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Introduction
Priority Queues / Heaps: Like a queue/stack, but instead of FIFO/LIFO, by priority

� Insert(H,x): insert element x into heap H.

� Extract-Min(H): remove and return an element with smallest key

� Decrease-Key(H,x,k): decrease the key of x to k.

� Meld(H1,H2): replace heaps H1 and H2 with their union

Extra Operations:

� Find-Min(H): return the element with smallest key

� Delete(H,x): delete element x from heap H

Min-Heap, but can also do Max-Heap.

Note: x is a pointer to an element. No way to lookup, so need a pointer to an element to
change it.
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Obvious Approaches

Insert Extract-Min Decrease-Key Meld

Linked List

O(1) O(n) O(1) O(1)
Sorted Array O(n) O(1) O(n) O(n)
Balanced Search Tree O(log n) O(log n) O(log n) O(n)

Goal: get as many of these to O(1) as possible
Question: Can we make Insert and Extract-Min both O(1), even amortized?

No! Sorting lower bound. But maybe can make one O(1), other O(log n)?
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Today and State of the Art

State of the art: strict Fibonacci Heaps.

� Too complicated for this class, not practical. See CLRS 19 for Fibonacci Heaps.

Today: binary heaps (should be review), then binomial heaps

� Binomial heaps not quite as complicated as Fibonacci heaps, many of same core ideas
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Binary Heaps

� Complete binary tree, except possibly at bottom level.

� Heap order: key of any node no larger than key of its children.

Binary heap

Binary heap.  Heap-ordered complete binary tree. 

Heap-ordered tree.  For each child, the key in child  ≥  key in parent.

7

8

18 11 2512

21 17 19

10

6

parent

child child

Properties:

� Since (almost) complete binary tree,
depth ⇥(log n)

� Min must be at root

Representation:

� Pointers to root and rightmost leaf

� Every node has pointers to parent and
children
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Insert(H,x)

Preserve heap structure: insert x into next
open spot (bottom right, or left of new level if
bottom level full)

� Might violate heap order!

Binary heap:  insert

Insert.  Add element in new node at end; repeatedly exchange new element 

with element in its parent until heap order is restored. 

11

8

18 11 2512

21 17 19

10

6

7

8

10 11 2512

21 17 19

7

6

18

add key to heap 

(violates heap order)

swim up

“Swim up”: as long as x smaller than its
parent, swap with parent

Running time: O(log n) worst case (also amortized) via depth
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Extract-Min(H)
Min is definitely at root. How to remove it while still have binary tree?

� Swap root with final heap element, remove former root.

� Sink down: swap root with smaller of its children until heap order restored

Running time: O(log n) worst case (via depth). Amortized: O(1) (not obvious)
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Decrease-Key(H,x,k)

Decrease key of x to k, “swim up” until heap order restored.

Running time: O(log n) (depth)
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Meld(H1,H2)
Assume both heaps have size n.
� Obvious approach: insert each element of H2 into H1. Time: O(n log n)

Better:
� Insert all elements of H2 all at once (not fixing heap order)
� Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)
Running Time:
� Inserting: O(n) total
� Sinking down:

� Nodes at height h might have to sink down h.
� At most n�2h nodes at height h

log n�
h=0

h� n
2h
� = n log n�

h=0
h

2h
≤ O(n)
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Amortized Extract-Min

Weights: w(x) = depth of x

� Root has weight 0, its children have weight 1, etc.

Potential: �(H) = ∑x w(x)

Insert: �� = O(log n) �⇒ amortized cost ≤ O(log n) +O(log n) = O(log n)
Extract-Min:

� True cost: height h =⇥(log n) of tree, plus O(1) (for initial swap).
� ��: one less node at depth h �⇒ �� = −h
� Amortized cost: h +O(1) − h = O(1).

Uses Inserts to “pay for” Extract-Mins.
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Improvements

Downsides of binary heaps:

� Do at least as many Inserts as Extract-Mins! Want O(1) Insert, O(log n) Extract-Min

� Meld in O(n) is better than trivial, but still not great.

