Lecture 6: Balanced Search Trees

Michael Dinitz

September 16, 2021
601.433/633 Introduction to Algorithms

Introduction

Today, and next few weeks: data structures.

- Since "Data Structures" a prereq, focus on advanced structures and on interesting analysis

Introduction

Today, and next few weeks: data structures.

- Since "Data Structures" a prereq, focus on advanced structures and on interesting analysis

Today and later: data structures for dictionaries

Introduction

Today, and next few weeks: data structures.

- Since "Data Structures" a prereq, focus on advanced structures and on interesting analysis

Today and later: data structures for dictionaries

Definition

A dictionary data structure is a data structure supporting the following operations:

- insert(key,object): insert the (key, object) pair.
- lookup(key): return the associated object
- delete(key): remove the key and its object from the data structure. We may or may not care about this operation.

Obvious Approaches

Reminder: all running times for worst case

Obvious Approaches

Reminder: all running times for worst case
Approach 1: Sorted array

Obvious Approaches

Reminder: all running times for worst case

n kens objects

Approach 1: Sorted array

- Lookup:

Obvious Approaches

Reminder: all running times for worst case
Approach 1: Sorted array

- Lookup: O(logn)

Obvious Approaches

Reminder: all running times for worst case
Approach 1: Sorted array

- Lookup: O(logn)
- Insert:

Obvious Approaches

Reminder: all running times for worst case
Approach 1: Sorted array

- Lookup: O(logn)
- Insert: Ω (n)

Obvious Approaches

Reminder: all running times for worst case
Approach 1: Sorted array

- Lookup: O(logn)
- Insert: $\boldsymbol{\Omega}$ (n)

Approach 2: Unsorted (linked) list

Obvious Approaches

Reminder: all running times for worst case
Approach 1: Sorted array

- Lookup: O(logn)
- Insert: Ω (n)

Approach 2: Unsorted (linked) list

- Insert:

Obvious Approaches

Reminder: all running times for worst case
Approach 1: Sorted array

- Lookup: O(logn)
- Insert: Ω (n)

Approach 2: Unsorted (linked) list

- Insert: O(1)

Obvious Approaches

Reminder: all running times for worst case
Approach 1: Sorted array

- Lookup: O(logn)
- Insert: Ω (n)

Approach 2: Unsorted (linked) list

- Insert: O(1)
- Lookup:

Obvious Approaches

Reminder: all running times for worst case
Approach 1: Sorted array

- Lookup: O(logn)
- Insert: $\boldsymbol{\Omega}$ (n)

Approach 2: Unsorted (linked) list

- Insert: O(1)
- Lookup: Ω (n)

Obvious Approaches

Reminder: all running times for worst case
Approach 1: Sorted array

- Lookup: O(logn)
- Insert: Ω (n)

Approach 2: Unsorted (linked) list

- Insert: O(1)
- Lookup: Ω (n)

Goal: $\mathbf{O}(\log n)$ for both.

Obvious Approaches

Reminder: all running times for worst case
Approach 1: Sorted array

- Lookup: O(logn)
- Insert: Ω (n)

Approach 2: Unsorted (linked) list

- Insert: O(1)
- Lookup: $\boldsymbol{\Omega}$ (n)

Goal: $\mathbf{O}(\log \mathbf{n})$ for both.
Approach today: search trees

Binary Search Tree Review

Binary search tree:

- All nodes have at most 2 children
- Each node stores (key, object) pair
- All descendants to left have smaller keys
- All descendants to the right have larger keys

Binary Search Tree Review

Binary search tree:

- All nodes have at most 2 children
- Each node stores (key, object) pair
- All descendants to left have smaller keys
- All descendants to the right have larger keys

Lookup: follow path from root!

Dictionary Operations in Simple Binary Search Tree

 insert(\mathbf{x}):- If tree empty, put x at root
- Else if \mathbf{x} < root.key recursively insert into left child
- Else (if $x>$ root.key) recursively insert into right child

Dictionary Operations in Simple Binary Search Tree insert(\mathbf{x}):

- If tree empty, put x at root
- Else if \mathbf{x} < root.key recursively insert into left child
- Else (if $x>$ root.key) recursively insert into right child

Example: H O P K I N S

Simply Binary Search Tree: Analysis

Pluses: easy to implement

Simply Binary Search Tree: Analysis

Pluses: easy to implement
(Worst-case) Running time:

Simply Binary Search Tree: Analysis

Pluses: easy to implement
(Worst-case) Running time: if depth \mathbf{d}, then $\boldsymbol{\Theta}(\mathbf{d})$

Simply Binary Search Tree: Analysis

Pluses: easy to implement
(Worst-case) Running time: if depth \mathbf{d}, then $\boldsymbol{\Theta}(\mathbf{d})$

- If very unbalanced \mathbf{d} could be $\boldsymbol{\Omega} \mathbf{(n)}$!

