Lecture 8: Priority Queues and Heaps

Michael Dinitz

September 23, 2021
601.433/633 Introduction to Algorithms

Introduction

Priority Queues / Heaps: Like a queue/stack, but instead of FIFO/LIFO, by priority

- $\operatorname{Insert}(\mathbf{H}, \mathbf{x})$: insert element \mathbf{x} into heap \mathbf{H}.
- Extract-Min(H): remove and return an element with smallest key
- Decrease- $\operatorname{Key}(\mathbf{H}, \mathbf{x}, \mathbf{k})$: decrease the key of \mathbf{x} to \mathbf{k}.
- $\operatorname{Meld}\left(\mathbf{H}_{\mathbf{1}}, \mathbf{H}_{\mathbf{2}}\right)$: replace heaps $\mathbf{H}_{\mathbf{1}}$ and $\mathbf{H}_{\mathbf{2}}$ with their union

Extra Operations:

- Find- $\operatorname{Min}(\mathbf{H})$: return the element with smallest key
- Delete (\mathbf{H}, \mathbf{x}) : delete element \mathbf{x} from heap \mathbf{H}

Min-Heap, but can also do Max-Heap.

Introduction

Priority Queues / Heaps: Like a queue/stack, but instead of FIFO/LIFO, by priority

- $\operatorname{Insert}(\mathbf{H}, \mathbf{x})$: insert element \mathbf{x} into heap \mathbf{H}.
- Extract-Min(H): remove and return an element with smallest key
- Decrease- $\operatorname{Key}(\mathbf{H}, \mathbf{x}, \mathbf{k})$: decrease the key of \mathbf{x} to \mathbf{k}.
- $\operatorname{Meld}\left(\mathbf{H}_{\mathbf{1}}, \mathbf{H}_{\mathbf{2}}\right)$: replace heaps $\mathbf{H}_{\mathbf{1}}$ and $\mathbf{H}_{\mathbf{2}}$ with their union

Extra Operations:

- Find- $\operatorname{Min}(\mathbf{H})$: return the element with smallest key
- Delete (\mathbf{H}, \mathbf{x}) : delete element \mathbf{x} from heap \mathbf{H}

Min-Heap, but can also do Max-Heap.
Note: \mathbf{x} is a pointer to an element. No way to lookup, so need a pointer to an element to change it.

Obvious Approaches

	Insert	Extract-Min
Decrease-Key Meld		
Linked List		

Obvious Approaches

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (1)}$

Obvious Approaches

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (1)}$
Sorted Array				

Obvious Approaches

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (1)}$
Sorted Array	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (n)}$

Obvious Approaches

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (1)}$
Sorted Array	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (n)}$
Balanced Search Tree				

Obvious Approaches

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (1)}$
Sorted Array	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (n)}$
Balanced Search Tree	$\mathbf{O}(\log \mathbf{n})$	$\mathbf{O}(\log \mathbf{n})$	$\mathbf{O}(\log \mathbf{n})$	$\mathbf{O (n)}$

Obvious Approaches

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (1)}$
Sorted Array	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (n)}$
Balanced Search Tree	$\mathbf{O}(\log \mathbf{n})$	$\mathbf{O}(\log \mathbf{n})$	$\mathbf{O}(\log \mathbf{n})$	$\mathbf{O (n)}$

Goal: get as many of these to $\mathbf{O}(\mathbf{1})$ as possible

Obvious Approaches

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (1)}$
Sorted Array	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (n)}$
Balanced Search Tree	$\mathbf{O}(\log \mathbf{n})$	$\mathbf{O}(\log \mathbf{n})$	$\mathbf{O}(\log \mathbf{n})$	$\mathbf{O (n)}$

Goal: get as many of these to $\mathbf{O}(\mathbf{1})$ as possible
Question: Can we make Insert and Extract-Min both $\mathbf{O}(1)$, even amortized?

