Lecture 5: Sorting Lower Bound and "Linear-Time" Sorting

Michael Dinitz

September 14, 2021 601.433/633 Introduction to Algorithms

- 2

JQ (?

Reminders

HW2 due on Thursday!

Remember:

- Include your group members on the first page
- Typeset your solutions
- Label your pages in gradescope

Ethics policy!

< 글 ▶ < 글

Image: A matrix

3

Lots of ways of sorting in $O(n \log n)$ time: mergesort, heapsort, randomized quicksort, deterministic quicksort with BPFRT pivot selection, ...

Is it possible to do better?

- 2

JQ (?

イロト イヨト イヨト

Lots of ways of sorting in $O(n \log n)$ time: mergesort, heapsort, randomized quicksort, deterministic quicksort with BPFRT pivot selection, ...

Is it possible to do better? No!

- 2

JQ (?

(日) (同) (三) (三)

Lots of ways of sorting in $O(n \log n)$ time: mergesort, heapsort, randomized quicksort, deterministic quicksort with BPFRT pivot selection, ...

Is it possible to do better? No! And yes!

- 32

JQ (?

(日) (同) (三) (三)

Lots of ways of sorting in $O(n \log n)$ time: mergesort, heapsort, randomized quicksort, deterministic quicksort with BPFRT pivot selection, ...

Is it possible to do better? No! And yes!

Comparison Model: we are given a constant-time algorithm which can compare any two elements. No other information about elements.

All algorithms we've seen so far have been in this model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SQC

Lots of ways of sorting in $O(n \log n)$ time: mergesort, heapsort, randomized quicksort, deterministic quicksort with BPFRT pivot selection, ...

Is it possible to do better? No! And yes!

Comparison Model: we are given a constant-time algorithm which can compare any two elements. No other information about elements.

All algorithms we've seen so far have been in this model

No: every algorithm in the comparison model must have worst-case running time $\Omega(n \log n)$.

Yes: If we assume extra structure for the elements, can do sorting in O(n) time^{*}

Sar

Sorting Lower Bound

500

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■

Statement

Theorem

Any sorting algorithm in the comparison model must make at least $log(n!) = \Theta(n log n)$ comparisons (in the worst case).

Lower bound on the number of comparisons – running time could be even worse! Allows algorithm to reorder elements, copy them, move them, etc. for free.

- E

SQC

<ロト < 団ト < 団ト < 団ト

Statement

Theorem

Any sorting algorithm in the comparison model must make at least $log(n!) = \Theta(n log n)$ comparisons (in the worst case).

Lower bound on the number of comparisons – running time could be even worse! Allows algorithm to reorder elements, copy them, move them, etc. for free.

Why is this hard?

- Lower bound needs to hold for all algorithms
- How can we simultaneously reason about algorithms as different as mergesort, quicksort, heapsort, ...?

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > > < 二 > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

SQC

Sorting as Permutations

Think of an array **A** as a *permutation*: **A**[**i**] is the $\pi(\mathbf{i})$ 'th smallest element

A = [23, 14, 2, 5, 76]

Corresponds to $\pi = (3, 2, 0, 1, 4)$:

 $\pi(0) = 3$ $\pi(1) = 2$ $\pi(2) = 0$ $\pi(3) = 1$ $\pi(4) = 4$

Sorting as Permutations

Think of an array **A** as a *permutation*: **A**[**i**] is the $\pi(\mathbf{i})$ 'th smallest element

A = [23, 14, 2, 5, 76]

Corresponds to $\pi = (3, 2, 0, 1, 4)$:

 $\pi(0) = 3$ $\pi(1) = 2$ $\pi(2) = 0$ $\pi(3) = 1$ $\pi(4) = 4$

Lemma

Given A with |A| = n, if can sort in T(n) comparisons then can find π in T(n) comparisons

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Sorting As Permutations (cont'd)

Lemma

Given A with |A| = n, if can sort in T(n) comparisons then can find π in T(n) comparisons

Proof Sketch.

- "Tag" each element of A with index: $[23, 14, 2, 5, 76] \rightarrow [(23, 0), (14, 1), (2, 2), (5, 3), (76, 4)]$
- Sort tagged A into tagged B with T(n) comparisons: [(2,2), (5,3), (14,1), (23,0), (76,4)]
- Iterate through to get π : $\pi(2) = 0, \pi(3) = 1, \pi(1) = 2, \pi(0) = 3, \pi(4) = 4$

590

《曰》《聞》《臣》《臣》 [] 臣.

