Lecture 7: Amortized Analysis

Michael Dinitz

September 21, 2021
601.433/633 Introduction to Algorithms
Introduction

Typically been considering “static” or “one-shot” problems: given input, compute correct output as efficiently as possible.
Introduction

Typically been considering “static” or “one-shot” problems: given input, compute correct output as efficiently as possible.

Data structures: *sequence* of operations!

- Dictionary: insert, insert, insert, lookup, insert, lookup, lookup, . . .
Introduction

Typically been considering “static” or “one-shot” problems: given input, compute correct output as efficiently as possible.

Data structures: sequence of operations!

- Dictionary: insert, insert, insert, lookup, insert, lookup, lookup, . . .

Last time: analyzed the (worst-case) cost of each operation. What about (worst-case) cost of sequence of operations?
Definition & Example

Definition
The amortized cost of a sequence of n operations is the total cost of the sequence divided by n.

“Average cost per operation” (but no randomness!)
Definition & Example

Definition

The *amortized cost* of a sequence of n operations is the total cost of the sequence divided by n.

“Average cost per operation” (but no randomness!)

Example: 100 operations of cost 1, then 1 operation of cost 100

- Normal worst-case analysis: **100**
- Amortized cost: **200/101 ≈ 2**
Definition & Example

Definition

The *amortized cost* of a sequence of n operations is the total cost of the sequence divided by n.

“Average cost per operation” (but no randomness!)

Example: 100 operations of cost 1, then 1 operation of cost 100

- Normal worst-case analysis: 100
- Amortized cost: $200/101 \approx 2$

If we care about total time (e.g., using data structure in larger algorithm) then worst-case too pessimistic
Amortized Algorithm

Still want worst-case, but worst-case over *sequences* rather than single operations.

Maybe only possible way to have an expensive operation is to have a bunch of cheap operations: amortized cost always small!

Definition

If the amortized cost of every sequence of \(n \) operations is at most \(f(n) \), then the amortized cost or amortized complexity of the algorithm is at most \(f(n) \).
Amortized Algorithm

Still want worst-case, but worst-case over *sequences* rather than single operations.

Maybe only possible way to have an expensive operation is to have a bunch of cheap operations: amortized cost always small!

Definition

If the amortized cost of *every* sequence of \(n \) operations is at most \(f(n) \), then the *amortized cost* or *amortized complexity* of the algorithm is at most \(f(n) \).
Example: Stack From Array
Stack Using Array

Stack:
- Last In First Out (LIFO)
- Push: add element to stack
- Pop: Remove the most recently added element.
Stack Using Array

Stack:
- Last In First Out (LIFO)
- Push: add element to stack
- Pop: Remove the most recently added element.

Building a stack with an array A:

- Initialize: top = 0
- Push(x): $A[\text{top}] = x$; top++
- Pop: top--; Return $A[\text{top}]$
Stack Using Array

Stack:
- Last In First Out (LIFO)
- Push: add element to stack
- Pop: Remove the most recently added element.

Building a stack with an array A:
- Initialize: top = 0
- Push(x): A[top] = x; top++
- Pop: top--; Return A[top]
What if array is full \((n\) elements)?
What if array is full (n elements)?

Make new, bigger array, copy old array over

- Cost: free to create new array, each copy costs 1
- Worst case: a single Push could cost \(\Omega(n) \)!
What if array is full \((n\) elements)\?

Make new, bigger array, copy old array over

- Cost: free to create new array, each copy costs 1
- Worst case: a single Push could cost \(\Omega(n)\)!

New array has size \(n+1\):
What if array is full (\(n\) elements)?

Make new, bigger array, copy old array over
- Cost: free to create new array, each copy costs 1
- Worst case: a single Push could cost \(\Omega(n)\)!

New array has size \(n + 1\):
- Sequence of \(n\) Push operations. Total cost: \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)\).
- Amortized cost: \(\Theta(n)\) (same as worst single operation!)
Better Idea

Instead of increasing from n to $n + 1$:

- Have to double when array has size 2, 4, 8, 16, 32, 64, ...
- $\log n$ times
- Total time spent doubling: at most $\sum_{i=1}^{\log n} 2^i \leq 2n = \Theta(n)$

Any operation that doesn't cause a doubling costs $O(1)$

Total cost at most $O(n) + n \cdot O(1) = O(n)$

Amortized cost at most $O(1)$

Amortized analysis explains why it's better to double than add 1!
Better Idea

Instead of increasing from n to $n+1$: increase to $2n$
Better Idea

Instead of increasing from n to $n + 1$: increase to $2n$

Consider *any* sequence of n operations.

