Lecture 8: Priority Queues and Heaps

Michael Dinitz

September 23, 2021 601.433/633 Introduction to Algorithms

Introduction

Priority Queues / Heaps: Like a queue/stack, but instead of FIFO/LIFO, by priority

- ▶ Insert(**H**, **x**): insert element **x** into heap **H**.
- Extract-Min(**H**): remove and return an element with smallest key
- Decrease-Key $(\mathbf{H}, \mathbf{x}, \mathbf{k})$: decrease the key of \mathbf{x} to \mathbf{k} .
- $Meld(H_1, H_2)$: replace heaps H_1 and H_2 with their union

Extra Operations:

- Find-Min(\mathbf{H}): return the element with smallest key
- Delete(\mathbf{H}, \mathbf{x}): delete element \mathbf{x} from heap \mathbf{H}

Min-Heap, but can also do Max-Heap.

Introduction

Priority Queues / Heaps: Like a queue/stack, but instead of FIFO/LIFO, by priority

- Insert(\mathbf{H}, \mathbf{x}): insert element \mathbf{x} into heap \mathbf{H} .
- Extract-Min(**H**): remove and return an element with smallest key
- Decrease-Key $(\mathbf{H}, \mathbf{x}, \mathbf{k})$: decrease the key of \mathbf{x} to \mathbf{k} .
- $Meld(H_1, H_2)$: replace heaps H_1 and H_2 with their union

Extra Operations:

- Find-Min(\mathbf{H}): return the element with smallest key
- Delete(\mathbf{H}, \mathbf{x}): delete element \mathbf{x} from heap \mathbf{H}

Min-Heap, but can also do Max-Heap.

Note: \mathbf{x} is a *pointer* to an element. No way to lookup, so need a pointer to an element to change it.

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	OCI)	()(h)	0(1)	0 ^c l)

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O (1)	0(1)

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O (1)	O(n)	O (1)	O (1)
Sorted Array				

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O (1)	0(1)
Sorted Array	O(n)	O(1)	O(n)	O (n)

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	0(1)	O(n)	O (1)	0(1)
Sorted Array	O(n)	O(1)	O(n)	O(n)
Balanced Search Tree				

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O (1)	0(1)
Sorted Array	O(n)	O(1)	O(n)	O (n)
Balanced Search Tree	O(log n)	O(log n)	O(log n)	O(n)

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O (1)	O (1)
Sorted Array	O(n)	O(1)	O(n)	O(n)
Balanced Search Tree	O(log n)	O(log n)	O(log n)	O (n)

I

Goal: get as many of these to O(1) as possible

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O (1)	0(1)
Sorted Array	O(n)	O(1)	O(n)	O(n)
Balanced Search Tree	O(log n)	O(log n)	O(log n)	O (n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

1

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O (1)	0(1)
Sorted Array	O(n)	O (1)	O(n)	O (n)
Balanced Search Tree	O(log n)	O(log n)	O(log n)	O (n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized? **No!** Sorting lower bound. But maybe can make one O(1), other $O(\log n)$?

1

State of the art: *strict Fibonacci Heaps*.

• Too complicated for this class, not practical. See CLRS 19 for Fibonacci Heaps.

Today: binary heaps (should be review), then binomial heaps

Binomial heaps not quite as complicated as Fibonacci heaps, many of same core ideas

Binary Heaps

- Complete binary tree, except possibly at bottom level.
- Heap order: key of any node no larger than key of its children.

Binary Heaps

- Complete binary tree, except possibly at bottom level.
- Heap order: key of any node no larger than key of its children.

Properties:

- Since (almost) complete binary tree, depth O(log n)
- Min must be at root

Michael Dinitz

Representation:

- Pointers to root and rightmost leaf
- Every node has pointers to parent and children

 $Insert(\mathbf{H}, \mathbf{x})$

Preserve heap *structure*: insert **x** into next open spot (bottom right, or left of new level if bottom level full)

Might violate heap order!

