Lecture 7: Amortized Analysis

Michael Dinitz

September 21, 2021
601.433/633 Introduction to Algorithms

Introduction

Typically been considering "static" or "one-shot" problems: given input, compute correct output as efficiently as possible.

Introduction

Typically been considering "static" or "one-shot" problems: given input, compute correct output as efficiently as possible.

Data structures: sequence of operations!

- Dictionary: insert, insert, insert, lookup, insert, lookup, lookup, ...

Introduction

Typically been considering "static" or "one-shot" problems: given input, compute correct output as efficiently as possible.

Data structures: sequence of operations!

- Dictionary: insert, insert, insert, lookup, insert, lookup, lookup, ...

Last time: analyzed the (worst-case) cost of each operation. What about (worst-case) cost of sequence of operations?

Definition \& Example

Definition

The amortized cost of a sequence of \mathbf{n} operations is the total cost of the sequence divided by \mathbf{n}.
"Average cost per operation" (but no randomness!)

Definition \& Example

Definition

The amortized cost of a sequence of \mathbf{n} operations is the total cost of the sequence divided by \mathbf{n}.
"Average cost per operation" (but no randomness!)
Example: 100 operations of cost $\mathbf{1}$, then $\mathbf{1}$ operation of cost 100

- Normal worst-case analysis: 100
- Amortized cost: 200/101 ≈ 2

Definition \& Example

Definition

The amortized cost of a sequence of \mathbf{n} operations is the total cost of the sequence divided by \mathbf{n}.
"Average cost per operation" (but no randomness!)
Example: 100 operations of cost $\mathbf{1}$, then $\mathbf{1}$ operation of cost 100

- Normal worst-case analysis: 100
- Amortized cost: 200/101 ≈ 2

If we care about total time (e.g., using data structure in larger algorithm) then worst-case too pessimistic

Amortized Algorithm

Still want worst-case, but worst-case over sequences rather than single operations.
Maybe only possible way to have an expensive operation is to have a bunch of cheap operations: amortized cost always small!

Amortized Algorithm

Still want worst-case, but worst-case over sequences rather than single operations.
Maybe only possible way to have an expensive operation is to have a bunch of cheap operations: amortized cost always small!

Definition

If the amortized cost of every sequence of \mathbf{n} operations is at most $\mathbf{f}(\mathbf{n})$, then the amortized cost or amortized complexity of the algorithm is at most $\mathbf{f}(\mathbf{n})$.

Example: Stack From Array

Stack Using Array

Stack:

- Last In First Out (LIFO)
- Push: add element to stack
- Pop: Remove the most recently added element.

Stack Using Array

Stack:

- Last In First Out (LIFO)
- Push: add element to stack
- Pop: Remove the most recently added element.

Building a stack with an array A:

Stack Using Array

Stack:

- Last In First Out (LIFO)
- Push: add element to stack
- Pop: Remove the most recently added element.

Building a stack with an array A:

- Initialize: top $=0$
- Push(x): A[top] = x; top++
- Pop: top-- ; Return A[top]

End of Array

What if array is full (\mathbf{n} elements)?

End of Array

What if array is full (\mathbf{n} elements)?
Make new, bigger array, copy old array over

- Cost: free to create new array, each copy costs 1
- Worst case: a single Push could cost $\Omega(\mathbf{n})$!

End of Array

What if array is full (\mathbf{n} elements)?
Make new, bigger array, copy old array over

- Cost: free to create new array, each copy costs $\mathbf{1}$
- Worst case: a single Push could cost $\Omega(\mathbf{n})$!

New array has size $\mathbf{n}+\mathbf{1}$:

End of Array

What if array is full (\mathbf{n} elements)?
Make new, bigger array, copy old array over

- Cost: free to create new array, each copy costs 1
- Worst case: a single Push could cost $\Omega(\mathbf{n})$!

