2, \quad 2 \uparrow 2 = 2^2 = 4, \quad 2 \uparrow 3 = 2^{2^2} = 2^4 = 16, \quad 2 \uparrow 4 = 2^{2^{2^2}} = 2^{16} = 65536\)
- \(\log^* (2 \uparrow i) = i\)

\(B(i)\) (Bucket \(i\)): All elements of rank at least \(2 \uparrow (i - 1)\), at most \((2 \uparrow i) - 1\)

- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535
- At most \(\log^* n\) buckets.
Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2's

- $2 \uparrow 1 = 2$, $2 \uparrow 2 = 2^2 = 4$, $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$, $2 \uparrow 4 = 2^{2^2} = 2^{16} = 65536$
- $\log^* (2 \uparrow i) = i$

$B(i)$ (Bucket i): All elements of rank at least $2 \uparrow (i - 1)$, at most $(2 \uparrow i) - 1$

- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535
- At most $\log^* n$ buckets.

From Lemma: at most $n/(2^{2\uparrow(i-1)}) = n/(2 \uparrow i)$ elements in bucket i.
Main Result III

Want to bound total \# parent pointers (to non-roots) followed over all \(\leq 2m \) Finds.
Main Result III

Want to bound total \# parent pointers (to non-roots) followed over all \(\leq 2m \) Finds.

Type 1: Parent pointers that cross buckets

\(\leq \log^* n \) buckets \(\implies \leq \log^* n \) per Find \(\implies \leq 2m \log^* n = O(m \log^* n) \) total
Main Result III

Want to bound total \# parent pointers (to non-roots) followed over all \(\leq 2m \) Finds.

Type 1: Parent pointers that cross buckets

- \(\leq \log^* n \) buckets \(\implies \leq \log^* n \) per Find \(\implies \leq 2m \log^* n = O(m \log^* n) \) total

Type 2: Parent pointers that do not cross buckets

- For each \(x \), let \(\alpha(x) = \# \) times follow parent point from \(x \) to parent in same bucket, not root. Want to show \(\sum_x \alpha(x) \leq O(m \log^* n) \).
- Since \(x \) not root when following pointers, always has same rank
Main Result III
Want to bound total # parent pointers (to non-roots) followed over all \(\leq 2m \) Finds.

Type 1: Parent pointers that cross buckets
- \(\leq \log^* n \) buckets \(\implies \leq \log^* n \) per Find \(\implies \leq 2m \log^* n = O(m \log^* n) \) total

Type 2: Parent pointers that do not cross buckets
- For each \(x \), let \(\alpha(x) = \# \) times follow parent point from \(x \) to parent in same bucket, not root. Want to show \(\sum_x \alpha(x) \leq O(m \log^* n) \).
- Since \(x \) not root when following pointers, always has same rank
- Whenever \(x \)'s pointer followed, gets new parent (path compression)
 \(\implies \) rank of parent goes up by at least 1 (properties of rank)
 \(\implies \) happens at most \(2 \uparrow i \) times if \(x \) in bucket \(i \)
 \(\implies \alpha(x) \leq 2 \uparrow i \).
Main Result III

Want to bound total # parent pointers (to non-roots) followed over all $\leq 2m$ Finds.

Type 1: Parent pointers that cross buckets

- $\leq \log^* n$ buckets $\implies \leq \log^* n$ per Find $\implies \leq 2m \log^* n = O(m \log^* n)$ total

Type 2: Parent pointers that do not cross buckets

- For each x, let $\alpha(x) =$ # times follow parent point from x to parent in same bucket, not root. Want to show $\sum_x \alpha(x) \leq O(m \log^* n)$.
- Since x not root when following pointers, always has same rank
- Whenever x’s pointer followed, gets new parent (path compression)
 \implies rank of parent goes up by at least 1 (properties of rank)
 \implies happens at most $2 \uparrow i$ times if x in bucket i
 $\implies \alpha(x) \leq 2 \uparrow i$.

$$\sum_x \alpha(x) = \sum_{i=0}^{O(\log^* n)} \sum_{x \in B(i)} \alpha(x) \leq \sum_{i=0}^{O(\log^* n)} \sum_{x \in B(i)} (2 \uparrow i) \leq \sum_{i=0}^{O(\log^* n)} \frac{n}{2 \uparrow i} (2 \uparrow i) = O(n \log^* n)$$

$\leq O(m \log^* n)$,