Lecture 3: Probabilistic Analysis, Randomized Quicksort

Michael Dinitz

September 7, 2021 601.433/633 Introduction to Algorithms

- E

JQ (?

- Sorting: given array of comparable elements, put them in sorted order
- Popular topic to cover in Algorithms courses
- This course:
 - I assume you know the basics (mergesort, quicksort, insertion sort, selection sort, bubble sort, etc.) from Data Structures
 - Today: more advanced sorting (randomized quicksort)
 - Next week: Sorting lower bound and ways around it.

イロト イポト イヨト イヨト

SQC

First lecture: "Average-case" problematic.

- What is the "average case"?
- Want to design algorithms that work in *all* applications.

- 32

JQ (?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< □ > < 同

First lecture: "Average-case" problematic.

- What is the "average case"?
- Want to design algorithms that work in *all* applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization *inside* algorithm!

• Still assume worst-case inputs, give bound on worst-case *expected* running time.

. ∃ ► ►

SQC

First lecture: "Average-case" problematic.

- What is the "average case"?
- Want to design algorithms that work in *all* applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization *inside* algorithm!

• Still assume worst-case inputs, give bound on worst-case *expected* running time.

Many Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!

イロト イ団ト イヨト

SQC.

First lecture: "Average-case" problematic.

- What is the "average case"?
- Want to design algorithms that work in *all* applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization *inside* algorithm!

• Still assume worst-case inputs, give bound on worst-case *expected* running time.

Many Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!

Today: adding randomness into quicksort.

-

JQ P

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quicksort Basics (Review)

Input: array **A** of length **n**.

Algorithm:

- 1. If n = 0 or 1, return A (already sorted)
- 2. Pick some element **p** as the *pivot*
- 3. Compare every element of **A** to **p**. Let **L** be the elements less than **p**, let **G** be the elements larger than **p**. Create array [**L**, **p**, **G**]
- 4. Recursively sort L and G.

P

SQC

Quicksort Basics (Review)

Input: array A of length n.

Algorithm:

- 1. If n = 0 or 1, return A (already sorted)
- 2. Pick some element **p** as the *pivot*
- 3. Compare every element of **A** to **p**. Let **L** be the elements less than **p**, let **G** be the elements larger than **p**. Create array [**L**, **p**, **G**]
- 4. Recursively sort **L** and **G**.

Not fully specified: how to choose **p**?

- Traditionally: some simple deterministic choice (first element, last element, etc.)
- Next lecture: better deterministic choice (not very practical)
- Now: first element

・ロト ・ 同ト ・ ヨト ・ ヨト

- -

JQ P

Upper bound:

If \mathbf{p} picked as pivot in step 2, then in correct place after step $\mathbf{3}$

- 32

JQ (?

(日) (四) (三) (三) (三)

Upper bound:

If **p** picked as pivot in step 2, then in correct place after step $3 \implies$ step 2 and 3 executed at most **n** times.

- 32

JQ (?

Upper bound:

If **p** picked as pivot in step 2, then in correct place after step **3** \implies step **2** and **3** executed at most **n** times.

Step 3 takes time O(n) (compare every element to pivot)

- 2

JQ (?

(日)

Upper bound:

If **p** picked as pivot in step 2, then in correct place after step **3** \implies step **2** and **3** executed at most **n** times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

- 2

<ロト (四) (三) (三) (三)

Upper bound:

If **p** picked as pivot in step 2, then in correct place after step **3** \implies step **2** and **3** executed at most **n** times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

Lower Bound: Suppose **A** already sorted.

3

JQ P

<ロト (四) (三) (三) (三)

Upper bound:

If **p** picked as pivot in step 2, then in correct place after step **3** \implies step **2** and **3** executed at most **n** times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

Lower Bound: Suppose A already sorted. \implies p = A[0] is smallest element

- -

JQ P

(日)

Upper bound:

If **p** picked as pivot in step 2, then in correct place after step **3** \implies step **2** and **3** executed at most **n** times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

Lower Bound: Suppose A already sorted. \implies p = A[0] is smallest element \implies L = Ø and G = A[1..n - 1]

JQ P

Upper bound:

If **p** picked as pivot in step 2, then in correct place after step **3** \implies step **2** and **3** executed at most **n** times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

Lower Bound:

Suppose A already sorted.

