Introduction: Sorting

- Sorting: given array of comparable elements, put them in sorted order
- Popular topic to cover in Algorithms courses
- This course:
 - I assume you know the basics (mergesort, quicksort, insertion sort, selection sort, bubble sort, etc.) from Data Structures
 - Today: more advanced sorting (randomized quicksort)
 - Next week: Sorting lower bound and ways around it.
Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.

- What is the “average case”?
- Want to design algorithms that work in all applications.
Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.

- What is the “average case”?
- Want to design algorithms that work in all applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization inside algorithm!

- Still assume worst-case inputs, give bound on worst-case expected running time.
Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.

- What is the “average case”?
- Want to design algorithms that work in all applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization inside algorithm!

- Still assume worst-case inputs, give bound on worst-case expected running time.

Many Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!
Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.

- What is the “average case”?
- Want to design algorithms that work in all applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization inside algorithm!

- Still assume worst-case inputs, give bound on worst-case expected running time.

Many Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!

Today: adding randomness into quicksort.
Quicksort Basics (Review)

Input: array A of length n.

Algorithm:
1. If $n = 0$ or 1, return A (already sorted)
2. Pick some element p as the pivot
3. Compare every element of A to p. Let L be the elements less than p, let G be the elements larger than p. Create array $[L, p, G]$
4. Recursively sort L and G.

![Diagram of Quicksort process]

Not fully specified: how to choose p?

- Traditionally: some simple deterministic choice (first element, last element, etc.)
- Next lecture: better deterministic choice (not very practical)
- Now: first element
Quicksort Basics (Review)

Input: array A of length n.

Algorithm:

1. If $n = 0$ or 1, return A (already sorted)
2. Pick some element p as the *pivot*
3. Compare every element of A to p. Let L be the elements less than p, let G be the elements larger than p. Create array $[L, p, G]$
4. Recursively sort L and G.

Not fully specified: how to choose p?

- Traditionally: some simple deterministic choice (first element, last element, etc.)
- Next lecture: better deterministic choice (not very practical)
- Now: first element
Quick sort Analysis

Upper bound:
If \(p \) picked as pivot in step 2, then in correct place after step 3.
Quicksort Analysis

Upper bound:
If \(p \) picked as pivot in step 2, then in correct place after step 3
\[\implies \text{step 2 and 3 executed at most } n \text{ times.} \]
Quicksort Analysis

Upper bound:
If \(p \) picked as pivot in step 2, then in correct place after step 3
\[\implies \text{step 2 and 3 executed at most } n \text{ times.} \]

Step 3 takes time \(O(n) \) (compare every element to pivot)
Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
\implies step 2 and 3 executed at most n times.

Step 3 takes time $O(n)$ (compare every element to pivot)
\implies total time at most $O(n^2)$
Quicksort Analysis

Upper bound:
If \(p \) picked as pivot in step 2, then in correct place after step 3
\[\implies \text{step 2 and 3 executed at most } n \text{ times.} \]

Step 3 takes time \(O(n) \) (compare every element to pivot)
\[\implies \text{total time at most } O(n^2) \]

Lower Bound:
Suppose \(A \) already sorted.
Quicksort Analysis

Upper bound:
If \(p \) picked as pivot in step 2, then in correct place after step 3
\[\implies \text{step 2 and 3 executed at most } n \text{ times.} \]

Step 3 takes time \(O(n) \) (compare every element to pivot)
\[\implies \text{total time at most } O(n^2) \]

Lower Bound:
Suppose \(A \) already sorted.
\[\implies p = A[0] \text{ is smallest element} \]
Quicksort Analysis

Upper bound:
If \(p \) picked as pivot in step 2, then in correct place after step 3
\[\implies \text{step 2 and 3 executed at most } n \text{ times.} \]

Step 3 takes time \(O(n) \) (compare every element to pivot)
\[\implies \text{total time at most } O(n^2) \]