Simply Binary Search Tree: Analysis

Pluses: easy to implement
(Worst-case) Running time: if depth \mathbf{d}, then $\boldsymbol{\Theta}(\mathbf{d})$

- If very unbalanced \mathbf{d} could be $\boldsymbol{\Omega}(\mathbf{n})$!

Want to make tree balanced.

Simply Binary Search Tree: Analysis

Pluses: easy to implement
(Worst-case) Running time: if depth \mathbf{d}, then $\boldsymbol{\Theta}(\mathbf{d})$

- If very unbalanced \mathbf{d} could be $\boldsymbol{\Omega}(\mathbf{n})$!

Want to make tree balanced.
Rest of today:

- B-trees: perfect balance, not binary
- Red-black trees: approximate balance, binary
- Turn out to be related!

B-Trees

B-tree Definition

Parameter $\mathbf{t} \geq \mathbf{2}$.

B-tree Definition

Parameter $\mathbf{t} \geq 2$.
 Definition (B-tree with parameter \mathbf{t})

1. Each node has between $\mathbf{t}-\mathbf{1}$ and $\mathbf{2 t} \mathbf{- 1}$ keys in it (except the root has between $\mathbf{1}$ and $\mathbf{2 t}-\mathbf{1}$ keys). Keys in a node are stored in a sorted array.
2. Each non-leaf has degree (number of children) equal to the number of keys in it plus $\mathbf{1}$. If \mathbf{v} is a node with keys $\left[\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{k}}\right]$ and the children are $\left[\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{k}+\mathbf{1}}\right]$, then the tree rooted at $\mathbf{v}_{\mathbf{i}}$ contains only keys that are at least $\mathbf{a}_{\mathbf{i} \mathbf{- 1}}$ and at most $\mathbf{a}_{\mathbf{i}}$ (except the the edge cases: the tree rooted at $\mathbf{v}_{\mathbf{1}}$ has keys less than $\mathbf{a}_{\mathbf{1}}$, and the tree rooted at $\mathbf{v}_{\mathbf{k}+\mathbf{1}}$ has keys at least $\mathbf{a}_{\mathbf{k}}$).
3. All leaves are at the same depth.

B-tree Definition

Parameter $\mathbf{t} \geq \mathbf{2}$.

Definition (B-tree with parameter \mathbf{t})

1. Each node has between $\mathbf{t}-\mathbf{1}$ and $\mathbf{2 t} \mathbf{- 1}$ keys in it (except the root has between $\mathbf{1}$ and $\mathbf{2 t}-\mathbf{1}$ keys). Keys in a node are stored in a sorted array.
2. Each non-leaf has degree (number of children) equal to the number of keys in it plus $\mathbf{1}$. If \mathbf{v} is a node with keys $\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{k}}\right.$] and the children are $\left[\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{k}+\mathbf{1}}\right.$], then the tree rooted at $\mathbf{v}_{\mathbf{i}}$ contains only keys that are at least $\mathbf{a}_{\mathbf{i} \mathbf{- 1}}$ and at most $\mathbf{a}_{\mathbf{i}}$ (except the the edge cases: the tree rooted at $\mathbf{v}_{\mathbf{1}}$ has keys less than $\mathbf{a}_{\mathbf{1}}$, and the tree rooted at $\mathbf{v}_{\mathbf{k}+\mathbf{1}}$ has keys at least $\mathbf{a}_{\mathbf{k}}$).
3. All leaves are at the same depth.

When $\mathbf{t}=\mathbf{2}$ known as a 2-3-4 tree, since \# children either 2,3 , or 4

B-tree: Example

$$
\mathbf{t}=\mathbf{3}
$$

- Root has between $\mathbf{1}$ and $\mathbf{5}$ keys, non-roots have between $\mathbf{2}$ and $\mathbf{5}$ keys
- Non-leaves have between $\mathbf{3}$ and $\mathbf{6}$ children (root can have fewer). and a-n-vout

Lookups

Binary search in array at root. Finished if find item, else get pointer to appropriate child, recurse.