Obvious Approaches

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (1)}$
Sorted Array	$\mathbf{O (n)}$	$\mathbf{O (1)}$	$\mathbf{O (n)}$	$\mathbf{O (n)}$
Balanced Search Tree	$\mathbf{O}(\log \mathbf{n})$	$\mathbf{O}(\log \mathbf{n})$	$\mathbf{O}(\log \mathbf{n})$	$\mathbf{O (n)}$

Goal: get as many of these to $\mathbf{O}(\mathbf{1})$ as possible
Question: Can we make Insert and Extract-Min both $\mathbf{O}(1)$, even amortized?
No! Sorting lower bound. But maybe can make one $\mathbf{O}(1)$, other $\mathbf{O}(\log \mathbf{n})$?

Today and State of the Art

State of the art: strict Fibonacci Heaps.

- Too complicated for this class, not practical. See CLRS 19 for Fibonacci Heaps.

Today: binary heaps (should be review), then binomial heaps

- Binomial heaps not quite as complicated as Fibonacci heaps, many of same core ideas

Binary Heaps

- Complete binary tree, except possibly at bottom level.
- Heap order: key of any node no larger than key of its children.

Binary Heaps

- Complete binary tree, except possibly at bottom level.
- Heap order: key of any node no larger than key of its children.

Properties:

- Since (almost) complete binary tree, depth $\boldsymbol{\Theta}(\log \mathbf{n})$
- Min must be at root

Representation:

- Pointers to root and rightmost leaf
- Every node has pointers to parent and children

Insert($\mathbf{H}, \mathbf{x})$

Preserve heap structure: insert x into next open spot (bottom right, or left of new level if bottom level full)

- Might violate heap order!

Insert($\mathbf{H}, \mathbf{x})$

Preserve heap structure: insert x into next open spot (bottom right, or left of new level if bottom level full)

- Might violate heap order!

"Swim up": as long as \mathbf{x} smaller than its parent, swap with parent

Insert($\mathbf{H}, \mathbf{x})$

Preserve heap structure: insert x into next open spot (bottom right, or left of new level if bottom level full)
"Swim up": as long as \mathbf{x} smaller than its parent, swap with parent

- Might violate heap order!

Running time: $\mathbf{O}(\log \mathbf{n})$ worst case (also amortized) via depth

Extract-Min(H)

Min is definitely at root. How to remove it while still have binary tree?

Extract-Min(H)

Min is definitely at root. How to remove it while still have binary tree?

- Swap root with final heap element, remove former root.
- Sink down: swap root with smaller of its children until heap order restored

Extract-Min(H)

Min is definitely at root. How to remove it while still have binary tree?

- Swap root with final heap element, remove former root.
- Sink down: swap root with smaller of its children until heap order restored

Running time: $\mathbf{O}(\log n)$ worst case (via depth). Amortized: $\mathbf{O}(\mathbf{1})$ (not obvious)

Decrease-Key $(\mathbf{H}, \mathbf{x}, \mathbf{k})$

Decrease key of \mathbf{x} to \mathbf{k}, "swim up" until heap order restored.
Running time: $\mathbf{O}(\log \mathbf{n})$ (depth)

$\operatorname{Meld}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$

Assume both heaps have size \mathbf{n}.

- Obvious approach: insert each element of $\mathbf{H}_{\mathbf{2}}$ into $\mathbf{H}_{\mathbf{1}}$. Time: $\mathbf{O}(\mathbf{n} \log \mathbf{n})$

$\operatorname{Meld}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$

Assume both heaps have size \mathbf{n}.

- Obvious approach: insert each element of $\mathbf{H}_{\mathbf{2}}$ into $\mathbf{H}_{\mathbf{1}}$. Time: $\mathbf{O}(\mathbf{n} \log \mathbf{n})$

Better:

- Insert all elements of \mathbf{H}_{2} all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

$\operatorname{Meld}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$

Assume both heaps have size \mathbf{n}.

- Obvious approach: insert each element of $\mathbf{H}_{\mathbf{2}}$ into $\mathbf{H}_{\mathbf{1}}$. Time: $\mathbf{O}(\mathbf{n} \log \mathbf{n})$

Better:

- Insert all elements of \mathbf{H}_{2} all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap. Correctness: ends up in heap order (induction, or contradiction)

$\operatorname{Meld}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$

Assume both heaps have size \mathbf{n}.