New array has size $\mathbf{n}+\mathbf{1}$:

- Sequence of \mathbf{n} Push operations. Total cost: $\sum_{i=1}^{n} \mathbf{i}=\frac{\mathbf{n (n + 1)}}{2}=\boldsymbol{\Theta}\left(\mathbf{n}^{2}\right)$.
- Amortized cost: $\boldsymbol{\Theta}(\mathbf{n})$ (same as worst single operation!)

Better Idea

Instead of increasing from \mathbf{n} to $\mathbf{n + 1}$:

Better Idea

Instead of increasing from \mathbf{n} to $\mathbf{n + 1}$: increase to $\mathbf{2 n}$

Better Idea

Instead of increasing from \mathbf{n} to $\mathbf{n + 1}$: increase to $\mathbf{2 n}$
Consider any sequence of \mathbf{n} operations.

- Have to double when array has size $2,4,8,16,32,64, \ldots,\lfloor\log n\rfloor$
- Total time spent doubling: at most $\sum_{i=1}^{\lfloor\log n\rfloor} \mathbf{2}^{\mathbf{i}} \leq \mathbf{2 n}=\boldsymbol{\Theta}(\mathbf{n})$
- Any operation that doesn't cause a doubling costs $\mathbf{O}(\mathbf{1})$
- Total cost at most $\mathbf{O}(n)+\mathbf{n} \cdot \mathbf{O}(\mathbf{1})=\mathbf{O}(n)$
- Amortized cost at most $\mathbf{O (1)}$

Better Idea

Instead of increasing from \mathbf{n} to $\mathbf{n + 1}$: increase to $\mathbf{2 n}$
Consider any sequence of \mathbf{n} operations.

- Have to double when array has size $2,4,8,16,32,64, \ldots,\lfloor\log n\rfloor$
- Total time spent doubling: at most $\sum_{i=1}^{\lfloor\log n\rfloor} \mathbf{2}^{\mathbf{i}} \leq \mathbf{2 n}=\boldsymbol{\Theta}(\mathbf{n})$
- Any operation that doesn't cause a doubling costs $\mathbf{O}(\mathbf{1})$
- Total cost at most $\mathbf{O}(n)+\mathbf{n} \cdot \mathbf{O}(\mathbf{1})=\mathbf{O}(n)$
- Amortized cost at most $\mathbf{O (1)}$

Amortized analysis explains why it's better to double than add 1!

More Complicated Analysis: Piggy Banks and Potentials

Basic Bank: Informal

Can be hard to give good bound directly on total cost.

- Lots of variance: some operations very expensive, some very cheap.
- Idea: "smooth out" the operations.
- "Pay more" for cheap operations, "pay less" for expensive ops.

Basic Bank: Informal

Can be hard to give good bound directly on total cost.

- Lots of variance: some operations very expensive, some very cheap.
- Idea: "smooth out" the operations.
- "Pay more" for cheap operations, "pay less" for expensive ops.

Use a "bank" to keep track of this

- Cheap operation: add to the bank
- Expensive operation: take from the bank

Basic Bank: Informal

Can be hard to give good bound directly on total cost.

- Lots of variance: some operations very expensive, some very cheap.
- Idea: "smooth out" the operations.
- "Pay more" for cheap operations, "pay less" for expensive ops.

Use a "bank" to keep track of this

- Cheap operation: add to the bank
- Expensive operation: take from the bank

Charge cheap operations more, use extra to pay for expensive operations

Basic Bank: Formal

Bank L.

- Initially L = 0
- $\mathbf{L}_{\mathbf{i}}=$ value of bank ofter operation \mathbf{i} (so $\mathbf{L}_{\mathbf{0}}=\mathbf{0}$).

Basic Bank: Formal

Bank L.

- Initially L = 0
- $\mathbf{L}_{\mathbf{i}}=$ value of bank ofter operation \mathbf{i} (so $\mathbf{L}_{\mathbf{0}}=\mathbf{0}$).