- Have to double when array has size $2, 4, 8, 16, 32, 64, \ldots, \lfloor \log n \rfloor$
- *Total* time spent doubling: at most $\sum_{i=1}^{\lfloor \log n \rfloor} 2^i \leq 2n = \Theta(n)$
- Any operation that doesn't cause a doubling costs $O(1)$
- Total cost at most $O(n) + n \cdot O(1) = O(n)$
- Amortized cost at most $O(1)$
Better Idea

Instead of increasing from n to $n+1$: increase to $2n$

Consider *any* sequence of n operations.

- Have to double when array has size $2, 4, 8, 16, 32, 64, \ldots, [\log n]$
- *Total* time spent doubling: at most $\sum_{i=1}^{[\log n]} 2^i \leq 2n = \Theta(n)$
- Any operation that doesn’t cause a doubling costs $O(1)$
- Total cost at most $O(n) + n \cdot O(1) = O(n)$
- Amortized cost at most $O(1)$

Amortized analysis explains why it’s better to double than add 1!
More Complicated Analysis: Piggy Banks and Potentials
Basic Bank: Informal

Can be hard to give good bound directly on total cost.

- Lots of variance: some operations very expensive, some very cheap.
- Idea: “smooth out” the operations.
- “Pay more” for cheap operations, “pay less” for expensive ops.
Basic Bank: Informal

Can be hard to give good bound directly on total cost.

- Lots of variance: some operations very expensive, some very cheap.
- Idea: “smooth out” the operations.
- “Pay more” for cheap operations, “pay less” for expensive ops.

Use a “bank” to keep track of this

- Cheap operation: add to the bank
- Expensive operation: take from the bank
Basic Bank: Informal

Can be hard to give good bound directly on total cost.
- Lots of variance: some operations very expensive, some very cheap.
- Idea: “smooth out” the operations.
- “Pay more” for cheap operations, “pay less” for expensive ops.

Use a “bank” to keep track of this
- Cheap operation: add to the bank
- Expensive operation: take from the bank

Charge cheap operations more, use extra to pay for expensive operations
Basic Bank: Formal

Bank \(L \).

- Initially \(L = 0 \)
- \(L_i = \) value of bank after operation \(i \) (so \(L_0 = 0 \)).
Basic Bank: Formal

Bank L.
- Initially $L = 0$
- $L_i = \text{value of bank after operation } i$ (so $L_0 = 0$).

Operation i:
- Cost c_i
- "Amortized cost" $c_i' = c_i + \Delta L = c_i + L_i - L_{i-1}$
Basic Bank: Formal

Bank L.

- Initially $L = 0$
- L_i = value of bank after operation i (so $L_0 = 0$).

Operation i:

- Cost c_i
- “Amortized cost” $c'_i = c_i + \Delta L = c_i + L_i - L_{i-1} \implies c_i = c'_i + L_{i-1} - L_i$
Basic Bank: Formal

Bank L.

- Initially $L = 0$
- $L_i =$ value of bank after operation i (so $L_0 = 0$).

Operation i:

- Cost c_i
- "Amortized cost" $c'_i = c_i + \Delta L = c_i + L_i - L_{i-1} \implies c_i = c'_i + L_{i-1} - L_i$

Total cost of sequence:

\[
\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} (c'_i + L_{i-1} - L_i) = \sum_{i=1}^{n} c'_i + \sum_{i=1}^{n} (L_{i-1} - L_i) = \left(\sum_{i=1}^{n} c'_i\right) + L_0 - L_n
\]
Basic Bank: Formal

Bank L.

- Initially $L = 0$
- $L_i =$ value of bank after operation i (so $L_0 = 0$).

Operation i:

- Cost c_i
- “Amortized cost” $c'_i = c_i + \Delta L = c_i + L_i - L_{i-1} \implies c_i = c'_i + L_{i-1} - L_i$

Total cost of sequence:

$$\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} (c'_i + L_{i-1} - L_i) = \sum_{i=1}^{n} c'_i + \sum_{i=1}^{n} (L_{i-1} - L_i) = \left(\sum_{i=1}^{n} c'_i\right) + L_0 - L_n$$

So if $L_0 = 0$ and $L_n \geq 0$ (bank not negative): $\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} c'_i$.
Basic Bank: Formal

Bank \(L \).

