Lecture 8: Priority Queues and Heaps

Michael Dinitz

September 23, 2021 601.433/633 Introduction to Algorithms

Introduction

Priority Queues / Heaps: Like a queue/stack, but instead of FIFO/LIFO, by priority

- ► Insert(H,x): insert element x into heap H.
- ► Extract-Min(**H**): remove and return an element with smallest key
- ▶ Decrease-Key($\mathbf{H}, \mathbf{x}, \mathbf{k}$): decrease the key of \mathbf{x} to \mathbf{k} .
- ▶ $Meld(H_1, H_2)$: replace heaps H_1 and H_2 with their union

Extra Operations:

- ► Find-Min(**H**): return the element with smallest key
- ▶ Delete(H,x): delete element x from heap H

Min-Heap, but can also do Max-Heap.

Introduction

Priority Queues / Heaps: Like a queue/stack, but instead of FIFO/LIFO, by priority

- ► Insert(**H**, **x**): insert element **x** into heap **H**.
- ► Extract-Min(**H**): remove and return an element with smallest key
- ▶ Decrease-Key($\mathbf{H}, \mathbf{x}, \mathbf{k}$): decrease the key of \mathbf{x} to \mathbf{k} .
- ▶ Meld(H₁, H₂): replace heaps H₁ and H₂ with their union

Extra Operations:

- ► Find-Min(**H**): return the element with smallest key
- Delete(H,x): delete element x from heap H

Min-Heap, but can also do Max-Heap.

Note: x is a *pointer* to an element. No way to lookup, so need a pointer to an element to change it.

	Insert	Extract-Min	Decrease-Key	Meld
Linked List				

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O(1)	O(1)

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O(1)	O(1)
Sorted Array				

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O(1)	O(1)
Sorted Array	O(n)	O(1)	O(n)	O(n)

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O(1)	O(1)
Sorted Array	O(n)	O(1)	O(n)	O(n)
Balanced Search Tree				

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O(1)	O(1)
Sorted Array	O(n)	O(1)	O(n)	O(n)
Balanced Search Tree	O(log n)	$O(\log n)$	$O(\log n)$	O(n)

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O(1)	O(1)
Sorted Array	O(n)	O(1)	O(n)	O(n)
Balanced Search Tree	O(log n)	$O(\log n)$	$O(\log n)$	O(n)

Goal: get as many of these to O(1) as possible

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O(1)	O(1)
Sorted Array	O(n)	O(1)	O(n)	O(n)
Balanced Search Tree	O(log n)	$O(\log n)$	$O(\log n)$	O(n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

	Insert	Extract-Min	Decrease-Key	Meld
Linked List	O(1)	O(n)	O(1)	O (1)
Sorted Array	O(n)	O(1)	O(n)	O(n)
Balanced Search Tree	O(log n)	$O(\log n)$	$O(\log n)$	O(n)

Goal: get as many of these to O(1) as possible

Question: Can we make Insert and Extract-Min both O(1), even amortized?

No! Sorting lower bound. But maybe can make one O(1), other $O(\log n)$?

Today and State of the Art

State of the art: strict Fibonacci Heaps.

▶ Too complicated for this class, not practical. See CLRS 19 for Fibonacci Heaps.

Today: binary heaps (should be review), then binomial heaps

▶ Binomial heaps not quite as complicated as Fibonacci heaps, many of same core ideas

Binary Heaps

- Complete binary tree, except possibly at bottom level.
- ▶ Heap order: key of any node no larger than key of its children.

Binary Heaps

- Complete binary tree, except possibly at bottom level.
- ▶ Heap order: key of any node no larger than key of its children.

Properties:

- Since (almost) complete binary tree, depth $\Theta(\log n)$
- Min must be at root

Representation:

- Pointers to root and rightmost leaf
- Every node has pointers to parent and children

$Insert(\mathbf{H}, \mathbf{x})$

Preserve heap structure: insert x into next open spot (bottom right, or left of new level if bottom level full)

Might violate heap order!