Operation i:

- Cost $\mathbf{c}_{\mathbf{i}}$
- "Amortized cost" $\mathbf{c}_{\mathbf{i}}^{\prime}=\mathbf{c}_{\mathbf{i}}+\boldsymbol{\Delta}=\mathbf{c}_{\mathbf{i}}+\mathbf{L}_{\mathbf{i}}-\mathbf{L}_{\mathbf{i}-\mathbf{1}}$

Basic Bank: Formal

Bank L.

- Initially L = 0
- $\mathbf{L}_{\mathbf{i}}=$ value of bank ofter operation \mathbf{i} (so $\mathbf{L}_{\mathbf{0}}=\mathbf{0}$).

Operation i:

- Cost $\mathbf{c}_{\mathbf{i}}$
- "Amortized cost" $c_{i}^{\prime}=\mathbf{c}_{\mathbf{i}}+\boldsymbol{\Delta L}=\mathbf{c}_{\mathbf{i}}+\mathbf{L}_{\mathbf{i}}-\mathbf{L}_{\mathbf{i}-\mathbf{1}} \Longrightarrow \mathbf{c}_{\mathbf{i}}=\mathbf{c}_{\mathbf{i}}^{\prime}+\mathbf{L}_{\mathbf{i}-\mathbf{1}}-\mathbf{L}_{\mathbf{i}}$

Basic Bank: Formal

Bank L.

- Initially L = 0
- $\mathbf{L}_{\mathbf{i}}=$ value of bank ofter operation \mathbf{i} (so $\mathbf{L}_{\mathbf{0}}=\mathbf{0}$).

Operation i:

- Cost $\mathbf{c}_{\mathbf{i}}$
- "Amortized cost" $c_{i}^{\prime}=\mathbf{c}_{\mathbf{i}}+\boldsymbol{\Delta L}=\mathbf{c}_{\mathbf{i}}+\mathbf{L}_{\mathbf{i}}-\mathbf{L}_{\mathbf{i}-\mathbf{1}} \Longrightarrow \mathbf{c}_{\mathbf{i}}=\mathbf{c}_{\mathbf{i}}^{\prime}+\mathbf{L}_{\mathbf{i}-\mathbf{1}}-\mathbf{L}_{\mathbf{i}}$

Total cost of sequence:

$$
\sum_{i=1}^{n} c_{i}=\sum_{i=1}^{n}\left(c_{i}^{\prime}+L_{i-1}-L_{i}\right)=\sum_{i=1}^{n} c_{i}^{\prime}+\sum_{i=1}^{n}\left(L_{i-1}-L_{i}\right)=\left(\sum_{i=1}^{n} c_{i}^{\prime}\right)+L_{0}-L_{n}
$$

Basic Bank: Formal

Bank L.

- Initially L = 0
- $\mathbf{L}_{\mathbf{i}}=$ value of bank ofter operation \mathbf{i} (so $\mathbf{L}_{\mathbf{0}}=\mathbf{0}$).

Operation i:

- Cost $\mathbf{c}_{\mathbf{i}}$
- "Amortized cost" $\mathbf{c}_{\mathbf{i}}^{\prime}=\mathbf{c}_{\mathbf{i}}+\boldsymbol{\Delta L}=\mathbf{c}_{\mathbf{i}}+\mathbf{L}_{\mathbf{i}}-\mathbf{L}_{\mathbf{i}-\mathbf{1}} \Longrightarrow \mathbf{c}_{\mathbf{i}}=\mathbf{c}_{\mathbf{i}}^{\prime}+\mathbf{L}_{\mathbf{i}-\mathbf{1}}-\mathbf{L}_{\mathbf{i}}$

Total cost of sequence:

$$
\sum_{i=1}^{n} c_{i}=\sum_{i=1}^{n}\left(c_{i}^{\prime}+L_{i-1}-L_{i}\right)=\sum_{i=1}^{n} c_{i}^{\prime}+\sum_{i=1}^{n}\left(L_{i-1}-L_{i}\right)=\left(\sum_{i=1}^{n} c_{i}^{\prime}\right)+L_{0}-L_{n}
$$

So if $\mathbf{L}_{\mathbf{0}}=\mathbf{0}$ and $\mathbf{L}_{\mathbf{n}} \geq \mathbf{0}$ (bank not negative): $\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{c}_{\mathbf{i}} \leq \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{c}_{\mathbf{i}}^{\prime}$.