- Obvious approach: insert each element of $\mathbf{H}_{\mathbf{2}}$ into $\mathbf{H}_{\mathbf{1}}$. Time: $\mathbf{O}(\mathbf{n} \log \mathbf{n})$

Better:

- Insert all elements of \mathbf{H}_{2} all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction) Running Time:

- Inserting: O(n) total

$\operatorname{Meld}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$

Assume both heaps have size \mathbf{n}.

- Obvious approach: insert each element of $\mathbf{H}_{\mathbf{2}}$ into $\mathbf{H}_{\mathbf{1}}$. Time: $\mathbf{O}(\mathbf{n} \log \mathbf{n})$

Better:

- Insert all elements of \mathbf{H}_{2} all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction) Running Time:

- Inserting: O(n) total
- Sinking down:
- Nodes at height \mathbf{h} might have to sink down \mathbf{h}.
- At most $\mathbf{n} / 2^{\mathbf{h}}$ nodes at height \mathbf{h}

$\operatorname{Meld}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$

Assume both heaps have size \mathbf{n}.

- Obvious approach: insert each element of $\mathbf{H}_{\mathbf{2}}$ into $\mathbf{H}_{\mathbf{1}}$. Time: $\mathbf{O}(\mathbf{n} \log \mathbf{n})$

Better:

- Insert all elements of \mathbf{H}_{2} all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction) Running Time:

- Inserting: O(n) total
- Sinking down:
- Nodes at height \mathbf{h} might have to sink down \mathbf{h}.
- At most $\mathbf{n} / \mathbf{2}^{\mathbf{h}}$ nodes at height \mathbf{h}

$$
\sum_{h=0}^{\log n} h\left(\frac{n}{2^{h}}\right)=n \sum_{h=0}^{\log n} \frac{h}{2^{h}} \leq O(n)
$$

Amortized Extract-Min

Weights: $\mathbf{w}(\mathbf{x})=$ depth of \mathbf{x}

- Root has weight $\mathbf{0}$, its children have weight $\mathbf{1}$, etc.

Potential: $\boldsymbol{\Phi}(\mathbf{H})=\sum_{\mathbf{x}} \mathbf{w}(\mathbf{x})$

Amortized Extract-Min

Weights: $\mathbf{w}(\mathbf{x})=$ depth of \mathbf{x}

- Root has weight $\mathbf{0}$, its children have weight $\mathbf{1}$, etc.

Potential: $\boldsymbol{\Phi}(\mathbf{H})=\sum_{\mathbf{x}} \mathbf{w}(\mathbf{x})$
Insert: $\boldsymbol{\Delta \Phi}=\mathbf{O}(\log n) \Longrightarrow$ amortized cost $\leq \mathbf{O}(\log n)+\mathbf{O}(\log n)=\mathbf{O}(\log n)$

Amortized Extract-Min

Weights: $\mathbf{w}(\mathbf{x})=$ depth of \mathbf{x}

- Root has weight $\mathbf{0}$, its children have weight $\mathbf{1}$, etc.

Potential: $\boldsymbol{\Phi}(\mathbf{H})=\sum_{\mathbf{x}} \mathbf{w}(\mathbf{x})$
Insert: $\boldsymbol{\Delta \Phi}=\mathbf{O}(\log n) \Longrightarrow$ amortized cost $\leq \mathbf{O}(\log n)+\mathbf{O}(\log n)=\mathbf{O}(\log n)$
Extract-Min:

- True cost: height $\mathbf{h}=\boldsymbol{\Theta}(\log n)$ of tree, plus $\mathbf{O}(1)$ (for initial swap).
- $\boldsymbol{\Delta \Phi}$: one less node at depth $\mathbf{h} \Longrightarrow \boldsymbol{\Delta \Phi}=-\mathbf{h}$
- Amortized cost: $\mathbf{h}+\mathbf{O}(\mathbf{1})-\mathbf{h}=\mathbf{O}(\mathbf{1})$.

Amortized Extract-Min

Weights: $\mathbf{w}(\mathbf{x})=$ depth of \mathbf{x}

- Root has weight $\mathbf{0}$, its children have weight $\mathbf{1}$, etc.