Lower Bound:
Suppose \(A \) already sorted.
\[\implies p = A[0] \text{ is smallest element} \implies L = \emptyset \text{ and } G = A[1..n-1] \]
Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
\[\Rightarrow \text{step 2 and 3 executed at most } n \text{ times.} \]

Step 3 takes time \(O(n) \) (compare every element to pivot)
\[\Rightarrow \text{total time at most } O(n^2) \]

Lower Bound:
Suppose A already sorted.
\[\Rightarrow p = A[0] \text{ is smallest element } \Rightarrow L = \emptyset \text{ and } G = A[1..n-1] \]
\[\Rightarrow \text{in one call to quicksort, do } \Omega(n) \text{ work to compare everything to } p, \text{ then recurse on array of size } n-1 \]
Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
\implies step 2 and 3 executed at most n times.

Step 3 takes time $O(n)$ (compare every element to pivot)
\implies total time at most $O(n^2)$

Lower Bound:
Suppose A already sorted.
\implies $p = A[0]$ is smallest element \implies $L = \emptyset$ and $G = A[1..n-1]$
\implies in one call to quicksort, do $\Omega(n)$ work to compare everything to p, then recurse on array
of size $n - 1$
\implies running time is $T(n) = T(n - 1) + cn$
Quicksort Analysis

Upper bound:
If \(p \) picked as pivot in step 2, then in correct place after step 3
\[\implies \text{step 2 and 3 executed at most } n \text{ times.} \]

Step 3 takes time \(O(n) \) (compare every element to pivot)
\[\implies \text{total time at most } O(n^2) \]

Lower Bound:
Suppose \(A \) already sorted.
\[\implies p = A[0] \text{ is smallest element} \implies L = \emptyset \text{ and } G = A[1..n-1] \]
\[\implies \text{in one call to quicksort, do } \Omega(n) \text{ work to compare everything to } p, \text{ then recurse on array of size } n - 1 \]
\[\implies \text{running time is } T(n) = T(n-1) + cn \implies T(n) = \Theta(n^2) \]
Randomized Quicksort

Randomized Quicksort: pick \(p \) uniformly at random from \(A \).

Today: prove that expected running time at most \(O(n \log n) \) for every input \(A \).
Randomized Quicksort

Randomized Quicksort: pick \(p \) uniformly at random from \(A \).

Today: prove that expected running time at most \(O(n \log n) \) for every input \(A \).

- Better than an average-case bound: holds for every single input!
- Maybe in one application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!
Randomized Quicksort

Randomized Quicksort: pick p uniformly at random from A.

Today: prove that expected running time at most $O(n \log n)$ for every input A.

- Better than an average-case bound: holds for every single input!
- Maybe in one application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!
- Today only expectation. Can be more clever to get high probability bounds.
Randomized Quicksort

Randomized Quicksort: pick p uniformly at random from A.

Today: prove that expected running time at most $O(n \log n)$ for every input A.

- Better than an average-case bound: holds for every single input!
- Maybe in one application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!
- Today only expectation. Can be more clever to get high probability bounds.

Before doing analysis, quick review of basic probability theory.
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

- Sample space: Set of all possible outcomes.
 - Roll two dice: $\mathcal{S} = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\}$
- Event: subset of \mathcal{S}
 - "Event that first die is 3": $\{(3, x) : x \in \{1, 2, \ldots, 6\}\}$
 - "Event that dice add up to 7 or 11": $\{(x, y) : (x + y = 7) \text{ or } (x + y = 11)\}$

Random Variable:
- X_1: value of first die.
 - $X_1(x, y) = x$
- X_2: value of second die.
 - $X_2(x, y) = y$
- $X = X_1 + X_2$: sum of the dice.
 - $X(x, y) = x + y = X_1(x, y) + X_2(x, y)$

Random variables super important! Running time of randomized quicksort is a random variable.
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega \): Sample space. Set of all possible outcomes.
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega \): Sample space. Set of all possible outcomes.