Binomial Heaps:

� Get Insert down to O(1) (amortized)

� Meld in O(log n) (worst-case and amortized)

� Downside: O(log n) Extract-Min, O(log n) Find-Min

Fibonacci Heaps:

� Everything O(1) (amortized) except O(log n) Extract-Min (amortized)
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Binomial Heaps
Not based on binary tree anymore! Based on binomial tree.

� B0 = single node.

� Bk = one Bk−1 linked to another Bk−1.
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Binomial Heaps
Not based on binary tree anymore! Based on binomial tree.

� B0 = single node.

� Bk = one Bk−1 linked to another Bk−1.

Binomial tree

Def.  A binomial tree of order k is defined recursively: 

独Order 0:  single node. 

独Order k:  one binomial tree of order k – 1 linked to another of order k – 1.

32

B0 B1 B2 B3 B4

Bk-1

Bk-1

BkB0
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Structure Lemma

Lemma
The order k binomial tree Bk has the following properties:

1. Its height is k.

2. It has 2k nodes

3. The degree of the root is k

4. If we delete the root, we get k binomial trees Bk−1, . . . ,B0.

Binomial tree properties

Properties.  Given an order k binomial tree Bk, 

独Its height is k. 

独It has 2k nodes. 

独It has       nodes at depth i. 

独The degree of its root is k.  

独Deleting its root yields k binomial trees Bk–1, …, B0. 

 
Pf.  [by induction on k]

33

B4

B1

Bk

Bk+1

B2
B0

�k
i

�
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Binomial Heap

Definition
A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is
exactly 0 or 1 tree of order k for each integer k.

Keep roots of trees in linked list, from smallest order (not key!) to largest

With n items, no choices about which binomial trees exist in heap!

� Write n in binary: baba−1 . . .b1b0.
� Tree Bk exists if and only if bk = 1�⇒ at most log n trees, and by lemma each has height ≤ log n
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Analysis: Beginning

Analyze all operations both worst-case and amortized.

Potential function: �(H) = # trees in H

� Initially 0

� Never negative

Find-Min(H): Scan through roots of trees in H, return min

� Correct: each tree heap-ordered, so global min one of the roots

� Worst-case: O(log n)
� Amortized: doesn’t change potential, also O(log n).
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Meld(H1,H2): Link

Key operation: we’ll use Meld to do Insert and Extract-Min

Warmup: H1,H2 both single trees of same order k.

� Union has size 2k + 2k = 2k+1: just a single Bk+1
� Easy to make a Bk+1 out of two Bk’s!

Link of two trees.

� Worst-case time: O(1) (create a
single link). Normalize: call 1

� ��: two trees to one: −1
� Amortized cost:
1 − 1 = 0 = O(1).
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Meld(H1,H2): General Case
(Almost) just like binary addition!
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Meld(H1,H2): Analysis

Easy to prove correct (exercise for home).

Running time:

� Worst case: O(1) per “order” k �⇒ ≤ O(log n)
� Amortized: Potential does not go up, but could stay the same�⇒ O(log n) amortized
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Insert(H,x)

Use Meld:

� Create new heap H′ with one B0 consisting of just x

� Meld(H,H′)
Correctness: Obvious

Running Time:

� Worst case: O(log n) (via Meld)
� Amortized:

� Like incrementing a binary counter!
� If we link k trees, potential goes down by k − 1
� Cost = # links plus 1 (for making new heap)
� Amortized cost = k + 1 +�� = k + 1 − (k − 1) = 2 = O(1)
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Extract-Min(H)

Use Meld again!

� O(log n) to Find-Min: one of the roots.

� Delete and return this root: tree turns into a new heap!

� Meld with original heap (minus the tree)

Correctness: Obvious

Running Time:

� Worst-Case: O(log n) from creating new heap, Meld
� Amortized:

� Potential can go up! But by at most log n
� Amortized time at most O(log n) + log n = O(log n)
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