6

8

Michael Dinitz

7

$Insert(\mathbf{H}, \mathbf{x})$

Preserve heap *structure*: insert **x** into next open spot (bottom right, or left of new level if bottom level full)

• Might violate heap *order*!

6

6 10 8 12 18 11 25 "Swim up": as long as x smaller than its parent, ²¹ ¹⁷ with ¹⁹ ⁷ (violates heap order)

7 8 Michael Dinitz Lecture 8:

Insert(H, x)

Preserve heap *structure*: insert **x** into next open spot (bottom right, or left of new level if bottom level full)

Might violate heap order!

6

Running time: $O(\log n)$ worst case (also amortized) via depth

8

7 Michael Dinitz

Min is definitely at root. How to remove it while still have binary tree?

Min is definitely at root. How to remove it while still have binary tree?

- Swap root with final heap element, remove former root.
- Sink down: swap root with smaller of its children until heap order restored

Min is definitely at root. How to remove it while still have binary tree?

- Swap root with final heap element, remove former root.
- Sink down: swap root with smaller of its children until heap order restored

Running time: $O(\log n)$ worst case (via depth). Amortized: O(1) (not obvious)

Michael Dinitz

Decrease key of \mathbf{x} to \mathbf{k} , "swim up" until heap order restored.

Running time: **O(log n)** (depth)

Assume both heaps have size **n**.

• Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Assume both heaps have size **n**.

• Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of **H**₂ all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Assume both heaps have size **n**.

• Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of **H**₂ all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)

Assume both heaps have size **n**.

• Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of **H**₂ all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.
 Correctness: ends up in heap order (induction, or contradiction)
 Running Time:
 - Inserting: O(n) total

$\mathsf{Meld}(H_1,H_2)$

Assume both heaps have size **n**.

• Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of **H**₂ all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction) **Running Time:**

- Inserting: O(n) total
- Sinking down:
 - Nodes at height **h** might have to sink down **h**.
 - At most n/2^h nodes at height h

Assume both heaps have size **n**.

• Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of **H**₂ all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction) **Running Time:**

- Inserting: O(n) total
- Sinking down:
 - Nodes at height **h** might have to sink down **h**.
 - At most n/2^h nodes at height h line the soles of height h line the soles of height h

$$\sum_{h=0}^{\log n} h\left(\frac{n}{2^h}\right) = n \sum_{h=0}^{\log n} \frac{h}{2^h} \le O(n)$$

Weights: w(x) = depth of x

▶ Root has weight **0**, its children have weight **1**, etc.

Potential: $\Phi(\mathbf{H}) = \sum_{\mathbf{x}} \mathbf{w}(\mathbf{x})$

Weights: w(x) = depth of x

Root has weight 0, its children have weight 1, etc. tree DD test ID

Potential: $\Phi(\mathbf{H}) = \sum_{\mathbf{x}} \mathbf{w}(\mathbf{x})$

Insert: $\Delta \Phi = O(\log n) \implies$ amortized cost $\leq O(\log n) + O(\log n) = O(\log n)$

Weights: w(x) = depth of x

• Root has weight **0**, its children have weight **1**, etc.

Potential: $\Phi(H) = \sum_{x} w(x)$

Insert: $\Delta \Phi = O(\log n) \implies$ amortized cost $\leq O(\log n) + O(\log n) = O(\log n)$

Extract-Min:

- True cost: height $h = \Theta(\log n)$ of tree, plus O(1) (for initial swap).
- $\Delta \Phi$: one less node at depth $h \implies \Delta \Phi = -h$
- Amortized cost: h + O(1) h = O(1).

trac p trac DD

Weights: w(x) = depth of x

▶ Root has weight **0**, its children have weight **1**, etc.