- Roll two dice. \(\Omega = \)

\[\{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\} \]

Event: subset of \(\Omega \)

- Event that first die is 3: \(\{(3, x) : x \in \{1, 2, \ldots, 6\}\} \)

- Event that dice add up to 7 or 11: \(\{(x, y) \in \Omega : (x + y = 7) \text{ or } (x + y = 11)\} \)

Random Variable:

- \(X_1 \): value of first die.
 \(X_1(x, y) = x \)

- \(X_2 \): value of second die.
 \(X_2(x, y) = y \)

- \(X \): sum of the dice.
 \(X(x, y) = x + y = X_1(x, y) + X_2(x, y) \)

Random variables super important! Running time of randomized quicksort is a random variable.
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega \): Sample space. Set of all possible outcomes.

- Roll two dice. \(\Omega = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\} \).

\[
\begin{bmatrix}
[6] \\
\times \\
[6]
\end{bmatrix}
\]
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega \): Sample space. Set of all possible outcomes.

- Roll two dice. \(\Omega = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\} \). *Not* \(\{2, 3, \ldots, 12\} \)
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega \): Sample space. Set of all possible outcomes.

- Roll two dice. \(\Omega = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\}. \) Not \(\{2, 3, \ldots, 12\} \)

Event: subset of \(\Omega \)
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega \): Sample space. Set of all possible outcomes.

- Roll two dice. \(\Omega = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\} \). Not \(\{2, 3, \ldots, 12\} \)

Event: subset of \(\Omega \)

- “Event that first die is 3” : \(\{(3, x) : x \in \{1, 2, \ldots, 6\}\} \)
- “Event that dice add up to 7 or 11” : \(\{(x, y) \in \Omega : (x + y = 7) \text{ or } (x + y = 11)\} \)
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega \): Sample space. Set of all possible outcomes.

- Roll two dice. \(\Omega = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\} \). Not \(\{2, 3, \ldots, 12\} \)

Event: subset of \(\Omega \)

- “Event that first die is 3”: \(\{(3, x) : x \in \{1, 2, \ldots, 6\}\} \)
- “Event that dice add up to 7 or 11”: \(\{(x, y) \in \Omega : (x + y = 7) \text{ or } (x + y = 11)\} \)

Random Variable: \(X : \Omega \to \mathbb{R} \)

- \(X_1 \): value of first die. \(X_1(x, y) = x \)
- \(X_2 \): value of second die. \(X_2(x, y) = y \)
- \(X = X_1 + X_2 \): sum of the dice. \(X(x, y) = x + y = X_1(x, y) + X_2(x, y) \)
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega \): Sample space. Set of all possible outcomes.

- Roll two dice. \(\Omega = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\} \). \textit{Not} \{2, 3, \ldots, 12\}

Event: subset of \(\Omega \)

- “Event that first die is 3”: \(\{(3, x) : x \in \{1, 2, \ldots, 6\}\} \)
- “Event that dice add up to 7 or 11”: \(\{(x, y) \in \Omega : (x + y = 7) \text{ or } (x + y = 11)\} \)

Random Variable: \(X : \Omega \rightarrow \mathbb{R} \)

- \(X_1 \): value of first die. \(X_1(x, y) = x \)
- \(X_2 \): value of second die. \(X_2(x, y) = y \)
- \(X = X_1 + X_2 \): sum of the dice. \(X(x, y) = x + y = X_1(x, y) + X_2(x, y) \)

Random variables super important! Running time of randomized quicksort is a random variable.
Probability Basics II

Want to define probabilities. Should use measure theory. Won’t.

For each $e \in \mathcal{E}$ let $\Pr[e]$ be probability of e (probability distribution).

$\Pr[e] \geq 0$ for all $e \in \mathcal{E}$, and

$\sum_{e \in \mathcal{E}} \Pr[e] = 1$

Probability of an event A is $\Pr[A] = \sum_{e \in A} \Pr[e]$.