Insert(\mathbf{x})

Obvious approach: do a lookup, put \mathbf{x} in leaf where it should be.

- Example: insert E

Insert(\mathbf{x})

Obvious approach: do a lookup, put \mathbf{x} in leaf where it should be.

- Example: insert E

Problem: What if leaf is full (already has $\mathbf{2 t} \mathbf{- 1}$ keys)?

Insert (x)

Obvious approach: do a lookup, put \mathbf{x} in leaf where it should be.

- Example: insert E

Problem: What if leaf is full (already has $\mathbf{2 t} \mathbf{- 1}$ keys)?
Split:

- Only used on full nodes (nodes with $\mathbf{2 t} \mathbf{- 1}$ keys) whose parents are not full.
- Pull median of its keys up to its parent
- Split remaining 2t-2 keys into two nodes of $\mathbf{t}-\mathbf{1}$ keys each. Reconnect appropriately.

Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

Insert E, F into example.

Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

Insert E, F into example.

Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

Insert E, F into example.

Note: since split on the way down, when a node is split, its parent is not full!

Example continued

Example continued

Insert $\mathbf{S}, \mathbf{U}, \mathbf{V}$:

Example continued

Insert $\mathbf{S}, \mathbf{U}, \mathbf{V}$:

Example continued

Insert S, U, V:

Insert P:

Example continued

Insert S, U, V:

Insert P:

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.

Third property (all leaves at same depth):

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. \checkmark

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. \checkmark
First property (all non-leaves other than root have between $\mathbf{t}-\mathbf{1}$ and $\mathbf{2 t} \mathbf{- 1}$ keys):

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. \checkmark
First property (all non-leaves other than root have between $\mathbf{t}-\mathbf{1}$ and $\mathbf{2 t} \mathbf{- 1}$ keys):

- No split:

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. \checkmark
First property (all non-leaves other than root have between $\mathbf{t - 1}$ and $\mathbf{2 t} \mathbf{- 1}$ keys):

- No split: only leaf changes, was not full (or would have split)

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. \checkmark
First property (all non-leaves other than root have between $\mathbf{t - 1}$ and $\mathbf{2 t} \mathbf{- 1}$ keys):

- No split: only leaf changes, was not full (or would have split)
- Split:

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. \checkmark
First property (all non-leaves other than root have between $\mathbf{t - 1}$ and $\mathbf{2 t} \mathbf{- 1}$ keys):

- No split: only leaf changes, was not full (or would have split)
- Split: Parent was not full. New nodes have exactly t-1 keys.

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. \checkmark
First property (all non-leaves other than root have between $\mathbf{t - 1}$ and $\mathbf{2 t} \mathbf{- 1}$ keys):

- No split: only leaf changes, was not full (or would have split)
- Split: Parent was not full. New nodes have exactly t-1 keys.

Second property (correct degrees, subtrees have keys in correct ranges):

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. \checkmark
First property (all non-leaves other than root have between $\mathbf{t}-\mathbf{1}$ and $\mathbf{2 t} \mathbf{- 1}$ keys):

- No split: only leaf changes, was not full (or would have split)
- Split: Parent was not full. New nodes have exactly t-1 keys.

Second property (correct degrees, subtrees have keys in correct ranges): Hooked nodes up correctly after split. \checkmark

B-tree running time

Suppose \mathbf{n} keys, depth d

B-tree running time
Suppose \mathbf{n} keys, depth $\mathbf{d} \leq \mathbf{O}\left(\log _{\mathbf{t}} \mathbf{n}\right) \quad B / C \quad$ all nod d as have deg. \geq t

B-tree running time

Suppose \mathbf{n} keys, depth $\mathbf{d} \leq \mathbf{O}\left(\log _{\mathbf{t}} \mathbf{n}\right)$

Lookup:

- Binary search on array in each node we pass through

B-tree running time

Suppose \mathbf{n} keys, depth $\mathbf{d} \leq \mathbf{O}\left(\boldsymbol{\operatorname { l o g }}_{\mathbf{t}} \mathbf{n}\right)$

Lookup:

- Binary search on array in each node we pass through $\Longrightarrow \mathbf{O}(\log t)$ time per node.