- Initially \(L = 0 \)
- \(L_i \) = value of bank after operation \(i \) (so \(L_0 = 0 \)).

Operation \(i \):

- Cost \(c_i \)
- "Amortized cost" \(c'_i = c_i + \Delta L = c_i + L_i - L_{i-1} \rightarrow c_i = c'_i + L_{i-1} - L_i \)

Total cost of sequence:

\[
\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} \left(c'_i + L_{i-1} - L_i \right) = \sum_{i=1}^{n} c'_i + \sum_{i=1}^{n} \left(L_{i-1} - L_i \right) = \left(\sum_{i=1}^{n} c'_i \right) + L_0 - L_n
\]

So if \(L_0 = 0 \) and \(L_n \geq 0 \) (bank not negative): \(\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} c'_i \).

- If \(c'_i \leq f(n) \) for all \(i \), then "true" amortized cost \((\sum_{i=1}^{n} c_i)/n \) also at most \(f(n) \)!
Variants

Multiple banks

- Sometimes easier to keep track of / think about.
- No real difference: could think of one bank = sum of all banks
Variants

Multiple banks
- Sometimes easier to keep track of / think about.
- No real difference: could think of one bank = sum of all banks

Potential Functions:
- “Bank analogy”: we choose how much to deposit/withdraw.
- New analogy: “potential energy”. Function of state of system.
- Rename L to Φ: all previous analysis works same!
- Sometimes easier to think about: just define once at the beginning, instead of for each operation.
Example: Binary Counter
Binary Counter

Super simple setup: binary counter stored in array A.

- Least significant bit in $A[0]$, then $A[1]$, \ldots
- Don’t worry about length of array (infinite, or long enough)
- Only operation is increment.
- Costs 1 to flip any bit.
Binary Counter

Super simple setup: binary counter stored in array \(\mathbf{A} \).

- Least significant bit in \(\mathbf{A}[0] \), then \(\mathbf{A}[1] \), \ldots
- Don't worry about length of array (infinite, or long enough)
- Only operation is increment.
- Costs 1 to flip any bit.

\(n \) increments. Cost of most expensive increment:
Binary Counter

Super simple setup: binary counter stored in array A.

- Least significant bit in $A[0]$, then $A[1]$, ...
- Don’t worry about length of array (infinite, or long enough)
- Only operation is increment.
- Costs 1 to flip any bit.

n increments. Cost of most expensive increment: $\Theta(\log n)$.
Binary Counter

Super simple setup: binary counter stored in array \(A \).

- Least significant bit in \(A[0] \), then \(A[1] \), \ldots
- Don’t worry about length of array (infinite, or long enough)
- Only operation is increment.
- Costs 1 to flip any bit.

\(n \) increments. Cost of most expensive increment: \(\Theta(\log n) \).

What about amortized cost?
Banks

Bank for every bit $A[i]$

Flip bit i from 0 to 1: add $ to bank for i
Flip bit i from 1 to 0: remove $ from bank for i
 - No bank ever negative (induction)
Analysis

Do an increment, flips k bits \implies true cost is k.

- # 0’s flipped to 1:
- # 1’s flipped to 0:
Analysis

Do an increment, flips k bits \implies true cost is k.

- $\#$ 0’s flipped to 1: 1
- $\#$ 1’s flipped to 0: $k - 1$
Analysis

Do an increment, flips k bits \implies true cost is k.

- $\# \ 0$'s flipped to 1: 1
- $\# \ 1$'s flipped to 0: $k - 1$

Flipping 1 to 0 paid for by bank! Costs 1, bank decreases by 1
Analysis

Do an increment, flips k bits \implies true cost is k.

- # 0’s flipped to 1: 1
- # 1’s flipped to 0: $k - 1$

Flipping 1 to 0 paid for by bank! Costs 1, bank decreases by 1
\implies amortized cost at most 1 (cost of flipping 0 to 1) plus 1 (increase in bank for that bit) = 2
Analysis

Do an increment, flips k bits \implies true cost is k.
- # 0’s flipped to 1: 1
- # 1’s flipped to 0: $k - 1$

Flipping 1 to 0 paid for by bank! Costs 1, bank decreases by 1
\implies amortized cost at most 1 (cost of flipping 0 to 1) plus 1 (increase in bank for that bit) = 2

Global: Change in total bank is $-(k - 1) + 1 = -k + 2$
\implies amortized cost = $c + \Delta L = k + (-k + 2) = 2$
Analysis

Do an increment, flips k bits \implies true cost is k.