 \implies p = A[0] is smallest element \implies L = Ø and G = A[1..n - 1]

 \implies in one call to quicksort, do $\Omega(n)$ work to compare everything to p, then recurse on array of size n-1

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Upper bound:

If **p** picked as pivot in step 2, then in correct place after step **3** \implies step **2** and **3** executed at most **n** times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

Lower Bound:

Suppose A already sorted.

 \implies p = A[0] is smallest element \implies L = Ø and G = A[1..n - 1]

 \implies in one call to quicksort, do $\Omega(n)$ work to compare everything to p, then recurse on array of size n-1

 \implies running time is T(n) = T(n-1) + cn

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Upper bound:

If **p** picked as pivot in step 2, then in correct place after step **3** \implies step **2** and **3** executed at most **n** times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

Lower Bound:

Suppose A already sorted.

 \implies p = A[0] is smallest element \implies L = Ø and G = A[1..n - 1]

 \implies in one call to quicksort, do $\Omega(n)$ work to compare everything to p, then recurse on array of size n-1

 \implies running time is $T(n) = T(n-1) + cn \implies T(n) = \Theta(n^2)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Today: prove that *expected* running time at most $O(n \log n)$ for *every* input **A**.

- 3

JQ (?

Today: prove that *expected* running time at most $O(n \log n)$ for *every* input **A**.

- Better than an average-case bound: holds for every single input!
- Maybe in one application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!

3

JQ P

Today: prove that *expected* running time at most $O(n \log n)$ for *every* input **A**.

- Better than an average-case bound: holds for every single input!
- Maybe in one application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!
- Today only expectation. Can be more clever to get high probability bounds.

- 3

JQ P

<ロト < 回 > < 回 > < 回 > < 回 > <

Today: prove that *expected* running time at most $O(n \log n)$ for *every* input **A**.

- Better than an average-case bound: holds for every single input!
- Maybe in one application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!
- Today only expectation. Can be more clever to get high probability bounds.

Before doing analysis, quick review of basic probability theory.

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

- E

5900

<ロト < 回 > < 回 > < 回 > < 回 >

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

 Ω : Sample space. Set of all possible outcomes.

- 32

JQ (?

<ロト < 回ト < 回ト < 回ト

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

- $\Omega:$ Sample space. Set of all possible outcomes.
 - Roll two dice. Ω =

- 32

JQ (?

イロト イヨト イヨト イヨト

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

 $\Omega:$ Sample space. Set of all possible outcomes.

• Roll two dice. $\Omega = \{1, 2, ..., 6\} \times \{1, 2, ..., 6\}$.

- 1

JQ (?

<ロト (四) (三) (三) (三)

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

 $\Omega:$ Sample space. Set of all possible outcomes.

• Roll two dice. $\Omega = \{1, 2, \dots, 6\} \times \{1, 2, \dots, 6\}$. Not $\{2, 3, \dots, 12\}$

-

JQ (?

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

 $\Omega:$ Sample space. Set of all possible outcomes.

• Roll two dice. $\Omega = \{1, 2, \dots, 6\} \times \{1, 2, \dots, 6\}$. Not $\{2, 3, \dots, 12\}$

Event: subset of $\boldsymbol{\Omega}$

< E

▶ ∢ ⊒

3

SQC

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

 $\Omega:$ Sample space. Set of all possible outcomes.

• Roll two dice. $\Omega = \{1, 2, \dots, 6\} \times \{1, 2, \dots, 6\}$. Not $\{2, 3, \dots, 12\}$

Event: subset of $\boldsymbol{\Omega}$

- "Event that first die is 3": $\{(3,x): x \in \{1,2,\ldots,6\}\}$
- "Event that dice add up to 7 or 11": {(x,y) $\in \Omega$: (x + y = 7) or (x + y = 11)}

JQ P

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

 $\Omega:$ Sample space. Set of all possible outcomes.

• Roll two dice. $\Omega = \{1, 2, \dots, 6\} \times \{1, 2, \dots, 6\}$. Not $\{2, 3, \dots, 12\}$

Event: subset of Ω

- "Event that first die is 3": $\{(3,x): x \in \{1,2,\ldots,6\}\}$
- "Event that dice add up to 7 or 11": $\{(x, y) \in \Omega : (x + y = 7) \text{ or } (x + y = 11)\}$ Random Variable: $X : \Omega \to \mathbb{R}$
 - X_1 : value of first die. $X_1(x, y) = x$
 - X_2 : value of second die. $X_2(x, y) = y$
 - ► $X = X_1 + X_2$: sum of the dice. $X(x, y) \rightleftharpoons x + y \models X_1(x, y) + X_2(x, y)$

590

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

 $\Omega:$ Sample space. Set of all possible outcomes.