Sorting As Permutations (cont'd)

Lemma

Given A with |A| = n, if can sort in T(n) comparisons then can find π in T(n) comparisons

Proof Sketch.

- "Tag" each element of A with index: $[23, 14, 2, 5, 76] \rightarrow [(23, 0), (14, 1), (2, 2), (5, 3), (76, 4)]$
- Sort tagged A into tagged B with T(n) comparisons: [(2,2), (5,3), (14,1), (23,0), (76,4)]
- Iterate through to get π : $\pi(2) = 0, \pi(3) = 1, \pi(1) = 2, \pi(0) = 3, \pi(4) = 4$

Corollary

Contrapositive: If need at least T(n) comparisons to find π , need at least T(n) comparisons to sort!

- 3

500

Generic Algorithm

Want to show that it takes $\Omega(n \log n)$ comparisons to find π in comparison model.

• Only comparisons cost us anything!

イロト イヨト イヨト

3

JQ (?

Generic Algorithm

Want to show that it takes $\Omega(n \log n)$ comparisons to find π in comparison model.

Only comparisons cost us anything!

Arbitrary algorithm:

- Starts with some comparison (e.g., compares A[0] to A[1])
- Rules out some possible permutations!
 - If A[0] < A[1] then $\pi(0) < \pi(1)$
 - If A[0] > A[1] then $\pi(1) > \pi(0)$
- Depending on outcome, choose next comparison to make.
- Continue until only one possible permutation.

SQC

Generic Algorithm

Want to show that it takes $\Omega(n \log n)$ comparisons to find π in comparison model.

Only comparisons cost us anything!

Arbitrary algorithm:

- Starts with some comparison (e.g., compares A[0] to A[1])
- Rules out some possible permutations!
 - If A[0] < A[1] then $\pi(0) < \pi(1)$
 - If A[0] > A[1] then $\pi(1) > \pi(0)$
- Depending on outcome, choose next comparison to make.
- Continue until only one possible permutation.

Remind you of anything?

《口》《聞》《臣》《臣》 [] 臣 []

SQA

Model any algorithm as a *binary decision tree*

- Internal nodes: comparisons
- Leaves: permutations

3

JQ (?

3

≣ ▶ ∢

▲□▶ ▲□

Model any algorithm as a *binary decision tree*

- Internal nodes: comparisons
- Leaves: permutations

Example: $\mathbf{n} = \mathbf{3}$. Six possible permutations.

3

JQ (?

< E

-

Image: A matrix

Model any algorithm as a *binary decision tree*

- Internal nodes: comparisons
- Leaves: permutations

Example: $\mathbf{n} = \mathbf{3}$. Six possible permutations.

Max # comparisons:

3

SQC

э

3

Image: A matrix

Model any algorithm as a *binary decision tree*

- Internal nodes: comparisons
- Leaves: permutations

Example: $\mathbf{n} = \mathbf{3}$. Six possible permutations.

Michael Dinitz

3

SQC

э

Scale to general **n**. Consider arbitrary decision tree.

E

5900

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Scale to general **n**. Consider arbitrary decision tree.

Max # comparisons

E

SQC.

- ▲ 글 ▶ - ▲ 글

▲□▶ ▲□

•

Scale to general **n**. Consider arbitrary decision tree.

Max # comparisons = depth of tree

E

JQ (?

< E

э.

▲□▶ ▲□

Scale to general \mathbf{n} . Consider arbitrary decision tree.

Max # comparisons = depth of tree

 $\geq \log_2(\# \text{ leaves})$

3

JQ (?

< E

э.

▲□▶ ▲□

Scale to general \mathbf{n} . Consider arbitrary decision tree.

Max # comparisons = depth of tree $\geq log_2(\# leaves)$ $= log_2(n!)$

3

JQ (?

< E

э.

< 口 > < 同

Scale to general **n**. Consider arbitrary decision tree.

Max # comparisons = depth of tree

 $\geq \log_2(\# \text{ leaves})$ $= \log_2(n!)$ $= \Theta(n \log n)$

3

JQ (?

< E

э.

Image: A matrix

Sorting Lower Bound Summary

Theorem

Every sorting algorithm in the comparison model must make at least $log(n!) = \Theta(n log n)$ comparisons (in the worst case).

Proof Sketch.