Conditional probability: if A and B are events:

$\Pr[B \mid A] = \frac{\Pr[A \cap B]}{\Pr[A]}$
Want to define probabilities. Should use measure theory. Won’t.

For each $e \in \Omega$ let $\Pr[e]$ be probability of e (probability distribution)

- $\Pr[e] \geq 0$ for all $e \in \Omega$, and $\sum_{e \in \Omega} \Pr[e] = 1$
- Probability of an event A is $\Pr[A] = \sum_{e \in A} \Pr[e]$
Want to define probabilities. Should use measure theory. Won’t.

For each $e \in \Omega$ let $\Pr[e]$ be probability of e (probability distribution)

- $\Pr[e] \geq 0$ for all $e \in \Omega$, and $\sum_{e \in \Omega} \Pr[e] = 1$
- Probability of an event A is $\Pr[A] = \sum_{e \in A} \Pr[e]$

Conditional probability: if A and B are events:

$$
\Pr[B|A] = \frac{\Pr[A \cap B]}{\Pr[A]} = \frac{\sum_{e \in A \cap B} \Pr[e]}{\sum_{e \in A} \Pr[e]}
$$
Probability Basics III: Expectations

Expectation of a random variable:

\[
E[X] = \sum_{e \in \Omega} X(e) \Pr[e]
\]

“Average” of the random variable according to probability distribution
Probability Basics III: Expectations

Expectation of a random variable:

\[E[X] = \sum_{e \in \Omega} X(e)\Pr[e] \]

“Average” of the random variable according to probability distribution

Can be useful to rearrange terms to get different equation:

\[E[X] = \sum_{e \in \Omega} X(e)\Pr[e] = \sum_{y \in \mathbb{R}} \sum_{e \in \Omega : X(e) = y} y \cdot \Pr[e] = \sum_{y \in \mathbb{R}} y \cdot \Pr[X = y] \]
Probability Basics III: Expectations

Expectation of a random variable:

$$E[X] = \sum_{e \in \Omega} X(e) \Pr[e]$$

“Average” of the random variable according to probability distribution

Can be useful to rearrange terms to get different equation:

$$E[X] = \sum_{e \in \Omega} X(e) \Pr[e] = \sum_{y \in \mathbb{R}} \sum_{e \in \Omega : X(e) = y} y \cdot \Pr[e] = \sum_{y \in \mathbb{R}} y \cdot \Pr[X = y]$$

Conditional Expectation: \(A\) an event, \(X\) a random variable.

$$E[X|A] = \frac{1}{\Pr[A]} \sum_{e \in A} X(e) \Pr[e]$$
Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Consider rolling two dice. Let X be the sum. What is $E[X]$?

Instead:

$$X = X_1 + X_2.$$ So

$$E[X] = E[X_1 + X_2] = E[X_1] + E[X_2].$$

$E[X_1] = E[X_2] = 6$.

$\Rightarrow E[X] = 3.5 + 3.5 = 7.$
Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Consider rolling two dice. Let X be sum. What is $E[X]$?

- $E[X] = \sum_{e \in \Omega} X(e) \Pr[e]$. 36 term sum!
- $E[X] = \sum_{y \in \mathbb{R}} y \cdot \Pr[X = y]$. What is $\Pr[X = 2]$, $\Pr[X = 3]$, ... ?
Linearity of Expectations
Amazing feature of expectations: linearity!

Theorem
For any two random variables X and Y, and any constants α and β:
$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Consider rolling two dice. Let X be sum. What is $E[X]$?

- $E[X] = \sum_{e \in \Omega} X(e) \Pr[e]$. 36 term sum!
- $E[X] = \sum_{y \in \mathbb{R}} y \cdot \Pr[X = y]$. What is $\Pr[X = 2]$, $\Pr[X = 3]$, \ldots ?