Potential: $\boldsymbol{\Phi}(\mathbf{H})=\sum_{\mathbf{x}} \mathbf{w}(\mathbf{x})$
Insert: $\boldsymbol{\Delta \Phi}=\mathbf{O}(\log n) \Longrightarrow$ amortized cost $\leq \mathbf{O}(\log n)+\mathbf{O}(\log n)=\mathbf{O}(\log n)$
Extract-Min:

- True cost: height $\mathbf{h}=\boldsymbol{\Theta}(\log \mathbf{n})$ of tree, plus $\mathbf{O}(\mathbf{1})$ (for initial swap).
- $\boldsymbol{\Delta} \boldsymbol{\Phi}$: one less node at depth $\mathbf{h} \Longrightarrow \boldsymbol{\Delta \Phi}=-\mathbf{h}$
- Amortized cost: $\mathbf{h}+\mathbf{O}(\mathbf{1})-\mathbf{h}=\mathbf{O}(\mathbf{1})$.

Uses Inserts to "pay for" Extract-Mins.

Improvements

Downsides of binary heaps:

- Do at least as many Inserts as Extract-Mins! Want $\mathbf{O}(\mathbf{1})$ Insert, $\mathbf{O}(\log n)$ Extract-Min
- Meld in $\mathbf{O}(\mathbf{n})$ is better than trivial, but still not great.

Improvements

Downsides of binary heaps:

- Do at least as many Inserts as Extract-Mins! Want $\mathbf{O}(1)$ Insert, $\mathbf{O}(\log n)$ Extract-Min
- Meld in $\mathbf{O}(\mathbf{n})$ is better than trivial, but still not great.

Binomial Heaps:

- Get Insert down to $\mathbf{O (1)}$ (amortized)
- Meld in $\mathbf{O}(\log n)$ (worst-case and amortized)
- Downside: $\mathbf{O}(\log n)$ Extract-Min, $\mathbf{O}(\log \mathbf{n})$ Find-Min

Improvements

Downsides of binary heaps:

- Do at least as many Inserts as Extract-Mins! Want $\mathbf{O}(1)$ Insert, $\mathbf{O}(\log n)$ Extract-Min
- Meld in $\mathbf{O}(\mathbf{n})$ is better than trivial, but still not great.

Binomial Heaps:

- Get Insert down to $\mathbf{O (1)}$ (amortized)
- Meld in $\mathbf{O}(\log n)$ (worst-case and amortized)
- Downside: $\mathbf{O}(\log n)$ Extract-Min, $\mathbf{O}(\log \mathbf{n})$ Find-Min

Fibonacci Heaps:

- Everything $\mathbf{O}(\mathbf{1})$ (amortized) except $\mathbf{O}(\log \mathbf{n})$ Extract-Min (amortized)

Binomial Heaps

Not based on binary tree anymore! Based on binomial tree.

Binomial Heaps

Not based on binary tree anymore! Based on binomial tree.

- $B_{0}=$ single node.
- $\mathbf{B}_{\mathrm{k}}=$ one $\mathbf{B}_{\mathrm{k}-\mathbf{1}}$ linked to another $\mathbf{B}_{\mathrm{k}-\mathbf{1}}$.

Structure Lemma

Lemma

The order \mathbf{k} binomial tree $\mathbf{B}_{\mathbf{k}}$ has the following properties:

1. Its height is \mathbf{k}.
2. It has $\mathbf{2}^{\mathbf{k}}$ nodes
3. The degree of the root is \mathbf{k}
4. If we delete the root, we get \mathbf{k} binomial trees $\mathbf{B}_{\mathbf{k}-\mathbf{1}}, \ldots, \mathbf{B}_{\mathbf{0}}$.

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is exactly $\mathbf{0}$ or $\mathbf{1}$ tree of order \mathbf{k} for each integer \mathbf{k}.

Keep roots of trees in linked list, from smallest order (not key!) to largest

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is exactly $\mathbf{0}$ or $\mathbf{1}$ tree of order \mathbf{k} for each integer \mathbf{k}.