Potential: $\Phi(\mathbf{H}) = \sum_{\mathbf{x}} \mathbf{w}(\mathbf{x})$

 $\mathsf{Insert:} \ \Delta \Phi = O(\log n) \implies \mathsf{amortized} \ \mathsf{cost} \le O(\log n) + O(\log n) = O(\log n)$

Extract-Min:

- True cost: height $h = \Theta(\log n)$ of tree, plus O(1) (for initial swap).
- $\Delta \Phi$: one less node at depth $h \implies \Delta \Phi = -h$
- Amortized cost: $\mathbf{h} + \mathbf{O}(1) \mathbf{h} = \mathbf{O}(1)$.

Uses Inserts to "pay for" Extract-Mins.

mi insuis, me extructioning

hotel fire E dem, the M2 anothind inext questied

Improvements

Downsides of binary heaps:

- Do at least as many Inserts as Extract-Mins! Want O(1) Insert, $O(\log n)$ Extract-Min
- Meld in **O**(**n**) is better than trivial, but still not great.

Improvements

Downsides of binary heaps:

- Do at least as many Inserts as Extract-Mins! Want O(1) Insert, $O(\log n)$ Extract-Min
- Meld in O(n) is better than trivial, but still not great.

Binomial Heaps:

- Get Insert down to **O(1)** (amortized)
- Meld in O(log n) (worst-case and amortized)
- Downside: O(log n) Extract-Min, O(log n) Find-Min

Improvements

Downsides of binary heaps:

- ▶ Do at least as many Inserts as Extract-Mins! Want O(1) Insert, O(log n) Extract-Min
- Meld in O(n) is better than trivial, but still not great.

Binomial Heaps:

- Get Insert down to **O(1)** (amortized)
- Meld in O(log n) (worst-case and amortized)
- Downside: O(log n) Extract-Min, O(log n) Find-Min

Fibonacci Heaps:

Everything O(1) (amortized) except O(log n) Extract-Min (amortized)

Binomial Heaps

Not based on binary tree anymore! Based on binomial tree.

Binomial Heaps

Not based on binary tree anymore! Based on binomial tree.

- ► **B**₀ = single node.
- B_k = one B_{k-1} linked to another B_{k-1} .

Structure Lemma

Lemma

The order k binomial tree B_k has the following properties:

 $\binom{k}{i}$

- 1. Its height is **k**.
- 2. It has $\mathbf{2^k}$ nodes
- 3. The degree of the root is ${\bf k}$

4. If we delete the root, we get k binomial trees B_{k-1}, \ldots, B_0 .

Binomial Heap

Definition A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is exactly $\mathbf{0}$ or $\mathbf{1}$ tree of order \mathbf{k} for each integer \mathbf{k} .

Keep roots of trees in linked list, from smallest order (not key!) to largest

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is exactly **0** or $\mathbf{1}$ tree of order **k** for each integer **k**.

Keep roots of trees in linked list, from smallest order (not key!) to largest

With **n** items, in the choices about which binomial trees exist in heap! • Write **n** in binary: $\mathbf{b}_{a}\mathbf{b}_{a-1}\dots\mathbf{b}_{1}\mathbf{b}_{0}$.

- Tree $\mathbf{B}_{\mathbf{k}}$ exists if and only if $\mathbf{b}_{\mathbf{k}} = \mathbf{1}$

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is exactly **0** or $\mathbf{1}$ tree of order **k** for each integer **k**.

Keep roots of trees in linked list, from smallest order (not key!) to largest

With n items, no choices about which binomial trees exist in heap!

- Write **n** in binary: $b_a b_{a-1} \dots b_1 b_0$.
- Tree B_k exists if and only if b_k = 1
- \implies at most log n trees, and by lemma each has height $\leq \log n$

Analyze all operations both worst-case and amortized.

Analyze all operations both worst-case and amortized.

Potential function: $\Phi(H) = \#$ trees in H

- Initially 0
- Never negative

Analyze all operations both worst-case and amortized.