Insert(H, x)

Preserve heap structure: insert x into next open spot (bottom right, or left of new level if bottom level full)

Might violate heap order!

10 8 11 25 add key to heap (violates heap order)

"Swim up": as long as \boldsymbol{x} smaller than its parent, swap with parent

Insert(H, x)

Preserve heap *structure*: insert **x** into next open spot (bottom right, or left of new level if bottom level full)

Might violate heap order!

10 8 8 11 25 add key to heap (violates heap order)

"Swim up": as long as \boldsymbol{x} smaller than its parent, swap with parent

Running time: O(log n) worst case (also amortized) via depth

Extract-Min(**H**)

Min is definitely at root. How to remove it while still have binary tree?

Extract-Min(**H**)

Min is definitely at root. How to remove it while still have binary tree?

- Swap root with final heap element, remove former root.
- ► Sink down: swap root with smaller of its children until heap order restored

Extract-Min(**H**)

Min is definitely at root. How to remove it while still have binary tree?

- Swap root with final heap element, remove former root.
- ► Sink down: swap root with smaller of its children until heap order restored

Running time: O(log n) worst case (via depth). Amortized: O(1) (not obvious)

Decrease-Key $(\mathbf{H}, \mathbf{x}, \mathbf{k})$

Decrease key of \mathbf{x} to \mathbf{k} , "swim up" until heap order restored.

Running time: O(log n) (depth)

$\mathsf{Meld}(\mathsf{H}_1,\mathsf{H}_2)$

Assume both heaps have size n.

▶ Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Assume both heaps have size n.

▶ Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of H₂ all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Assume both heaps have size \mathbf{n} .

▶ Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of H₂ all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)

Assume both heaps have size n.

▶ Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of H₂ all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)

Running Time:

▶ Inserting: **O(n)** total

Assume both heaps have size n.

▶ Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of H₂ all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)

Running Time:

- ▶ Inserting: **O(n)** total
- Sinking down:
 - Nodes at height h might have to sink down h.
 - ▶ At most n/2^h nodes at height h

Assume both heaps have size n.

▶ Obvious approach: insert each element of H_2 into H_1 . Time: $O(n \log n)$

Better:

- ▶ Insert all elements of H₂ all at once (not fixing heap order)
- Instead of fixing by swimming up: iterate from bottom up and sink down to fix heap.

Correctness: ends up in heap order (induction, or contradiction)

Running Time:

- ▶ Inserting: **O(n)** total
- Sinking down:
 - Nodes at height **h** might have to sink down **h**.
 - At most n/2^h nodes at height h

$$\sum_{h=0}^{\log n} h\left(\frac{n}{2^h}\right) = n \sum_{h=0}^{\log n} \frac{h}{2^h} \le O(n)$$

Weights: w(x) = depth of x

▶ Root has weight **0**, its children have weight **1**, etc.

Potential: $\Phi(H) = \sum_{x} w(x)$

Weights: w(x) = depth of x

▶ Root has weight **0**, its children have weight **1**, etc.

Potential: $\Phi(H) = \sum_{x} w(x)$

Insert: $\Delta \Phi = O(\log n) \implies \text{amortized cost} \le O(\log n) + O(\log n) = O(\log n)$

Weights: w(x) = depth of x

Root has weight 0, its children have weight 1, etc.

Potential: $\Phi(H) = \sum_{x} w(x)$

Insert: $\Delta \Phi = O(\log n) \implies \text{amortized cost} \le O(\log n) + O(\log n) = O(\log n)$

Extract-Min:

- ▶ True cost: height $h = \Theta(\log n)$ of tree, plus O(1) (for initial swap).
- ▶ $\Delta\Phi$: one less node at depth $h \implies \Delta\Phi = -h$
- Amortized cost: h + O(1) h = O(1).

Weights: w(x) = depth of x

▶ Root has weight **0**, its children have weight **1**, etc.