Basic Bank: Formal

Bank L.

- Initially L = 0
- $\mathbf{L}_{\mathbf{i}}=$ value of bank ofter operation \mathbf{i} (so $\mathbf{L}_{\mathbf{0}}=\mathbf{0}$).

Operation i:

- Cost $\mathbf{c}_{\mathbf{i}}$
- "Amortized cost" $\mathbf{c}_{\mathbf{i}}^{\prime}=\mathbf{c}_{\mathbf{i}}+\boldsymbol{\Delta} \mathbf{L}=\mathbf{c}_{\mathbf{i}}+\mathbf{L}_{\mathbf{i}}-\mathbf{L}_{\mathbf{i}-\mathbf{1}} \Longrightarrow \mathbf{c}_{\mathbf{i}}=\mathbf{c}_{\mathbf{i}}^{\prime}+\mathbf{L}_{\mathbf{i}-\mathbf{1}}-\mathbf{L}_{\mathbf{i}}$

Total cost of sequence:

$$
\sum_{i=1}^{n} c_{i}=\sum_{i=1}^{n}\left(c_{i}^{\prime}+L_{i-1}-L_{i}\right)=\sum_{i=1}^{n} c_{i}^{\prime}+\sum_{i=1}^{n}\left(L_{i-1}-L_{i}\right)=\left(\sum_{i=1}^{n} c_{i}^{\prime}\right)+L_{0}-L_{n}
$$

So if $\mathbf{L}_{\mathbf{0}}=\mathbf{0}$ and $\mathbf{L}_{\mathbf{n}} \geq \mathbf{0}$ (bank not negative): $\sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{c}_{\mathbf{i}} \leq \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{c}_{\mathbf{i}}^{\prime}$.

- If $\mathbf{c}_{\mathbf{i}}^{\prime} \leq \mathbf{f}(\mathbf{n})$ for all \mathbf{i}, then "true" amortized $\operatorname{cost}\left(\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{c}_{\mathbf{i}}\right) / \mathbf{n}$ also at most $\mathbf{f}(\mathbf{n})$!

Variants

Multiple banks

- Sometimes easier to keep track of / think about.
- No real difference: could think of one bank = sum of all banks

Variants

Multiple banks

- Sometimes easier to keep track of / think about.
- No real difference: could think of one bank = sum of all banks

Potential Functions:

- "Bank analogy": we choose how much to deposit/withdraw.
- New analogy: "potential energy". Function of state of system.
- Rename L to $\boldsymbol{\Phi}$: all previous analysis works same!
- Sometimes easier to think about: just define once at the beginning, instead of for each operation.

Example: Binary Counter

Binary Counter

Super simple setup: binary counter stored in array \mathbf{A}.

- Least significant bit in $\mathbf{A}[\mathbf{0}]$, then $\mathbf{A}[\mathbf{1}], \ldots$
- Don't worry about length of array (infinite, or long enough)
- Only operation is increment.
- Costs 1 to flip any bit.

Binary Counter

Super simple setup: binary counter stored in array \mathbf{A}.

- Least significant bit in $\mathbf{A}[\mathbf{0}]$, then $\mathbf{A}[\mathbf{1}], \ldots$
- Don't worry about length of array (infinite, or long enough)
- Only operation is increment.
- Costs 1 to flip any bit.
n increments. Cost of most expensive increment:

Binary Counter

Super simple setup: binary counter stored in array \mathbf{A}.

- Least significant bit in $\mathbf{A}[\mathbf{0}]$, then $\mathbf{A}[\mathbf{1}], \ldots$
- Don't worry about length of array (infinite, or long enough)
- Only operation is increment.
- Costs 1 to flip any bit.
\mathbf{n} increments. Cost of most expensive increment: $\boldsymbol{\Theta}(\boldsymbol{\operatorname { l o g }} \mathbf{n})$.