• Roll two dice. $\Omega = \{1, 2, \dots, 6\} \times \{1, 2, \dots, 6\}$. Not $\{2, 3, \dots, 12\}$

Event: subset of ${f \Omega}$

- "Event that first die is 3": $\{(3,x): x \in \{1,2,\ldots,6\}\}$
- "Event that dice add up to 7 or 11": $\{(x, y) \in \Omega : (x + y = 7) \text{ or } (x + y = 11)\}$ Random Variable: $X : \Omega \rightarrow \mathbb{R}$
 - X_1 : value of first die. $X_1(x, y) = x$
 - X_2 : value of second die. $X_2(x, y) = y$
 - $X = X_1 + X_2$: sum of the dice. $X(x, y) = x + y = X_1(x, y) + X_2(x, y)$

Random variables super important! Running time of randomized quicksort is a random variable.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Want to define probabilities. Should use measure theory. Won't.

3

5900

(日) (四) (三) (三) (三)

Want to define probabilities. Should use measure theory. Won't.

For each $\mathbf{e} \in \Omega$ let $\Pr[\mathbf{e}]$ be probability of \mathbf{e} (probability distribution)

- $Pr[e] \ge 0$ for all $e \in \Omega$, and $\sum_{e \in \Omega} Pr[e] = 1$
- Probability of an event **A** is $Pr[A] = \sum_{e \in A} Pr[e]$

うくつ

Want to define probabilities. Should use measure theory. Won't.

For each $\mathbf{e} \in \Omega$ let $\Pr[\mathbf{e}]$ be probability of \mathbf{e} (probability distribution)

- $\Pr[e] \ge 0$ for all $e \in \Omega$, and $\sum_{e \in \Omega} \Pr[e] = 1$
- Probability of an event A is $Pr[A] = \sum_{e \in A} Pr[e]$

Conditional probability: if $\boldsymbol{\mathsf{A}}$ and $\boldsymbol{\mathsf{B}}$ are events:

< E

SQC

Probability Basics III: Expectations

Expectation of a random variable:

$$\mathsf{E}[\mathsf{X}] = \sum_{\mathbf{e}\in\Omega} \mathsf{X}(\mathbf{e})\mathsf{Pr}[\mathbf{e}]$$

"Average" of the random variable according to probability distribution

- 2

JQ (?

Probability Basics III: Expectations

Expectation of a random variable:

$$\mathsf{E}[\mathsf{X}] = \sum_{\mathsf{e} \in \Omega} \mathsf{X}(\mathsf{e})\mathsf{Pr}[\mathsf{e}]$$

"Average" of the random variable according to probability distribution

Can be useful to rearrange terms to get different equation:

$$\mathsf{E}[\mathsf{X}] = \sum_{e \in \Omega} \mathsf{X}(e) \mathsf{Pr}[e] = \sum_{\mathsf{y} \in \mathbb{R}} \sum_{e \in \Omega: \mathsf{X}(e) = \mathsf{y}} \mathsf{y} \cdot \mathsf{Pr}[e] = \sum_{\mathsf{y} \in \mathbb{R}} \mathsf{y} \cdot \mathsf{Pr}[\mathsf{X} = \mathsf{y}]$$

< E

< E

3

JQ P
Probability Basics III: Expectations

Expectation of a random variable:

$$\mathsf{E}[\mathsf{X}] = \sum_{e \in \Omega} \mathsf{X}(e) \mathsf{Pr}[e]$$

"Average" of the random variable according to probability distribution

Can be useful to rearrange terms to get different equation:

$$\mathsf{E}[\mathsf{X}] = \sum_{e \in \Omega} \mathsf{X}(e) \mathsf{Pr}[e] = \sum_{\mathsf{y} \in \mathbb{R}} \sum_{e \in \Omega: \mathsf{X}(e) = \mathsf{y}} \mathsf{y} \cdot \mathsf{Pr}[e] = \sum_{\mathsf{y} \in \mathbb{R}} \mathsf{y} \cdot \mathsf{Pr}[\mathsf{X} = \mathsf{y}]$$

Conditional Expectation: A an event, X a random variable.

$$\mathsf{E}[\mathsf{X}|\mathsf{A}] = \frac{1}{\mathsf{Pr}[\mathsf{A}]} \sum_{e \in \mathsf{A}} \mathsf{X}(e) \mathsf{Pr}[e]$$

- 2

JQ P

< ロ > < 同 > < 三 > < 三 >

Amazing feature of expectations: linearity!