Potential: $\Phi(H) = \sum_{x} w(x)$

Insert: $\Delta \Phi = O(\log n) \implies \text{amortized cost} \le O(\log n) + O(\log n) = O(\log n)$

Extract-Min:

- ▶ True cost: height $h = \Theta(\log n)$ of tree, plus O(1) (for initial swap).
- ▶ $\Delta\Phi$: one less node at depth $h \implies \Delta\Phi = -h$
- Amortized cost: h + O(1) h = O(1).

Uses Inserts to "pay for" Extract-Mins.

Improvements

Downsides of binary heaps:

- ▶ Do at least as many Inserts as Extract-Mins! Want O(1) Insert, $O(\log n)$ Extract-Min
- Meld in O(n) is better than trivial, but still not great.

Improvements

Downsides of binary heaps:

- ▶ Do at least as many Inserts as Extract-Mins! Want O(1) Insert, O(log n) Extract-Min
- ▶ Meld in **O(n)** is better than trivial, but still not great.

Binomial Heaps:

- ► Get Insert down to **O(1)** (amortized)
- ▶ Meld in O(log n) (worst-case and amortized)
- ▶ Downside: **O(log n)** Extract-Min, **O(log n)** Find-Min

Improvements

Downsides of binary heaps:

- ▶ Do at least as many Inserts as Extract-Mins! Want O(1) Insert, $O(\log n)$ Extract-Min
- ▶ Meld in **O(n)** is better than trivial, but still not great.

Binomial Heaps:

- Get Insert down to O(1) (amortized)
- Meld in O(log n) (worst-case and amortized)
- ▶ Downside: O(log n) Extract-Min, O(log n) Find-Min

Fibonacci Heaps:

► Everything **O(1)** (amortized) except **O(log n)** Extract-Min (amortized)

Binomial Heaps

Not based on binary tree anymore! Based on binomial tree.

Binomial Heaps

Not based on binary tree anymore! Based on binomial tree.

- ▶ B_0 = single node.
- ▶ B_k = one B_{k-1} linked to another B_{k-1} .

Structure Lemma

Lemma

The order k binomial tree B_k has the following properties:

- 1. Its height is **k**.
- 2. It has 2^k nodes
- 3. The degree of the root is k
- 4. If we delete the root, we get k binomial trees B_{k-1}, \ldots, B_0 .

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is exactly $\mathbf{0}$ or $\mathbf{1}$ tree of order \mathbf{k} for each integer \mathbf{k} .

Keep roots of trees in linked list, from smallest order (not key!) to largest

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is exactly $\mathbf{0}$ or $\mathbf{1}$ tree of order \mathbf{k} for each integer \mathbf{k} .

Keep roots of trees in linked list, from smallest order (not key!) to largest

With **n** items, no choices about which binomial trees exist in heap!

- Write **n** in binary: $b_ab_{a-1}...b_1b_0$.
- ▶ Tree B_k exists if and only if $b_k = 1$

Binomial Heap

Definition

A binomial heap is a collection of binomial trees so that each tree is heap ordered, and there is exactly $\mathbf{0}$ or $\mathbf{1}$ tree of order \mathbf{k} for each integer \mathbf{k} .

Keep roots of trees in linked list, from smallest order (not key!) to largest

With **n** items, no choices about which binomial trees exist in heap!

- Write **n** in binary: $b_ab_{a-1}...b_1b_0$.
- ▶ Tree B_k exists if and only if $b_k = 1$
- \implies at most $\log n$ trees, and by lemma each has height $\leq \log n$

Analyze all operations both worst-case and amortized.

Analyze all operations both worst-case and amortized.

Potential function: $\Phi(H) = \#$ trees in H

- ▶ Initially **0**
- Never negative

Analyze all operations both worst-case and amortized.

Potential function: $\Phi(H) = \#$ trees in H

- Initially 0
- Never negative

Find-Min(H): Scan through roots of trees in H, return min

Analyze all operations both worst-case and amortized.