Keep roots of trees in linked list, from smallest order (not key!) to largest

With \mathbf{n} items, no choices about which binomial trees exist in heap!

- Write \mathbf{n} in binary: $\mathbf{b}_{\mathbf{a}} \mathbf{b}_{\mathbf{a}-\mathbf{1}} \ldots \mathbf{b}_{\mathbf{1}} \mathbf{b}_{\mathbf{0}}$.
- Tree \mathbf{B}_{k} exists if and only if $\mathbf{b}_{\mathbf{k}}=\mathbf{1}$

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is exactly $\mathbf{0}$ or $\mathbf{1}$ tree of order \mathbf{k} for each integer \mathbf{k}.

Keep roots of trees in linked list, from smallest order (not key!) to largest

With \mathbf{n} items, no choices about which binomial trees exist in heap!

- Write \mathbf{n} in binary: $\mathbf{b}_{\mathbf{a}} \mathbf{b}_{\mathbf{a}-\mathbf{1}} \ldots \mathbf{b}_{\mathbf{1}} \mathbf{b}_{\mathbf{0}}$.
- Tree \mathbf{B}_{k} exists if and only if $\mathbf{b}_{\mathbf{k}}=\mathbf{1}$
\Longrightarrow at most $\log \mathbf{n}$ trees, and by lemma each has height $\leq \boldsymbol{\operatorname { l o g }} \mathbf{n}$

Analysis: Beginning

Analyze all operations both worst-case and amortized.

Analysis: Beginning

Analyze all operations both worst-case and amortized.
Potential function: $\boldsymbol{\Phi}(\mathbf{H})=\#$ trees in \mathbf{H}

- Initially 0
- Never negative

Analysis: Beginning

Analyze all operations both worst-case and amortized.
Potential function: $\boldsymbol{\Phi}(\mathbf{H})=\#$ trees in \mathbf{H}

- Initially 0
- Never negative

Find- $\operatorname{Min}(\mathbf{H})$: Scan through roots of trees in \mathbf{H}, return min

Analysis: Beginning

Analyze all operations both worst-case and amortized.

Potential function: $\boldsymbol{\Phi}(\mathbf{H})=\#$ trees in \mathbf{H}

- Initially 0
- Never negative

Find- $\operatorname{Min} \mathbf{(H) : ~ S c a n ~ t h r o u g h ~ r o o t s ~ o f ~ t r e e s ~ i n ~} \mathbf{H}$, return min

- Correct: each tree heap-ordered, so global min one of the roots

Analysis: Beginning

Analyze all operations both worst-case and amortized.
Potential function: $\boldsymbol{\Phi}(\mathbf{H})=\#$ trees in \mathbf{H}

- Initially 0
- Never negative

Find- $\operatorname{Min}(\mathbf{H})$: Scan through roots of trees in \mathbf{H}, return min

- Correct: each tree heap-ordered, so global min one of the roots
- Worst-case: O(logn)
- Amortized: doesn't change potential, also O(logn).

$\operatorname{Meld}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right):$ Link

Key operation: we'll use Meld to do Insert and Extract-Min

$\operatorname{Meld}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right):$ Link

Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: $\mathbf{H}_{\mathbf{1}}, \mathbf{H}_{\mathbf{2}}$ both single trees of same order \mathbf{k}.

- Union has size $\mathbf{2}^{k}+\mathbf{2}^{k}=2^{k+1}$: just a single B_{k+1}
- Easy to make a $\mathbf{B}_{\mathrm{k}+\mathbf{1}}$ out of two \mathbf{B}_{k} 's!

$\operatorname{Meld}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right):$ Link

Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: $\mathbf{H}_{\mathbf{1}}, \mathbf{H}_{\mathbf{2}}$ both single trees of same order \mathbf{k}.

- Union has size $\mathbf{2}^{k}+\mathbf{2}^{k}=2^{k+1}$: just a single B_{k+1}
- Easy to make a $\mathbf{B}_{\mathrm{k}+\mathbf{1}}$ out of two \mathbf{B}_{k} 's!