- 1. Lower bound on finding permutation $\pi \implies$ lower bound on sorting
- 2. Any algorithm for finding π is a binary decision tree with **n!** leaves.
- 3. Any binary decision tree with n! leaves has depth $\geq \log(n!) = \Theta(n \log n)$
- \implies Every algorithm has worst case number of comparisons at least $\Theta(n \log n)$.

- 2

590

"Linear-Time" Sorting

÷.

500

▲□▶ ▲圖▶ ▲필▶ ▲필▶

Bypassing the Lower Bound

What if we're not in the comparison model?

• Can do more than just compare elements.

Main example: *integers*.

- What is the 3rd bit of A[0]?
- Is $A[0] \ll k$ larger than $A[1] \gg c$?
- Is A[0] even?

Same ideas apply to letters, strings, etc.

- 12

JQ P

Suppose A consists of n integers, all in $\{0, 1, \dots, k-1\}$.

3

5900

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suppose A consists of n integers, all in $\{0, 1, \dots, k-1\}$.

Counting Sort:

- \blacktriangleright Maintain an array B of length k initialized to all 0
- Scan through **A** and increment **B**[**A**[**i**]].
- Scan through **B**, output **i** exactly **B**[**i**] times.

- 3

JQ P

<ロト < 同ト < ヨト < ヨト

Suppose A consists of n integers, all in $\{0, 1, \dots, k-1\}$.

Counting Sort:

- \blacktriangleright Maintain an array B of length k initialized to all 0
- Scan through **A** and increment **B**[**A**[**i**]].
- Scan through B, output i exactly B[i] times.

Correctness: Obvious

JQ P

Suppose A consists of n integers, all in $\{0, 1, \dots, k-1\}$.

Counting Sort:

- \blacktriangleright Maintain an array B of length k initialized to all 0
- Scan through **A** and increment **B**[**A**[**i**]].
- Scan through **B**, output **i** exactly **B**[**i**] times.

Correctness: Obvious

Running time:

3

JQ P

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > > < 二 > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suppose A consists of n integers all in $\{0, 1, \dots, k-1\}$

Counting Sort:

- Maintain an array **B** of length **k** initialized to all $\mathbf{0}$
- Scan through **A** and increment **B**[**A**[**i**]].
- Scan through **B**, output **i** exactly **B**[**i**] times.

Correctness: Obvious

Running time: O(n + k)

э

3

SQC

Bucket Sort: Counting Sort++

Often want to sort *objects* based on keys:

- Each object has a key: integer in $\{0, 1, \dots, k-1\}$
- A consists of **n** objects

- 3

JQ (?

Often want to sort *objects* based on *keys*:

- Each object has a key: integer in $\{0, 1, \dots, k-1\}$
- A consists of **n** objects

Bucket Sort:

- Same idea as counting sort, but **B**[i] is bucket of objects with key i ß
- Bucket is a linked list with pointers to beginning and end
- Insert at end of list, using end pointer.
- For output, go through each bucket in order.

key I

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Often want to sort *objects* based on *keys*:

- Each object has a key: integer in $\{0, 1, \dots, k-1\}$
- A consists of **n** objects

Bucket Sort:

- \blacktriangleright Same idea as counting sort, but B[i] is bucket of objects with key i
- Bucket is a linked list with pointers to beginning and end
- Insert at end of list, using end pointer.
- For output, go through each bucket in order.

Running time:

- -

JQ P

Often want to sort *objects* based on *keys*:

- Each object has a key: integer in $\{0, 1, \dots, k-1\}$
- A consists of **n** objects

Bucket Sort:

- \blacktriangleright Same idea as counting sort, but B[i] is bucket of objects with key i
- Bucket is a linked list with pointers to beginning and end
- Insert at end of list, using end pointer.
- For output, go through each bucket in order.

Running time: O(n + k)

JQ P

Often want to sort *objects* based on *keys*:

- Each object has a key: integer in $\{0, 1, \dots, k-1\}$
- A consists of **n** objects

Bucket Sort:

- \blacktriangleright Same idea as counting sort, but B[i] is bucket of objects with key i
- Bucket is a linked list with pointers to beginning and end
- Insert at end of list, using end pointer.
- For output, go through each bucket in order.

Running time: O(n + k)

Stable: if two objects have same key, order between them after sorting is same as before.

JQ P

What if **k** is much larger than **n**, e.g., $\mathbf{k} = \Theta(\mathbf{n}^2)$?

3

5900

< ロ > < 回 > < 回 > < 回 > < 回 >

What if **k** is much larger than **n**, e.g., $\mathbf{k} = \Theta(\mathbf{n}^2)$? Radix sort: $O(\mathbf{n})$ time* for this case

- 12

JQ (?