Potential function: $\Phi(H) = \#$ trees in H

- ▶ Initially **0**
- Never negative

Find-Min(H): Scan through roots of trees in H, return min

► Correct: each tree heap-ordered, so global min one of the roots

Analyze all operations both worst-case and amortized.

Potential function: $\Phi(H) = \#$ trees in H

- Initially 0
- Never negative

Find-Min(H): Scan through roots of trees in H, return min

- Correct: each tree heap-ordered, so global min one of the roots
- ▶ Worst-case: **O(log n)**
- ► Amortized: doesn't change potential, also O(log n).

$\mathsf{Meld}(\mathsf{H}_1,\mathsf{H}_2)$: Link

Key operation: we'll use Meld to do Insert and Extract-Min

$Meld(H_1, H_2)$: Link

Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: H_1, H_2 both single trees of same order k.

- ▶ Union has size $2^k + 2^k = 2^{k+1}$: just a single B_{k+1}
- Easy to make a B_{k+1} out of two B_k 's!

$Meld(H_1, H_2)$: Link

Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: H_1, H_2 both single trees of same order k.

- ▶ Union has size $2^k + 2^k = 2^{k+1}$: just a single B_{k+1}
- Easy to make a B_{k+1} out of two B_k 's!

$Meld(H_1, H_2)$: Link

Key operation: we'll use Meld to do Insert and Extract-Min

Warmup: H_1, H_2 both single trees of same order k.

- ▶ Union has size $2^k + 2^k = 2^{k+1}$: just a single B_{k+1}
- Easy to make a B_{k+1} out of two B_k 's!

Link of two trees.

- Worst-case time: O(1) (create a single link). Normalize: call 1
- ▶ $\Delta\Phi$: two trees to one: -1
- Amortized cost:
 1 − 1 = 0 = O(1).

$Meld(H_1, H_2)$: General Case

(Almost) just like binary addition!

$Meld(H_1, H_2)$: Analysis

Easy to prove correct (exercise for home).

Running time:

- ▶ Worst case: O(1) per "order" $k \implies \le O(\log n)$
- ► Amortized: Potential does not go up, but could stay the same ⇒ O(log n) amortized

Insert(H, x)

Use Meld:

- ightharpoonup Create new heap H' with one B_0 consisting of just x
- ► Meld(**H**, **H**′)

Correctness: Obvious

Insert(H, x)

Use Meld:

Create new heap H' with one B₀ consisting of just x

▶ Meld(**H**, **H**′)

Correctness: Obvious

Running Time:

Worst case: O(log n) (via Meld)

$Insert(\mathbf{H}, \mathbf{x})$

Use Meld:

- Create new heap H' with one B₀ consisting of just x
- ▶ Meld(**H**, **H**′)

Correctness: Obvious

Running Time:

- Worst case: O(log n) (via Meld)
- Amortized:
 - Like incrementing a binary counter!

$Insert(\mathbf{H}, \mathbf{x})$

Use Meld:

- Create new heap H' with one B₀ consisting of just x
- ► Meld(**H**, **H**′)

Correctness: Obvious

Running Time:

- Worst case: O(log n) (via Meld)
- Amortized:
 - Like incrementing a binary counter!
 - If we link k trees, potential goes down by k-1
 - Cost = # links plus 1 (for making new heap)
 - Amortized cost = $k + 1 + \Delta \Phi = k + 1 (k 1) = 2 = O(1)$

Extract-Min(**H**)

Use Meld again!

- ▶ O(log n) to Find-Min: one of the roots.
- Delete and return this root: tree turns into a new heap!
- Meld with original heap (minus the tree)

Correctness: Obvious

Extract-Min(**H**)

Use Meld again!

- O(log n) to Find-Min: one of the roots.
- Delete and return this root: tree turns into a new heap!
- Meld with original heap (minus the tree)

Correctness: Obvious

Running Time:

- ▶ Worst-Case: **O(log n)** from creating new heap, Meld
- Amortized:
 - Potential can go up! But by at most log n
 - Amortized time at most $O(\log n) + \log n = O(\log n)$