Binary Counter

Super simple setup: binary counter stored in array \mathbf{A}.

- Least significant bit in $\mathbf{A}[\mathbf{0}]$, then $\mathbf{A}[\mathbf{1}], \ldots$
- Don't worry about length of array (infinite, or long enough)
- Only operation is increment.
- Costs 1 to flip any bit.
\mathbf{n} increments. Cost of most expensive increment: $\boldsymbol{\Theta}(\boldsymbol{\operatorname { l o g }} \mathbf{n})$.
What about amortized cost?

Banks

Bank for every bit $\mathbf{A}[\mathbf{i}]$

Flip bit \mathbf{i} from $\mathbf{0}$ to $\mathbf{1}$: add $\$$ to bank for \mathbf{i}
Flip bit \mathbf{i} from $\mathbf{1}$ to $\mathbf{0}$: remove $\$$ from bank for \mathbf{i}

- No bank ever negative (induction)

Analysis

Do an increment, flips \mathbf{k} bits \Longrightarrow true cost is \mathbf{k}.

- \# 0's flipped to $\mathbf{1}$:
- \# 1's flipped to $\mathbf{0}$:

Analysis

Do an increment, flips \mathbf{k} bits \Longrightarrow true cost is \mathbf{k}.

- \# 0's flipped to 1: $\mathbf{1}$
- \# 1's flipped to 0: $\mathbf{k} \mathbf{- 1}$

Analysis

Do an increment, flips \mathbf{k} bits \Longrightarrow true cost is \mathbf{k}.

- \# 0's flipped to 1: $\mathbf{1}$
- \# 1's flipped to 0: $\mathbf{k} \mathbf{- 1}$

Flipping $\mathbf{1}$ to $\mathbf{0}$ paid for by bank! Costs $\mathbf{1}$, bank decreases by $\mathbf{1}$

Analysis

Do an increment, flips \mathbf{k} bits \Longrightarrow true cost is \mathbf{k}.

- \# 0's flipped to 1: $\mathbf{1}$
- \# 1's flipped to 0: $\mathbf{k} \mathbf{- 1}$

Flipping $\mathbf{1}$ to $\mathbf{0}$ paid for by bank! Costs $\mathbf{1}$, bank decreases by $\mathbf{1}$
\Longrightarrow amortized cost at most $\mathbf{1}$ (cost of flipping $\mathbf{0}$ to $\mathbf{1}$) plus $\mathbf{1}$ (increase in bank for that bit) $=2$

Analysis

Do an increment, flips \mathbf{k} bits \Longrightarrow true cost is \mathbf{k}.

- \# 0's flipped to 1: $\mathbf{1}$
- \# 1's flipped to 0: $\mathbf{k - 1}$

Flipping $\mathbf{1}$ to $\mathbf{0}$ paid for by bank! Costs $\mathbf{1}$, bank decreases by $\mathbf{1}$
\Longrightarrow amortized cost at most $\mathbf{1}$ (cost of flipping $\mathbf{0}$ to $\mathbf{1}$) plus $\mathbf{1}$ (increase in bank for that bit) $=2$

Global: Change in total bank is $\mathbf{-}(\mathbf{k}-\mathbf{1})+\mathbf{1}=\mathbf{- k}+\mathbf{2}$
\Longrightarrow amortized cost $=\mathbf{c}+\boldsymbol{L}=\mathbf{k}+(-\mathbf{k}+2)=\mathbf{2}$

Analysis

Do an increment, flips \mathbf{k} bits \Longrightarrow true cost is \mathbf{k}.