Potential function: $\Phi(H) = \#$ trees in H

- Initially 0
- Never negative

Find-Min(**H**): Scan through roots of trees in **H**, return min

Analyze all operations both worst-case and amortized.

Potential function: $\Phi(H) = \#$ trees in H

- Initially 0
- Never negative

Find-Min(**H**): Scan through roots of trees in **H**, return min

• Correct: each tree heap-ordered, so global min one of the roots

Analyze all operations both worst-case and amortized.

Potential function: $\Phi(H) = \#$ trees in H

- Initially 0
- Never negative

Find-Min(H): Scan through roots of trees in H, return min

- Correct: each tree heap-ordered, so global min one of the roots
- Worst-case: O(log n)
- Amortized: doesn't change potential, also O(log n).

Key operation: we'll use Meld to do Insert and Extract-Min

Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: H_1, H_2 both single trees of same order k.

- Union has size $2^{k} + 2^{k} = 2^{k+1}$: just a single B_{k+1}
- Easy to make a B_{k+1} out of two B_k 's!

Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: H_1, H_2 both single trees of same order k.

- Union has size $2^{k} + 2^{k} = 2^{k+1}$: just a single B_{k+1}
- Easy to make a B_{k+1} out of two B_k 's!

$Meld(H_1, H_2)$: Link

Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: H_1, H_2 both single trees of same order k.

- Union has size $2^{k} + 2^{k} = 2^{k+1}$: just a single B_{k+1}
- Easy to make a B_{k+1} out of two B_k 's!

Link of two trees.

- Worst-case time: O(1) (create a single link). Normalize: call 1
- $\Delta \Phi$: two trees to one: -1
- Amortized cost:
 - 1-1=0=O(1).

$Meld(H_1, H_2)$: General Case

(Almost) just like binary addition!

Н,

 H_2

Easy to prove correct (exercise for home).

Running time:

- Worst case: O(1) per "order" $k \implies \leq O(\log n)$
- Amortized: Potential does not go up, but could stay the same

 O(log n) amortized

Insert(H, x)

Use Meld:

- \blacktriangleright Create new heap H' with one B_0 consisting of just x
- ► Meld(**H**, **H**′)

Correctness: Obvious

Insert(H, x)

Use Meld:

- ${\scriptstyle \blacktriangleright}$ Create new heap H' with one B_0 consisting of just x
- ► Meld(**H**, **H**′)

Correctness: Obvious

Running Time:

Worst case: O(log n) (via Meld)

$Insert(\mathbf{H}, \mathbf{x})$

Use Meld:

- ${\scriptstyle \blacktriangleright}$ Create new heap H' with one B_0 consisting of just x
- ► Meld(**H**, **H**′)

Correctness: Obvious

Running Time:

- Worst case: O(log n) (via Meld)
- Amortized:
 - Like incrementing a binary counter!

$Insert(\mathbf{H}, \mathbf{x})$

Use Meld:

- \blacktriangleright Create new heap H' with one B_0 consisting of just x
- ► Meld(**H**, **H**′)

Correctness: Obvious

Running Time:

- Worst case: **O(log n)** (via Meld)
- Amortized:
 - Like incrementing a binary counter!
 - If we link **k** trees, potential goes down by $\mathbf{k} \mathbf{1}$
 - Cost = # links plus 1 (for making new heap)
 - Amortized cost = $k + 1 + \Delta \Phi = k + 1 (k 1) = 2 = O(1)$

Use Meld again!

- **O(log n)** to Find-Min: one of the roots.
- Delete and return this root: tree turns into a new heap!
- Meld with original heap (minus the tree)

Correctness: Obvious

Use Meld again!

- **O**(log n) to Find-Min: one of the roots.
- Delete and return this root: tree turns into a new heap!
- Meld with original heap (minus the tree)

Correctness: Obvious

Running Time:

- Worst-Case: O(log n) from creating new heap, Meld
- Amortized:
 - Potential can go up! But by at most log n
 - Amortized time at most O(log n) + log n = O(log n)