Instead: $X = X_1 + X_2$. So $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2]$

$$X(e) = X_1(e) + X_2(e) \quad \forall e \in \Omega$$
Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Consider rolling two dice. Let X be sum. What is $E[X]$?

- $E[X] = \sum_{e \in \Omega} X(e) \Pr[e]$. 36 term sum!
- $E[X] = \sum_{y \in \mathbb{R}} y \cdot \Pr[X = y]$. What is $\Pr[X = 2]$, $\Pr[X = 3]$, ...?

Instead: $X = X_1 + X_2$. So $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2]$

$$E[X_1] = E[X_2] = \sum_{y=1}^{6} \frac{1}{6}y = \frac{21}{6} = 3.5$$
Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Consider rolling two dice. Let X be sum. What is $E[X]$?

- $E[X] = \sum_{e \in \Omega} X(e)Pr[e]$. 36 term sum!
- $E[X] = \sum_{y \in \mathbb{R}} y \cdot Pr[X = y]$. What is $Pr[X = 2]$, $Pr[X = 3]$, ...?

Instead: $X = X_1 + X_2$. So $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2]$

$$E[X_1] = E[X_2] = \sum_{y=1}^{6} \frac{1}{6} y = \frac{21}{6} = 3.5$$

$$\implies E[X] = 3.5 + 3.5 = 7$$
Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Proof.

$$E[\alpha X + \beta Y] = \sum_{e \in \Omega} \Pr[e] (\alpha X(e) + \beta Y(e))$$
Linearity of Expectations: Proof

Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Proof.

$$E[\alpha X + \beta Y] = \sum_{e \in \Omega} \Pr[e] (\alpha X(e) + \beta Y(e))$$

$$= \alpha \sum_{e \in \Omega} \Pr[e] X(e) + \beta \sum_{e \in \Omega} \Pr[e] X(e)$$

Holds no matter how correlated X and Y are!
Linearity of Expectations: Proof

Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Proof.

$$E[\alpha X + \beta Y] = \sum_{e \in \Omega} \Pr[e] \left(\alpha X(e) + \beta Y(e) \right)$$

$$= \alpha \sum_{e \in \Omega} \Pr[e] X(e) + \beta \sum_{e \in \Omega} \Pr[e] X(e)$$

$$= \alpha E[X] + \beta E[Y]$$
Theorem
For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Proof.

$$E[\alpha X + \beta Y] = \sum_{e \in \Omega} \Pr[e] (\alpha X(e) + \beta Y(e))$$

$$= \alpha \sum_{e \in \Omega} \Pr[e] X(e) + \beta \sum_{e \in \Omega} \Pr[e] X(e)$$

$$= \alpha E[X] + \beta E[Y]$$

Holds no matter how correlated X and Y are!
Theorem

The expected running time of randomized quicksort is at most $O(n \log n)$.
Theorem

The expected running time of randomized quicksort is at most $O(n \log n)$.

Assume for simplicity all elements distinct. Running time $= \Theta(\# \text{ of comparisons})$
Randomized Quicksort I

Theorem

The expected running time of randomized quicksort is at most $O(n \log n)$.

Assume for simplicity all elements distinct. Running time $= \Theta(\# \text{ of comparisons})$

Definitions:

- $X = \# \text{ of comparisons (random variable)}$
- $e_i = i^{th}$ smallest element (for $i \in \{1, \ldots, n\}$)
- X_{ij} random variable for all $i, j \in \{1, \ldots, n\}$ with $i < j$:

\[
X_{ij} = \begin{cases}
1 & \text{if algorithm compares } e_i \text{ and } e_j \text{ at any point in time} \\
0 & \text{otherwise}
\end{cases}
\]
Randomized Quicksort II

Algorithm never compares the same two elements more than once \[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]
Randomized Quicksort II

Algorithm never compares the same two elements more than once \(\iff X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \)

\[
E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]
Randomized Quicksort II

Algorithm never compares the same two elements more than once \(\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \)

\[
E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]