$\operatorname{Meld}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right):$ Link

Key operation: we'll use Meld to do Insert and Extract-Min
Warmup: $\mathbf{H}_{\mathbf{1}}, \mathbf{H}_{\mathbf{2}}$ both single trees of same order \mathbf{k}.

- Union has size $\mathbf{2}^{k}+2^{k}=2^{k+1}$: just a single B_{k+1}
- Easy to make a $\mathbf{B}_{\mathrm{k}+\mathbf{1}}$ out of two \mathbf{B}_{k} 's!

Link of two trees.

- Worst-case time: O(1) (create a single link). Normalize: call 1
- $\boldsymbol{\Delta} \boldsymbol{\Phi}$: two trees to one: $\mathbf{- 1}$
- Amortized cost:
$1-1=0=0(1)$.

$\operatorname{Meld}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right):$ General Case

(Almost) just like binary addition!

$\operatorname{Meld}\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$: Analysis

Easy to prove correct (exercise for home).
Running time:

- Worst case: $\mathbf{O}(\mathbf{1})$ per "order" $\mathbf{k} \Longrightarrow \leq \mathbf{O}(\log \mathbf{n})$
- Amortized: Potential does not go up, but could stay the same $\Longrightarrow \mathbf{O}(\log n)$ amortized
$\operatorname{Insert}(\mathbf{H}, \mathbf{x})$

Use Meld:

- Create new heap \mathbf{H}^{\prime} with one $\mathbf{B}_{\mathbf{0}}$ consisting of just \mathbf{x}
- Meld($\mathbf{H}, \mathbf{H}^{\prime}$)

Correctness: Obvious

Insert($\mathbf{H}, \mathbf{x})$

Use Meld:

- Create new heap \mathbf{H}^{\prime} with one $\mathbf{B}_{\mathbf{0}}$ consisting of just \mathbf{x}
- Meld($\mathbf{H}, \mathbf{H}^{\prime}$)

Correctness: Obvious
Running Time:

- Worst case: $\mathbf{O}(\log \mathbf{n})($ via Meld)

Insert($\mathbf{H}, \mathbf{x})$

Use Meld:

- Create new heap \mathbf{H}^{\prime} with one $\mathbf{B}_{\mathbf{0}}$ consisting of just \mathbf{x}
- Meld($\mathbf{H}, \mathbf{H}^{\prime}$)

Correctness: Obvious
Running Time:

- Worst case: $\mathbf{O}(\log \mathbf{n})$ (via Meld)
- Amortized:
- Like incrementing a binary counter!

$\operatorname{Insert}(\mathbf{H}, \mathbf{x})$

Use Meld:

- Create new heap \mathbf{H}^{\prime} with one $\mathbf{B}_{\mathbf{0}}$ consisting of just \mathbf{x}
- Meld($\mathbf{H}, \mathbf{H}^{\prime}$)

Correctness: Obvious
Running Time:

- Worst case: O(logn) (via Meld)
- Amortized:
- Like incrementing a binary counter!
- If we link \mathbf{k} trees, potential goes down by $\mathbf{k} \mathbf{- 1}$
- Cost = \# links plus 1 (for making new heap)
- Amortized cost $=k+1+\Delta \Phi=k+1-(k-1)=2=\mathbf{O}(1)$

Extract-Min(H)

Use Meld again!

- $\mathbf{O}(\log \mathbf{n})$ to Find-Min: one of the roots.
- Delete and return this root: tree turns into a new heap!
- Meld with original heap (minus the tree)

Correctness: Obvious

Extract-Min(H)

Use Meld again!

- $\mathbf{O}(\log \mathbf{n})$ to Find-Min: one of the roots.
- Delete and return this root: tree turns into a new heap!
- Meld with original heap (minus the tree)

Correctness: Obvious
Running Time:

- Worst-Case: $\mathbf{O}(\log \mathbf{n})$ from creating new heap, Meld
- Amortized:
- Potential can go up! But by at most $\log n$
- Amortized time at most $\mathbf{O}(\log \mathbf{n})+\boldsymbol{\operatorname { l o g }} \mathbf{n}=\mathbf{O}(\log \mathbf{n})$