- # 0's flipped to 1: 1
- # 1’s flipped to 0: $k - 1$

Flipping 1 to 0 paid for by bank! Costs 1, bank decreases by 1
\implies amortized cost at most 1 (cost of flipping 0 to 1) plus 1 (increase in bank for that bit) $= 2$

Global: Change in total bank is $-(k - 1) + 1 = -k + 2$
\implies amortized cost $= c + \Delta L = k + (-k + 2) = 2$

Potential function: let $\Phi = \#1$'s in counter.
\implies amortized cost $= c + \Delta \Phi = k + (-k + 2) = 2$
Example: Simple Dictionary
Setup

Same dictionary problem as last lecture (insert, lookup).

- Can we do something simple with just arrays (no trees)?
- Give up on worst-case: try for amortized.
 - Sorted array: inserts $\Omega(n)$ amortized (i^{th} insert could take time $\Omega(i)$)
 - Unsorted array: lookups $\Omega(n)$ amortized
Setup

Same dictionary problem as last lecture (insert, lookup).

- Can we do something simple with just arrays (no trees)?
- Give up on worst-case: try for amortized.
 - Sorted array: inserts $\Omega(n)$ amortized (i’th insert could take time $\Omega(i)$)
 - Unsorted array: lookups $\Omega(n)$ amortized

Solution: array of arrays!

- $A[i]$ either empty or a sorted array of exactly 2^i elements
- No relationship between arrays
Setup

Same dictionary problem as last lecture (insert, lookup).

- Can we do something simple with just arrays (no trees)?
- Give up on worst-case: try for amortized.
 - Sorted array: inserts $\Omega(n)$ amortized (i'th insert could take time $\Omega(i)$)
 - Unsorted array: lookups $\Omega(n)$ amortized

Solution: array of arrays!

- $A[i]$ either empty or a sorted array of exactly 2^i elements
- No relationship between arrays

Example: insert $1 - 11$

\[
\begin{align*}
A[2] &= \emptyset \\
A[3] &= [1, 3, 4, 6, 7, 9, 10, 11]
\end{align*}
\]

Michael Dinitz
Lecture 7: Amortized Analysis
September 21, 2021
Algorithm

Note: With n inserts, at most $\log n$ arrays.

Example: insert 12 into

Algorithm

Note: With n inserts, at most $\log n$ arrays.

Lookup(x)
Algorithm

Note: With n inserts, at most $\log n$ arrays.

Lookup(x)

- Binary search in each (nonempty) array
- Time at most $\sum_{i=0}^{\lfloor \log n \rfloor} \log(2^i) = \Theta(\log^2 n)$
Algorithm

Note: With n inserts, at most $\log n$ arrays.

Lookup(x)
 - Binary search in each (nonempty) array
 - Time at most $\sum_{i=0}^{[\log n]} \log(2^i) = \Theta(\log^2 n)$

Insert(x):
 - Create array $B = [x]$
 - Otherwise: $i = 0$
 - Merge B and $A[i]$ to get B
 - Set $A[i] = \cdot$
 - $i++$

Example: insert 12 into

$A[0] = [5]$
$A[1] = [2, 8]$
$A[2] = \cdot$
$A[3] = [1, 3, 4, 6, 7, 9, 10, 11]$
Algorithm

Note: With n inserts, at most $\log n$ arrays.

Lookup(x)
- Binary search in each (nonempty) array
- Time at most $\sum_{i=0}^{\lfloor \log n \rfloor} \log (2^i) = \Theta(\log^2 n)$

Insert(x):
- Create array $B = [x]$
- $i = 0$
- Otherwise: $i = 0$
 - Merge B and $A[i]$ to get B
 - Set $A[i] = \emptyset$
 - $i++$
Algorithm

Note: With n inserts, at most $\log n$ arrays.