B-tree running time

Suppose \mathbf{n} keys, depth $\mathbf{d} \leq \mathbf{O}\left(\boldsymbol{\operatorname { l o g }}_{\mathbf{t}} \mathbf{n}\right)$
Lookup:

- Binary search on array in each node we pass through $\Longrightarrow \mathbf{O}(\boldsymbol{\operatorname { l o g } t)}$ time per node.
- Total time $\mathbf{O}(\mathbf{d} \times \log t)=\mathbf{O}\left(\log _{t} \mathbf{n} \times \log t\right)=\mathbf{O}\left(\frac{\log n}{\log t} \times \log t\right)=\mathbf{O}(\log n)$

B-tree running time

Suppose \mathbf{n} keys, depth $\mathbf{d} \leq \mathbf{O}\left(\boldsymbol{\operatorname { l o g }}_{\mathbf{t}} \mathbf{n}\right)$
Lookup:

- Binary search on array in each node we pass through $\Longrightarrow \mathbf{O}(\log t)$ time per node.
- Total time $\mathbf{O}(\mathbf{d} \times \log t)=\mathbf{O}\left(\log _{t} \mathbf{n} \times \log t\right)=\mathbf{O}\left(\frac{\log n}{\log t} \times \log t\right)=\mathbf{O}(\log n)$

Insert:

B-tree running time

Suppose \mathbf{n} keys, depth $\mathbf{d} \leq \mathbf{O}\left(\log _{\mathbf{t}} \mathbf{n}\right)$
Lookup:

- Binary search on array in each node we pass through $\Longrightarrow \mathbf{O}(\log t)$ time per node.
- Total time $\mathbf{O}(\mathbf{d} \times \log t)=\mathbf{O}\left(\log _{t} \mathbf{n} \times \log t\right)=\mathbf{O}\left(\frac{\log n}{\log t} \times \log t\right)=\mathbf{O}(\log n)$

Insert: \quad lcoknp

- Same as insert, but need to split on the way down \& insert into leaf

B-tree running time

Suppose \mathbf{n} keys, depth $\mathbf{d} \leq \mathbf{O}\left(\boldsymbol{\operatorname { l o g }}_{\mathbf{t}} \mathbf{n}\right)$
Lookup:

- Binary search on array in each node we pass through $\Longrightarrow \mathbf{O}(\log t)$ time per node.
- Total time $\mathbf{O}(\mathbf{d} \times \log t)=\mathbf{O}\left(\log _{t} \mathbf{n} \times \log t\right)=\mathbf{O}\left(\frac{\log n}{\log t} \times \log t\right)=\mathbf{O}(\log n)$

Insert:

- Same as insert, but need to split on the way down \& insert into leaf
- Total: lookup time + splitting time + time to insert into leaf

B-tree running time

Suppose \mathbf{n} keys, depth $\mathbf{d} \leq \mathbf{O}\left(\boldsymbol{\operatorname { l o g }}_{\mathbf{t}} \mathbf{n}\right)$
Lookup:

- Binary search on array in each node we pass through $\Longrightarrow \mathbf{O}(\log t)$ time per node.
- Total time $\mathbf{O}(\mathbf{d} \times \log t)=\mathbf{O}\left(\log _{t} \mathbf{n} \times \log t\right)=\mathbf{O}\left(\frac{\log n}{\log t} \times \log t\right)=\mathbf{O}(\log n)$

Insert:

- Same as insert, but need to split on the way down \& insert into leaf
- Total: lookup time + splitting time + time to insert into leaf
- Insert into leaf:

B-tree running time

Suppose \mathbf{n} keys, depth $\mathbf{d} \leq \mathbf{O}\left(\boldsymbol{\operatorname { l o g }}_{\mathbf{t}} \mathbf{n}\right)$
Lookup:

- Binary search on array in each node we pass through $\Longrightarrow \mathbf{O}(\log t)$ time per node.
- Total time $\mathbf{O}(\mathbf{d} \times \log t)=\mathbf{O}\left(\log _{t} \mathbf{n} \times \log t\right)=\mathbf{O}\left(\frac{\log n}{\log t} \times \log t\right)=\mathbf{O}(\log n)$

Insert:

- Same as insert, but need to split on the way down \& insert into leaf
- Total: lookup time + splitting time + time to insert into leaf
- Insert into leaf: O(t)

B-tree running time

Suppose \mathbf{n} keys, depth $\mathbf{d} \leq \mathbf{O}\left(\log _{\mathbf{t}} \mathbf{n}\right)$
Lookup:

- Binary search on array in each node we pass through $\Longrightarrow \mathbf{O}(\log t)$ time per node.
- Total time $\mathbf{O}(\mathbf{d} \times \log t)=\mathbf{O}\left(\log _{t} \mathbf{n} \times \log t\right)=\mathbf{O}\left(\frac{\log n}{\log t} \times \log t\right)=\mathbf{O}(\log n)$

Insert:

- Same as insert, but need to split on the way down \& insert into leaf
- Total: lookup time + splitting time + time to insert into leaf
- Insert into leaf: O(t)
- Splitting time:

B-tree running time

Suppose \mathbf{n} keys, depth $\mathbf{d} \leq \mathbf{O}\left(\log _{\mathbf{t}} \mathbf{n}\right)$
Lookup:

- Binary search on array in each node we pass through $\Longrightarrow \mathbf{O}(\log t)$ time per node.
- Total time $\mathbf{O}(\mathbf{d} \times \log t)=\mathbf{O}\left(\log _{t} \mathbf{n} \times \log t\right)=\mathbf{O}\left(\frac{\log n}{\log t} \times \log t\right)=\mathbf{O}(\log n)$

Insert:

- Same as insert, but need to split on the way down \& insert into leaf
- Total: lookup time + splitting time + time to insert into leaf
- Insert into leaf: O(t)
- Splitting time: O(t) per split

B-tree running time

Suppose \mathbf{n} keys, depth $\mathbf{d} \leq \mathbf{O}\left(\log _{\mathbf{t}} \mathbf{n}\right)$
Lookup:

- Binary search on array in each node we pass through $\Longrightarrow \mathbf{O}(\log t)$ time per node.
- Total time $\mathbf{O}(\mathbf{d} \times \log t)=\mathbf{O}\left(\log _{t} \mathbf{n} \times \log t\right)=\mathbf{O}\left(\frac{\log n}{\log t} \times \log t\right)=\mathbf{O}(\log n)$

Insert:

- Same as insert, but need to split on the way down \& insert into leaf
- Total: lookup time + splitting time + time to insert into leaf
- Insert into leaf: O(t)
- Splitting time: $\mathbf{O}(\mathbf{t})$ per split $\Longrightarrow \mathbf{O}(\mathbf{t d})=\mathbf{O}\left(\mathbf{t} \log _{\mathbf{t}} \mathbf{n}\right)$ total

B-tree running time

Suppose \mathbf{n} keys, depth $\mathbf{d} \leq \mathbf{O}\left(\log _{\mathbf{t}} \mathbf{n}\right)$
Lookup:

- Binary search on array in each node we pass through $\Longrightarrow \mathbf{O}(\log t)$ time per node.
- Total time $\mathbf{O}(\mathbf{d} \times \log t)=\mathbf{O}\left(\log _{t} \mathbf{n} \times \log t\right)=\mathbf{O}\left(\frac{\log n}{\log t} \times \log t\right)=\mathbf{O}(\log n)$

Insert:

- Same as insert, but need to split on the way down \& insert into leaf
- Total: lookup time + splitting time + time to insert into leaf
- Insert into leaf: O(t)
- Splitting time: $\mathbf{O}(\mathbf{t})$ per split $\Longrightarrow \mathbf{O}(\mathbf{t d})=\mathbf{O}\left(\mathbf{t} \log _{\mathbf{t}} \mathbf{n}\right)$ total
- $\mathbf{O}\left(\mathbf{t} \log _{\mathrm{t}} \mathbf{n}\right)=\mathbf{O}\left(\frac{\mathrm{t}}{\log \mathrm{t}} \log \mathbf{n}\right)$ total

B-tree notes

Used a lot in databases

- Large \mathbf{t} : shallow trees. Fits well with memory hierarchy

B-tree notes

Used a lot in databases

- Large \mathbf{t} : shallow trees. Fits well with memory hierarchy
$t=2$:
- 2-3-4 tree
- Can be implemented as binary tree using red-black trees

Red-Black Trees

Red-Black Trees: Intro

B-Trees great, but binary is nice: lookups very simple! Want binary balanced tree.