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

```
What if k is much larger than n, e.g., \mathbf{k} = \Theta(\mathbf{n}^2)?

Radix sort: \mathbf{O}(\mathbf{n}) time<sup>*</sup> for this case
```

Setup:

- Numbers represented base 10 for historical reasons (all works fine in binary)
- Assume all numbers have exactly d digits (for simplicity: sector k).

-

JQ P

<ロト < 同ト < ヨト < ヨト

```
What if k is much larger than n, e.g., \mathbf{k} = \Theta(\mathbf{n}^2)?

Radix sort: \mathbf{O}(\mathbf{n}) time* for this case
```

Setup:

- Numbers represented base 10 for historical reasons (all works fine in binary)
- Assume all numbers have exactly **d** digits (for simplicity: see homework).

If you were sorting cards, with a number on each card, what might you do?

- -

SQA

Radix Sort: Algorithm

Divide into 10 buckets by first digit, recurse on each bucket by second-digit, etc.

3

JQ (?

イロト イヨト イヨト イヨト

Radix Sort: Algorithm

Divide into **10** buckets by first digit, recurse on each bucket by second-digit, etc.

3

JQ (?

3

.

-

< 口 > < 同

Radix Sort: Algorithm

Divide into **10** buckets by first digit, recurse on each bucket by second-digit, etc.

Works, but clunky

3

JQ (?

э

-

Image: A matrix

More elegant (and surprising): one bucket, sorting from *least* significant digit to *most*!

- 3

JQ (?

More elegant (and surprising): one bucket, sorting from *least* significant digit to *most*!

3

JQ (?

< E

- 🔹 🖻

< 口 > < 同

More elegant (and surprising): one bucket, sorting from *least* significant digit to *most*!

For iteration **i**, use bucket sort where key is **i**'th digit and object is number.

P

Image: A matrix

3

JQ (?

More elegant (and surprising): one bucket, sorting from *least* significant digit to *most*!

For iteration **i**, use bucket sort where key is **i**'th digit and object is number.

Theorem

Radix sort from least significant to most significant is correct if the sort used on each digit is stable.

SQC

Proof.

Claim: After i'th iteration, correctly sorted by last i digits (interpreted as # in $[0, 10^{i} - 1]$).

3

SQC

<ロト < 国 > < 国 > < 国 > < 国

Proof.

Claim: After i'th iteration, correctly sorted by last i digits (interpreted as # in $[0, 10^{i} - 1]$). Induction on i.

3

SQC

イロト イヨト イヨト

Proof.

Claim: After i'th iteration, correctly sorted by last i digits (interpreted as # in $[0, 10^{i} - 1]$). Induction on i.

Base case: After first iteration, correctly sorted by last digit

< E

▶ **4 ∃** ▶

3

Proof.

Claim: After i'th iteration, correctly sorted by last i digits (interpreted as # in $[0, 10^{i} - 1]$). Induction on i.

Base case: After first iteration, correctly sorted by last digit

Induction:

- Suppose correct for i
- After **i** + **1** sort:

• • • • • • •

3

Proof.

Claim: After i'th iteration, correctly sorted by last i digits (interpreted as # in $[0, 10^{i} - 1]$). Induction on i.

Base case: After first iteration, correctly sorted by last digit

Induction:

- Suppose correct for i
- After **i** + **1** sort:
 - If two numbers have different i + 1 digits, now correct.
 - If two number have same i + 1 digit, were correct and still correct by stability.

500

- (E

Recall have **n** numbers, all numbers have **d** digits.

3

JQ (?

イロト イヨト イヨト イヨト

Recall have **n** numbers, all numbers have **d** digits.

bucket sorts:

3

JQ (?

イロト イヨト イヨト イヨト

Recall have **n** numbers, all numbers have **d** digits.

bucket sorts: **d**

- 32

JQ (?

Recall have **n** numbers, all numbers have **d** digits.

bucket sorts: **d** Time per bucket sort:

- 32

JQ (?

Recall have **n** numbers, all numbers have **d** digits.

bucket sorts: **d** Time per bucket sort: O(n + k) = O(n + 10) = O(n).

- 12

JQ (?