- \# 0's flipped to 1: $\mathbf{1}$
- \# 1's flipped to 0: $\mathbf{k - 1}$

Flipping $\mathbf{1}$ to $\mathbf{0}$ paid for by bank! Costs $\mathbf{1}$, bank decreases by $\mathbf{1}$
\Longrightarrow amortized cost at most $\mathbf{1}$ (cost of flipping $\mathbf{0}$ to $\mathbf{1}$) plus $\mathbf{1}$ (increase in bank for that bit)
$=2$
Global: Change in total bank is $\mathbf{-}(\mathbf{k}-\mathbf{1})+\mathbf{1}=\mathbf{- k}+\mathbf{2}$
\Longrightarrow amortized cost $=\mathbf{c}+\boldsymbol{L}=\mathbf{k}+(-\mathbf{k}+2)=\mathbf{2}$
Potential function: let $\boldsymbol{\Phi}=\# \mathbf{1}$'s in counter.
\Longrightarrow amortized cost $=\mathbf{c}+\boldsymbol{\Delta} \boldsymbol{\Phi}=\mathbf{k}+(-\mathbf{k}+2)=\mathbf{2}$

Example: Simple Dictionary

Setup

Same dictionary problem as last lecture (insert, lookup).

- Can we do something simple with just arrays (no trees)?
- Give up on worst-case: try for amortized.
- Sorted array: inserts $\boldsymbol{\Omega}(\mathbf{n})$ amortized (i'th insert could take time $\boldsymbol{\Omega} \mathbf{(i)}$)
- Unsorted array: lookups $\Omega(\mathbf{n})$ amortized

Setup

Same dictionary problem as last lecture (insert, lookup).

- Can we do something simple with just arrays (no trees)?
- Give up on worst-case: try for amortized.
- Sorted array: inserts $\Omega(\mathbf{n})$ amortized (i'th insert could take time $\Omega(\mathbf{i})$)
- Unsorted array: lookups $\Omega(\mathbf{n})$ amortized

Solution: array of arrays!

- $\mathbf{A}[\mathbf{i}]$ either empty or a sorted array of exactly $\mathbf{2}^{\mathbf{i}}$ elements
- No relationship between arrays

Setup

Same dictionary problem as last lecture (insert, lookup).

- Can we do something simple with just arrays (no trees)?
- Give up on worst-case: try for amortized.
- Sorted array: inserts $\Omega(\mathbf{n})$ amortized (i'th insert could take time $\Omega(\mathbf{i})$)
- Unsorted array: lookups $\Omega(\mathbf{n})$ amortized

Solution: array of arrays!

- $\mathbf{A}[\mathbf{i}]$ either empty or a sorted array of exactly $\mathbf{2}^{\mathbf{i}}$ elements
- No relationship between arrays

Example: insert 1-11

$$
\begin{aligned}
& \mathrm{A}[0]=[5] \\
& \mathrm{A}[1]=[2,8] \\
& \mathrm{A}[2]=\varnothing \\
& \mathrm{A}[3]=[1,3,4,6,7,9,10,11]
\end{aligned}
$$

Algorithm

Note: With \mathbf{n} inserts, at most $\log \mathbf{n}$ arrays.

Algorithm

Note: With \mathbf{n} inserts, at most $\log \mathbf{n}$ arrays.
Lookup(\mathbf{x})

Algorithm

Note: With \mathbf{n} inserts, at most $\log \mathbf{n}$ arrays.
Lookup(\mathbf{x})

- Binary search in each (nonempty) array
- Time at most $\sum_{\mathrm{i}=\mathbf{0}}^{\lfloor\log n\rfloor} \log \left(2^{\mathbf{i}}\right)=\boldsymbol{\Theta}\left(\log ^{2} \mathbf{n}\right)$

Algorithm

Note: With \mathbf{n} inserts, at most $\log \mathbf{n}$ arrays.
Lookup(\mathbf{x})

- Binary search in each (nonempty) array
- Time at most $\sum_{i=0}^{\lfloor\log n\rfloor} \boldsymbol{\operatorname { l o g }}\left(2^{\mathbf{i}}\right)=\boldsymbol{\Theta}\left(\log ^{2} \mathbf{n}\right)$

Insert(\mathbf{x}):

Algorithm

Note: With \mathbf{n} inserts, at most $\log \mathbf{n}$ arrays.
Lookup(\mathbf{x})