Theorem

For any two random variables **X** and **Y**, and any constants α and β : $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$

- 3

JQ (?

ヘロア ヘロア ヘヨア

Amazing feature of expectations: linearity!

Theorem

For any two random variables **X** and **Y**, and any constants α and β : $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$

Consider rolling two dice. Let X be sum. What is E[X]?

- $\mathbf{E}[\mathbf{X}] = \sum_{\mathbf{e} \in \Omega} \mathbf{X}(\mathbf{e}) \mathbf{Pr}[\mathbf{e}]$. 36 term sum!
- $\mathbf{E}[\mathbf{X}] = \sum_{\mathbf{y} \in \mathbb{R}} \mathbf{y} \cdot \mathbf{Pr}[\mathbf{X} = \mathbf{y}]$. What is $\mathbf{Pr}[\mathbf{X} = \mathbf{2}]$, $\mathbf{Pr}[\mathbf{X} = \mathbf{3}]$, ...?

《曰》 《卽》 《달》 《달》 - 달 - -

JQ P

Amazing feature of expectations: linearity!

Theorem

For any two random variables **X** and **Y**, and any constants α and β : $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$

Consider rolling two dice. Let **X** be sum. What is **E**[**X**]?

- $E[X] = \sum_{e \in \Omega} X(e) Pr[e]$. 36 term sum!
- $\mathbf{E}[\mathbf{X}] = \sum_{\mathbf{y} \in \mathbb{R}} \mathbf{y} \cdot \mathbf{Pr}[\mathbf{X} = \mathbf{y}]$. What is $\mathbf{Pr}[\mathbf{X} = \mathbf{2}]$, $\mathbf{Pr}[\mathbf{X} = \mathbf{3}]$, ...?

Instead: $X = X_1 + X_2$. So $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2]$

x(e)=X(e)sfice) VeER

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Amazing feature of expectations: linearity!

Theorem

For any two random variables **X** and **Y**, and any constants α and β : $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$

Consider rolling two dice. Let X be sum. What is E[X]?

•
$$E[X] = \sum_{e \in \Omega} X(e) Pr[e]$$
. 36 term sum!
• $E[X] = \sum_{y \in \mathbb{R}} y \cdot Pr[X = y]$. What is $Pr[X = 2]$, $Pr[X = 3]$, ...?

Instead: $X = X_1 + X_2$. So $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2]$

$$\mathsf{E}[\mathsf{X}_1] = \mathsf{E}[\mathsf{X}_2] = \sum_{\mathsf{y}=1}^6 \frac{1}{6}\mathsf{y} = \frac{21}{6} = 3.5$$

590

《曰》《聞》《臣》《臣》 [] 臣.

Amazing feature of expectations: linearity!

Theorem

For any two random variables **X** and **Y**, and any constants α and β : $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$

Consider rolling two dice. Let **X** be sum. What is **E**[**X**]?

•
$$E[X] = \sum_{e \in \Omega} X(e) Pr[e]$$
. 36 term sum!
• $E[X] = \sum_{y \in \mathbb{R}} y \cdot Pr[X = y]$. What is $Pr[X = 2]$, $Pr[X = 3]$, ...?