So just need to understand \(E[X_{ij}] \)
Algorithm never compares the same two elements more than once \(\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \)

\[
E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]

So just need to understand \(E[X_{ij}] \)

Simple cases:
Randomized Quicksort II

Algorithm never compares the same two elements more than once \(\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \)

\[
E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]

So just need to understand \(E[X_{ij}] \)

Simple cases:

- \(j = i + 1 \):
Randomized Quicksort II

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

So just need to understand $E[X_{ij}]$

Simple cases:
- $j = i + 1$: $X_{ij} = 1$ no matter what, so $E[X_{ij}] = 1$
Randomized Quicksort II

Algorithm never compares the same two elements more than once \[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]

So just need to understand \(E[X_{ij}] \)

Simple cases:
- \(j = i + 1 \): \(X_{ij} = 1 \) no matter what, so \(E[X_{ij}] = 1 \)
- \(i = 1, j = n \):
Randomized Quicksort II

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

$$E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

So just need to understand $E[X_{ij}]$

Simple cases:

- $j = i + 1$: $X_{ij} = 1$ no matter what, so $E[X_{ij}] = 1$
- $i = 1, j = n$: e_1 and e_n compared if and only if first pivot chosen is e_1 or $e_n$$\implies E[X_{1n}] = \frac{2}{n} - 1 = \frac{2}{n} + O\cdot C \left(-\frac{c}{n^c} \right)$
$E[X_{ij}]$: General Case ($i < j$)

If $p = e_i$ or $p = e_j$:

If $e_i < p < e_j$:

If $p < e_i$ or $p > e_j$:

Both e_i, e_j in same recursive call.

Condition on $e_i \leq p \leq e_j$:

Condition on $p \in [e_i, e_j]$: still undetermined

So X_{ij} not determined until $e_i \leq p \leq e_j$, and when determined has $E[X_{ij}] = 2j - i + 1$.
$E[X_{ij}]$: General Case ($i < j$)

If $p = e_i$ or $p = e_j$: $X_{ij} = 1$
$E[X_{ij}]$: General Case ($i < j$)

If $p = e_i$ or $p = e_j$: $X_{ij} = 1$

If $e_i < p < e_j$:

$$E[X_{ij}] = 2j - i + 1$$
$E[X_{ij}]$: General Case ($i < j$)

If $p = e_i$ or $p = e_j$: $X_{ij} = 1$

If $e_i < p < e_j$: $X_{ij} = 0$
\(E[X_{ij}] \): General Case \((i < j)\)

If \(p = e_i \) or \(p = e_j \): \(X_{ij} = 1 \)

If \(e_i < p < e_j \): \(X_{ij} = 0 \)

If \(p < e_i \) or \(p > e_j \):
$E[X_{ij}]$: General Case ($i < j$)

If $p = e_i$ or $p = e_j$: $X_{ij} = 1$

If $e_i < p < e_j$: $X_{ij} = 0$

If $p < e_i$ or $p > e_j$: ? Both e_i, e_j in same recursive call.
E[X_{ij}]: General Case (i < j)

If p = e_i or p = e_j: X_{ij} = 1

If e_i < p < e_j: X_{ij} = 0

If p < e_i or p > e_j: Both e_i, e_j in same recursive call.

- Condition on e_i ≤ p ≤ e_j:
E[X_{ij}]: General Case (i < j)

If \(p = e_i \) or \(p = e_j \): \(X_{ij} = 1 \)

If \(e_i < p < e_j \): \(X_{ij} = 0 \)

If \(p < e_i \) or \(p > e_j \): ? Both \(e_i, \ e_j \) in same recursive call.