Lookup(x)
- Binary search in each (nonempty) array
- Time at most $\sum_{i=0}^{\lfloor \log n \rfloor} \log(2^i) = \Theta(\log^2 n)$

Insert(x):
- Create array $B = [x]$
- $i = 0$
- Otherwise: $i = 0$
 - Merge B and $A[i]$ to get B
 - Set $A[i] = \emptyset$
 - $i++$

Example: insert 12 into

\begin{align*}
A[2] &= \emptyset \\
A[3] &= [1, 3, 4, 6, 7, 9, 10, 11]
\end{align*}
Algorithm

Note: With n inserts, at most $\log n$ arrays.

Lookup(x)
- Binary search in each (nonempty) array
- Time at most $\sum_{i=0}^{\log n} \log(2^i) = \Theta(\log^2 n)$

Insert(x):
- Create array $B = [x]$
- $i = 0$
- Otherwise: $i = 0$
 - Merge B and $A[i]$ to get B
 - Set $A[i] = \emptyset$
 - $i++$

Example: insert 12 into

$A[0] = [5]$
$A[1] = [2, 8]$
$A[2] = \emptyset$
$A[3] = [1, 3, 4, 6, 7, 9, 10, 11]$

$A[0] = \emptyset$
$A[1] = \emptyset$
$A[2] = [2, 5, 8, 12]$
$A[3] = [1, 3, 4, 6, 7, 9, 10, 11]$
Analysis

Concrete costs:
- Merging two arrays of size m costs $2m$
Analysis

Concrete costs:
- Merging two arrays of size m costs $2m$;

Worst case:
- Might need to do a merge for every array if all full;
- Time $\sum_{i=0}^{\lfloor \log n \rfloor} (2 \cdot 2^i) = \Theta(n)$
Analysis

Concrete costs:
- Merging two arrays of size m costs $2m$

Worst case:
- Might need to do a merge for every array if all full
- Time $\sum_{i=0}^{\lceil \log n \rceil} (2 \cdot 2^i) = \Theta(n)$

Amortized:
- Merge arrays of length 2^i one out of every 2^i inserts
- So after n inserts, have merged arrays of length 1 at most n times, arrays of length 2 at most $n/2$ times, arrays of length 4 at most $n/4$ times, ...
Analysis

Concrete costs:

- Merging two arrays of size m costs $2m$

Worst case:

- Might need to do a merge for every array if all full
- Time $\sum_{i=0}^{[\log n]} (2 \cdot 2^i) = \Theta(n)$

Amortized:

- Merge arrays of length 2^i one out of every 2^i inserts
- So after n inserts, have merged arrays of length 1 at most n times, arrays of length 2 at most $n/2$ times, arrays of length 4 at most $n/4$ times, ...
- Total cost at most

$$\sum_{i=1}^{[\log n]} \frac{n}{2^{i-1}} 2^{i+1} = \Theta(n \log n)$$
Analysis

Concrete costs:
- Merging two arrays of size m costs $2m$

Worst case:
- Might need to do a merge for every array if all full
- Time $\sum_{i=0}^{[\log n]} (2 \cdot 2^i) = \Theta(n)$

Amortized:
- Merge arrays of length 2^i one out of every 2^i inserts
- So after n inserts, have merged arrays of length 1 at most n times, arrays of length 2 at most $n/2$ times, arrays of length 4 at most $n/4$ times, ...
- Total cost at most
 $$\sum_{i=1}^{[\log n]} \frac{n}{2^{i-1}} 2^{i+1} = \Theta(n \log n)$$
- Amortized cost at most $\Theta(\log n)$!
How do we define amortized analysis of data structures with multiple operations?

Definition

If structure supports k operations, say that operation i has amortized cost at most α_i if for every sequence which performs with at most m_i operations of type i, the total cost is at most $\sum_{i=1}^{k} \alpha_i m_i$. When analyzing multiple operations, need to use the same bank/potential for all of them! With multiple operations, bounds not necessarily unique. Different amortization schemes could yield different bounds, all of which are correct and non-contradictory.
Multiple Operations

How do we define amortized analysis of data structures with multiple operations?

Definition

If structure supports \(k \) operations, say that operation \(i \) has amortized cost at most \(\alpha_i \) if for every sequence which performs with at most \(m_i \) operations of type \(i \), the total cost is at most \(\sum_{i=1}^{k} \alpha_i m_i \).

- When analyzing multiple operations, need to use the same bank/potential for all of them!
- With multiple operations, bounds not necessarily unique. Different amortization schemes could yield different bounds, all of which are correct and non-contradictory.