Instead: $X = X_1 + X_2$. So $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2]$

$$\mathsf{E}[\mathsf{X}_1] = \mathsf{E}[\mathsf{X}_2] = \sum_{y=1}^6 \frac{1}{6} \mathsf{y} = \frac{21}{6} = 3.5$$

 \implies E[X] = 3.5 + 3.5 = 7

. ∃ ► ►

- 12

Theorem

For any two random variables **X** and **Y**, and any constants α and β : $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$

Proof.

$$\mathsf{E}[\alpha \mathsf{X} + \beta \mathsf{Y}] = \sum_{\mathsf{e} \in \Omega} \mathsf{Pr}[\mathsf{e}] \left(\alpha \mathsf{X}(\mathsf{e}) + \beta \mathsf{Y}(\mathsf{e}) \right)$$

- 12

JQ P

<ロト < 回 > < 回 > < 回 > < 回 >

Theorem

For any two random variables **X** and **Y**, and any constants α and β : $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$

Proof.

$$\begin{split} \mathsf{E}[\alpha\mathsf{X} + \beta\mathsf{Y}] &= \sum_{\mathsf{e}\in\Omega}\mathsf{Pr}[\mathsf{e}]\left(\alpha\mathsf{X}(\mathsf{e}) + \beta\mathsf{Y}(\mathsf{e})\right) \\ &= \alpha\sum_{\mathsf{e}\in\Omega}\mathsf{Pr}[\mathsf{e}]\mathsf{X}(\mathsf{e}) + \beta\sum_{\mathsf{e}\in\Omega}\mathsf{Pr}[\mathsf{e}]\mathsf{X}(\mathsf{e}) \end{split}$$

- 2

JQ P

<ロト < 回 > < 回 > < 回 > < 回 >

Theorem

For any two random variables **X** and **Y**, and any constants α and β : $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$

Proof.

$$\begin{split} \mathsf{E}[\alpha\mathsf{X} + \beta\mathsf{Y}] &= \sum_{\mathbf{e}\in\Omega}\mathsf{Pr}[\mathbf{e}]\left(\alpha\mathsf{X}(\mathbf{e}) + \beta\mathsf{Y}(\mathbf{e})\right) \\ &= \alpha\sum_{\mathbf{e}\in\Omega}\mathsf{Pr}[\mathbf{e}]\mathsf{X}(\mathbf{e}) + \beta\sum_{\mathbf{e}\in\Omega}\mathsf{Pr}[\mathbf{e}]\mathsf{X}(\mathbf{e}) \\ &= \alpha\mathsf{E}[\mathsf{X}] + \beta\mathsf{E}[\mathsf{Y}] \end{split}$$

- 32

JQ P

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Theorem

For any two random variables **X** and **Y**, and any constants α and β : $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$

Proof.

$$\begin{split} \mathsf{E}[\alpha\mathsf{X} + \beta\mathsf{Y}] &= \sum_{\mathbf{e}\in\Omega}\mathsf{Pr}[\mathbf{e}]\left(\alpha\mathsf{X}(\mathbf{e}) + \beta\mathsf{Y}(\mathbf{e})\right) \\ &= \alpha\sum_{\mathbf{e}\in\Omega}\mathsf{Pr}[\mathbf{e}]\mathsf{X}(\mathbf{e}) + \beta\sum_{\mathbf{e}\in\Omega}\mathsf{Pr}[\mathbf{e}]\mathsf{X}(\mathbf{e}) \\ &= \alpha\mathsf{E}[\mathsf{X}] + \beta\mathsf{E}[\mathsf{Y}] \end{split}$$

Holds no matter how correlated \mathbf{X} and \mathbf{Y} are!

3

590

イロト イヨト イヨト イヨト

Theorem

The expected running time of randomized quicksort is at most $O(n \log n)$.

- 3

JQ (?

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

The expected running time of randomized quicksort is at most $O(n \log n)$.

Assume for simplicity all elements distinct. Running time = $\Theta(\# \text{ of comparisons})$

JQ (?

《口》《聞》《臣》《臣》 [臣]

Theorem

The expected running time of randomized quicksort is at most $O(n \log n)$.

Assume for simplicity all elements distinct. Running time = $\Theta(\# \text{ of comparisons})$

Definitions:

- **X** = # of comparisons (random variable)
- e_i = i'th smallest element (for $i \in \{1, \ldots, n\})$
- \boldsymbol{X}_{ij} random variable for all $i,j \in \{1,\ldots,n\}$ with i < j:

$$X_{ij} = \begin{cases} 1 & \text{if algorithm compares } e_i \text{ and } e_j \text{ at any point in time} \\ 0 & \text{otherwise} \end{cases}$$

JQ P

《口》《聞》《臣》《臣》 [臣]

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

-

JQ (?

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

$$\mathsf{E}[\mathsf{X}] = \mathsf{E}\left[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathsf{X}_{ij}\right] = \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathsf{E}[\mathsf{X}_{ij}]$$

-

JQ (?