Red-Black Trees: Intro

B-Trees great, but binary is nice: lookups very simple! Want binary balanced tree.

- Classical and super important data structure question
- Many solutions!

Red-Black Trees: Intro

B-Trees great, but binary is nice: lookups very simple! Want binary balanced tree.

- Classical and super important data structure question
- Many solutions!

Most famous: red-black trees

- Default in Linux kernel, used to optimize Java HashMap, . .
- Today: Quick overview, connection to 2-3-4 trees.
- Not traditional or practical point of view on red-black trees. See book!

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

- No: can't have perfect balance!

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

- No: can't have perfect balance!
- Just need depth $\mathbf{O}(\log \mathbf{n})$

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

- No: can't have perfect balance!
- Just need depth $\mathbf{O}(\log \mathbf{n})$

Nodes in 2-3-4 tree have degree 2,3 , or 4

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

- No: can't have perfect balance!
- Just need depth $\mathbf{O}(\log \mathbf{n})$

Nodes in 2-3-4 tree have degree 2,3 , or 4

- Degree 2: good!

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

- No: can't have perfect balance!
- Just need depth $\mathbf{O}(\log \mathbf{n})$

Nodes in 2-3-4 tree have degree 2, 3, or 4

- Degree 2: good!
- Degree 4:

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

- No: can't have perfect balance!
- Just need depth $\mathbf{O}(\log \mathbf{n})$

Nodes in 2-3-4 tree have degree 2,3 , or 4

- Degree 2: good!
- Degree 4:

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

- No: can't have perfect balance!
- Just need depth $\mathbf{O}(\log \mathbf{n})$

Nodes in 2-3-4 tree have degree 2, 3, or 4

- Degree 2: good!
- Degree 4:

- Degree 3:

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

- No: can't have perfect balance!
- Just need depth $\mathbf{O}(\log \mathbf{n})$

Nodes in 2-3-4 tree have degree 2, 3, or 4

- Degree 2: good!
- Degree 4:

- Degree 3:

Important Properties

Important Properties

1. Never have two red edges in a row.

- Red edge is "internal", never have more than one "internal" edge in a row.

Important Properties

1. Never have two red edges in a row.

- Red edge is "internal", never have more than one "internal" edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)

- Each black edge is a 2-3-4 tree edge
- All leaves in 2-3-4 tree at same distance from root

Important Properties

1. Never have two red edges in a row.

- Red edge is "internal", never have more than one "internal" edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)

- Each black edge is a 2-3-4 tree edge
- All leaves in 2-3-4 tree at same distance from root
\Longrightarrow path from root to deepest leaf $\leq 2 \times$ path to shallowest leaf

Important Properties

1. Never have two red edges in a row.

- Red edge is "internal", never have more than one "internal" edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)

- Each black edge is a 2-3-4 tree edge
- All leaves in 2-3-4 tree at same distance from root
\Longrightarrow path from root to deepest leaf $\leq 2 \times$ path to shallowest leaf
\Longrightarrow depth $\leq \mathbf{O}(\log \mathbf{n})$

Insert

Want to insert while preserving two properties.

Insert

Want to insert while preserving two properties. 2-3-4 trees: split full nodes on way down.

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.
Easy cases:

Insert

Want to insert while preserving two properties. 2-3-4 trees: split full nodes on way down.

Easy cases:

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.
Easy cases:

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.
Easy cases:

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.
Easy cases:

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.
Easy cases:

Harder cases:

Lecture 6: Balanced Search Trees

Tree Rotations

Used in many different tree constructions.

Tree Rotations

Used in many different tree constructions.

Using Rotations

Can use rotations to "fix" hard cases. Example:

change colors

right rotate $R \rightarrow$

left rotate $E \rightarrow$

End

A few more complications to deal with - see lecture notes, textbook.

End

A few more complications to deal with - see lecture notes, textbook.
Main points:

- Red-Black trees can be thought of as a binary implementation of 2-3-4 trees
- Approximately balanced, so $\mathbf{O}(\log n)$ lookup time
- Insert time (basically) same as 2-3-4 tree, so also $\mathbf{O}(\boldsymbol{\operatorname { l o g } n})$.
- See book for direct approach (not through 2-3-4 trees).