- Condition on \(e_i \leq p \leq e_j \): \(E[X_{ij} \mid e_i \leq p \leq e_j] = \frac{2}{j-i+1} \)
$\mathbb{E}[X_{ij}]$: General Case ($i < j$)

- If $p = e_i$ or $p = e_j$: $X_{ij} = 1$
- If $e_i < p < e_j$: $X_{ij} = 0$
- If $p < e_i$ or $p > e_j$: Both e_i, e_j in same recursive call.
 - Condition on $e_i \leq p \leq e_j$: $\mathbb{E}[X_{ij} \mid e_i \leq p \leq e_j] = \frac{2}{j-i+1}$
 - Condition on $p \notin [e_i, e_j]$:
 -
$E[X_{ij}]$: General Case ($i < j$)

If $p = e_i$ or $p = e_j$: $X_{ij} = 1$

If $e_i < p < e_j$: $X_{ij} = 0$

If $p < e_i$ or $p > e_j$: ? Both e_i, e_j in same recursive call.

- Condition on $e_i \leq p \leq e_j$: $E[X_{ij} \mid e_i \leq p \leq e_j] = \frac{2}{j-i+1}$
- Condition on $p \notin [e_i, e_j]$: still undetermined
$E[X_{ij}]$: General Case ($i < j$)

If $p = e_i$ or $p = e_j$: $X_{ij} = 1$

If $e_i < p < e_j$: $X_{ij} = 0$

If $p < e_i$ or $p > e_j$: Both e_i, e_j in same recursive call.

- Condition on $e_i \leq p \leq e_j$: $E[X_{ij} \mid e_i \leq p \leq e_j] = \frac{2}{j-i+1}$
- Condition on $p \notin [e_i, e_j]$: still undetermined

So X_{ij} not determined until $e_i \leq p \leq e_j$, and when it is determined has $E[X_{ij}] = \frac{2}{j-i+1}$

$\implies E[X_{ij}] = \frac{2}{j-i+1}$
\(E[X_{ij}]: \text{General Case (formally)}\)

Let \(Y_k\) be event that the \(k^{th}\) pivot is in \([e_i, e_j]\) and all previous pivots not in \([e_i, e_j]\).

\[E[X_{ij}] = \sum_{k=1}^{n} E[X_{ij} \mid Y_k] \cdot \Pr[Y_k].\]

\[\Pr[Y_k] = \frac{2j - i + 1}{n}.\]
$E[X_{ij}]$: General Case (formally)

Let Y_k be event that the k'th pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$

\implies by definition, the Y_k events are disjoint and partition sample space

$E[X_{ij}] = \sum_{k=1}^{n} E[X_{ij} | Y_k]$ for all k.
\(E[X_{ij}] \): General Case (formally)

Let \(Y_k \) be event that the \(k \)'th pivot is in \([e_i, e_j]\) and all previous pivots not in \([e_i, e_j]\)

\[
E[X_{ij}] \iff \text{by definition, the } Y_k \text{ events are disjoint and partition sample space}
\]

Showed that \(E[X_{ij}|Y_k] = \frac{2}{j-i+1} \) for all \(k \).
$E[X_{ij}]$: General Case (formally)

Let Y_k be event that the k'th pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$. By definition, the Y_k events are disjoint and partition sample space.

Showed that $E[X_{ij}|Y_k] = \frac{2}{j-i+1}$ for all k.

Then,

$$E[X_{ij}] = \sum_{k=1}^{n} E[X_{ij}|Y_k] \Pr[Y_k]$$

(Y_k disjoint and partition Ω)

$$= \frac{2}{j-i+1} \sum_{k=1}^{n} \Pr[Y_k]$$

$$= \frac{2}{j-i+1}$$
Randomized Quicksort: Final Analysis

Expected running time of randomized quicksort:

\[
E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]

(linearity of expectations)

\[
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1}
\]

\[
= 2 \sum_{i=1}^{n-1} \left(\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n - i + 1} \right)
\]

\[
\leq 2 \sum_{i=1}^{n-1} H_n
\]

\[
\leq 2nH_n
\]

\[
\leq O(n \log n)
\]

\[
\frac{H_n}{n} = \Theta(\log n)
\]