- Binary search in each (nonempty) array
- Time at most $\sum_{\mathrm{i}=\mathbf{0}}^{\lfloor\log n\rfloor} \boldsymbol{\operatorname { l o g }}\left(\mathbf{2}^{\mathbf{i}}\right)=\boldsymbol{\Theta}\left(\log ^{2} \mathbf{n}\right)$

Insert(\mathbf{x}):

- Create array $\mathbf{B}=[\mathbf{x}]$
- $\mathbf{i}=\mathbf{0}$
- Otherwise: $\mathbf{i}=\mathbf{0}$
- If $\mathbf{A}[\mathbf{i}]=\varnothing$, set $\mathbf{A}[\mathbf{i}]=\mathbf{B}$, return.
- Merge \mathbf{B} and $\mathbf{A}[i]$ to get \mathbf{B}
- Set $\mathbf{A}[\mathbf{i}]=\varnothing$
- $\mathbf{i}++$

Algorithm

Note: With \mathbf{n} inserts, at most $\log \mathbf{n}$ arrays.

Lookup(\mathbf{x})

- Binary search in each (nonempty) array
- Time at most $\sum_{i=0}^{\lfloor\log n\rfloor} \log \left(2^{\mathbf{i}}\right)=\Theta\left(\log ^{2} \mathbf{n}\right)$

Insert(\mathbf{x}):

- Create array $\mathbf{B}=[\mathbf{x}]$
- $\mathbf{i}=\mathbf{0}$
- Otherwise: $\mathbf{i = 0}$
- If $\mathbf{A}[\mathbf{i}]=\varnothing$, set $\mathbf{A}[\mathbf{i}]=\mathbf{B}$, return.
- Merge \mathbf{B} and $\mathbf{A}[\mathbf{i}]$ to get \mathbf{B}
- Set $\mathbf{A}[\mathbf{i}]=\varnothing$
- $\mathbf{i}++$

Example: insert 12 into

$$
\begin{aligned}
& A[0]=[5] \\
& A[1]=[2,8] \\
& A[2]=\varnothing \\
& A[3]=[1,3,4,6,7,9,10,11]
\end{aligned}
$$

Algorithm

Note: With \mathbf{n} inserts, at most $\log \mathbf{n}$ arrays.

Lookup(\mathbf{x})

- Binary search in each (nonempty) array
- Time at most $\sum_{i=0}^{\lfloor\log n\rfloor} \log \left(2^{\mathbf{i}}\right)=\Theta\left(\log ^{2} \mathbf{n}\right)$

Insert(\mathbf{x}):

- Create array $\mathbf{B}=[\mathbf{x}]$
- $\mathbf{i}=\mathbf{0}$
- Otherwise: $\mathbf{i}=\mathbf{0}$
- If $\mathbf{A}[\mathbf{i}]=\varnothing$, set $\mathbf{A}[\mathbf{i}]=\mathbf{B}$, return.
- Merge \mathbf{B} and $\mathbf{A}[\mathbf{i}]$ to get \mathbf{B}
- Set $\mathbf{A}[\mathbf{i}]=\varnothing$
- $\mathbf{i}++$

Example: insert 12 into

$$
\begin{aligned}
& A[0]=[5] \\
& A[1]=[2,8] \\
& A[2]=\varnothing \\
& A[3]=[1,3,4,6,7,9,10,11]
\end{aligned}
$$

$$
\mathrm{A}[0]=\varnothing
$$

$$
\mathrm{A}[1]=\varnothing
$$

$$
\mathrm{A}[2]=[2,5,8,12]
$$

$$
A[3]=[1,3,4,6,7,9,10,11]
$$

Analysis

Concrete costs:

- Merging two arrays of size \mathbf{m} costs $\mathbf{2 m}$

Analysis

Concrete costs:

- Merging two arrays of size \mathbf{m} costs $\mathbf{2 m}$

Worst case:

- Might need to do a merge for every array if all full
- Time $\sum_{i=0}^{[\log n\rfloor}\left(2 \cdot 2^{i}\right)=\boldsymbol{\Theta}(n)$

Analysis

Concrete costs:

- Merging two arrays of size \mathbf{m} costs $\mathbf{2 m}$

Worst case:

- Might need to do a merge for every array if all full
- Time $\sum_{i=0}^{[\log n\rfloor}\left(2 \cdot 2^{i}\right)=\boldsymbol{\Theta}(n)$

Amortized:

- Merge arrays of length $\mathbf{2}^{\mathbf{i}}$ one out of every $\mathbf{2}^{\mathbf{i}}$ inserts
- So after \mathbf{n} inserts, have merged arrays of length $\mathbf{1}$ at most \mathbf{n} times, arrays of length $\mathbf{2}$ at most $\mathbf{n} / 2$ times, arrays of length 4 at most $\mathbf{n} / 4$ times, ...

Analysis

Concrete costs:

- Merging two arrays of size \mathbf{m} costs $\mathbf{2 m}$

Worst case:

- Might need to do a merge for every array if all full
- Time $\sum_{i=0}^{[\log n\rfloor}\left(2 \cdot 2^{i}\right)=\boldsymbol{\Theta}(n)$

Amortized:

- Merge arrays of length $\mathbf{2}^{\mathbf{i}}$ one out of every $\mathbf{2}^{\mathbf{i}}$ inserts
- So after \mathbf{n} inserts, have merged arrays of length $\mathbf{1}$ at most \mathbf{n} times, arrays of length $\mathbf{2}$ at most $\mathbf{n} / 2$ times, arrays of length 4 at most $\mathbf{n} / 4$ times, ...
- Total cost at most

$$
\sum_{i=1}^{\lfloor\log n\rfloor} \frac{n}{2^{i-1}} 2^{i+1}=\Theta(n \log n)
$$

Analysis

Concrete costs:

- Merging two arrays of size \mathbf{m} costs $\mathbf{2 m}$

Worst case:

- Might need to do a merge for every array if all full
- Time $\sum_{i=0}^{[\log n\rfloor}\left(2 \cdot 2^{i}\right)=\boldsymbol{\Theta}(n)$

Amortized:

- Merge arrays of length $\mathbf{2}^{\mathbf{i}}$ one out of every $\mathbf{2}^{\mathbf{i}}$ inserts
- So after \mathbf{n} inserts, have merged arrays of length $\mathbf{1}$ at most \mathbf{n} times, arrays of length $\mathbf{2}$ at most $\mathbf{n} / 2$ times, arrays of length 4 at most $\mathbf{n} / 4$ times, ...
- Total cost at most

$$
\sum_{i=1}^{\lfloor\log n\rfloor} \frac{n}{2^{i-1}} 2^{i+1}=\Theta(n \log n)
$$

- Amortized cost at most $\boldsymbol{\Theta}(\log \mathbf{n})$!

Multiple Operations

How do we define amortized analysis of data structures with multiple operations?

Definition

If structure supports \mathbf{k} operations, say that operation \mathbf{i} has amortized cost at most $\boldsymbol{\alpha}_{\mathbf{i}}$ if for every sequence which performs with at most $\mathbf{m}_{\mathbf{i}}$ operations of type \mathbf{i}, the total cost is at most $\sum_{\mathrm{i}=1}^{\mathrm{k}} \boldsymbol{\alpha}_{\mathbf{i}} \mathbf{m}_{\mathbf{i}}$.

Multiple Operations

How do we define amortized analysis of data structures with multiple operations?

Definition

If structure supports \mathbf{k} operations, say that operation \mathbf{i} has amortized cost at most $\boldsymbol{\alpha}_{\mathbf{i}}$ if for every sequence which performs with at most $\mathbf{m}_{\mathbf{i}}$ operations of type \mathbf{i}, the total cost is at most $\sum_{i=1}^{k} \alpha_{i} \mathbf{m}_{\mathbf{i}}$.

- When analyzing multiple operations, need to use the same bank/potential for all of them!
- With multiple operations, bounds not necessarily unique. Different amortization schemes could yield different bounds, all of which are correct and non-contradictory.