I ∃ ►

A B A B A B A

Recall have **n** numbers, all numbers have **d** digits.

```
# bucket sorts: d
Time per bucket sort: O(n + k) = O(n + 10) = O(n).
Total time: O(dn)
```

- 2

JQ P

<ロト < 同ト < 三ト < 三ト

Recall have **n** numbers, all numbers have **d** digits.

```
# bucket sorts: d
Time per bucket sort: O(n + k) = O(n + 10) = O(n).
Total time: O(dn)
```

Is this good? Bad? In between? If all numbers distinct, $d \ge \log_{10} n \implies$ total time $O(n \log n)$

JQ P

《口》《聞》《臣》《臣》 [] 臣 []

Recall have **n** numbers, all numbers have **d** digits.

```
# bucket sorts: d
Time per bucket sort: O(n + k) = O(n + 10) = O(n).
Total time: O(dn)
```

```
Is this good? Bad? In between?
If all numbers distinct, d \ge \log_{10} n \implies total time O(n \log n)
```

```
Bad: not O(n) time!
Good: "Size of input" is N = nd, so linear in size of input!
```

I ∃ ►

1

JQ P

Recall have **n** numbers, all numbers have **d** digits.

```
# bucket sorts: d
Time per bucket sort: O(n + k) = O(n + 10) = O(n).
Total time: O(dn)
```

```
Is this good? Bad? In between?
If all numbers distinct, d \ge \log_{10} n \implies total time O(n \log n)
```

```
Bad: not O(n) time!
Good: "Size of input" is N = nd, so linear in size of input!
```

Improve to O(n)?

590

《口》《聞》《臣》《臣》 [] 臣 []

Change to go \mathbf{b} digits at a time instead of just $\mathbf{1}$.

- Kind of cheating: look at **b** digits in constant time.
- Necessary if we want time better than nd

3

JQ (?

イロト イヨト イヨト イヨト

Change to go \mathbf{b} digits at a time instead of just $\mathbf{1}$.

- Kind of cheating: look at **b** digits in constant time.
- Necessary if we want time better than nd

bucket sorts:

3

JQ (?

イロト イヨト イヨト

Change to go \mathbf{b} digits at a time instead of just $\mathbf{1}$.

- Kind of cheating: look at **b** digits in constant time.
- Necessary if we want time better than nd

bucket sorts: **d/b**

- 32

JQ (?

イロト イヨト イヨト

Change to go \mathbf{b} digits at a time instead of just $\mathbf{1}$.

- Kind of cheating: look at **b** digits in constant time.
- Necessary if we want time better than nd

bucket sorts: d/b
Time per bucket sort:

3

JQ (?

<ロト < 回 > < 国 > < 国 > < 国 >

Change to go \mathbf{b} digits at a time instead of just $\mathbf{1}$.

- Kind of cheating: look at **b** digits in constant time.
- Necessary if we want time better than nd

bucket sorts: d/bTime per bucket sort: $O(n + k) = O(n + 10^b)$

3

JQ P

(日)

Change to go \mathbf{b} digits at a time instead of just $\mathbf{1}$.

- Kind of cheating: look at **b** digits in constant time.
- Necessary if we want time better than nd

```
# bucket sorts: d/b
Time per bucket sort: O(n + k) = O(n + 10^b)
Total time: O\left(\frac{d}{b}(n + 10^b)\right)
```

- 12

JQ P

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Change to go \mathbf{b} digits at a time instead of just $\mathbf{1}$.

- Kind of cheating: look at **b** digits in constant time.
- Necessary if we want time better than nd

```
# bucket sorts: d/b
Time per bucket sort: O(n + k) = O(n + 10^b)
Total time: O(\frac{d}{b}(n + 10^b))
```

Set $\mathbf{b} = \log_{10} \mathbf{n}$. If $\mathbf{d} = \mathbf{O}(\log \mathbf{n})$, then time

$$O\left(\frac{d}{\log_{10} n} (n+n)\right) = O(n)$$

- E

JQ P

Change to go \mathbf{b} digits at a time instead of just $\mathbf{1}$.

- Kind of cheating: look at **b** digits in constant time.
- Necessary if we want time better than nd

```
# bucket sorts: d/b
Time per bucket sort: O(n + k) = O(n + 10^b)
Total time: O\left(\frac{d}{b}(n + 10^b)\right)
```

Set $\mathbf{b} = \log_{10} \mathbf{n}$. If $\mathbf{d} = \mathbf{O}(\log \mathbf{n})$, then time

$$O\left(\frac{d}{\log_{10} n} (n+n)\right) = O(n)$$

Example: sorting integers between 0 and n^{10} . Then d should be about $\log_{10} n^{10} = 10 \log_{10} n$, as required.

Michael Dinitz