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

$$\mathsf{E}[\mathsf{X}] = \mathsf{E}\left[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathsf{X}_{ij}\right] = \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathsf{E}[\mathsf{X}_{ij}]$$

So just need to understand $E[X_{ij}]$

-

JQ (?

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

$$\mathsf{E}[\mathsf{X}] = \mathsf{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathsf{X}_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathsf{E}[\mathsf{X}_{ij}]$$

So just need to understand $E[X_{ij}]$

Simple cases:

-

JQ (?

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

$$\mathsf{E}[\mathsf{X}] = \mathsf{E}\left[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathsf{X}_{ij}\right] = \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathsf{E}[\mathsf{X}_{ij}]$$

So just need to understand $E[X_{ij}]$

Simple cases:

▶ **j** = **i** + 1:

- 32

JQ P

▲□ > ▲圖 > ▲屋 > ▲屋 >

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

$$\mathsf{E}[\mathsf{X}] = \mathsf{E}\left[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathsf{X}_{ij}\right] = \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathsf{E}[\mathsf{X}_{ij}]$$

So just need to understand $E[X_{ij}]$

Simple cases:

•
$$\mathbf{j} = \mathbf{i} + 1$$
: $\mathbf{X}_{ij} = 1$ no matter what, so $\mathbf{E}[\mathbf{X}_{ij}] = 1$

-

JQ (?

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

$$\mathsf{E}[\mathsf{X}] = \mathsf{E}\left[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathsf{X}_{ij}\right] = \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathsf{E}[\mathsf{X}_{ij}]$$

So just need to understand $\mathbf{E}[\mathbf{X}_{ij}]$

Simple cases:

-

JQ (?

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

$$\mathsf{E}[\mathsf{X}] = \mathsf{E}\left[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathsf{X}_{ij}\right] = \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathsf{E}[\mathsf{X}_{ij}]$$

So just need to understand $E[X_{ij}]$

Simple cases:

-

JQ (?

If $\mathbf{p} = \mathbf{e}_i$ or $\mathbf{p} = \mathbf{e}_i$: Soude A ٢. **(**! Ky -1 it f e: - e; chosen as eivet betwee any ex, i < k < ;

If
$$\mathbf{p} = \mathbf{e}_i$$
 or $\mathbf{p} = \mathbf{e}_j$: $\mathbf{X}_{ij} = \mathbf{1}$

イロト イヨト イヨト イヨト

E

If $p = e_i$ or $p = e_j$: $X_{ij} = 1$

If $e_i :$

590

If
$$\mathbf{p} = \mathbf{e}_i$$
 or $\mathbf{p} = \mathbf{e}_j$: $\mathbf{X}_{ij} = \mathbf{1}$

If $e_i : <math>X_{ij} = 0$

5900

```
E[X<sub>ij</sub>]: General Case (i < j)
```

If
$$\mathbf{p} = \mathbf{e}_i$$
 or $\mathbf{p} = \mathbf{e}_j$: $\mathbf{X}_{ij} = \mathbf{1}$

If $e_i : <math>X_{ij} = 0$

If $p < e_i$ or $p > e_j$:

5900

If $\mathbf{p} = \mathbf{e}_i$ or $\mathbf{p} = \mathbf{e}_j$: $\mathbf{X}_{ij} = \mathbf{1}$

If $e_i : <math display="inline">X_{ij}$ = 0

If $p < e_i$ or $p > e_j$: ? Both e_i , e_j in same recursive call.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の Q @

If $\mathbf{p} = \mathbf{e}_i$ or $\mathbf{p} = \mathbf{e}_j$: $\mathbf{X}_{ij} = \mathbf{1}$

 $\text{If } e_i$

If $p < e_i$ or $p > e_j$: ? Both e_i , e_j in same recursive call.

• Condition on $\mathbf{e}_i \leq \mathbf{p} \leq \mathbf{e}_j$:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の Q @

If $\mathbf{p} = \mathbf{e}_i$ or $\mathbf{p} = \mathbf{e}_j$: $\mathbf{X}_{ij} = \mathbf{1}$

 $\text{If } e_i$

If $p < e_i$ or $p > e_j$: ? Both e_i , e_j in same recursive call.

• Condition on
$$\mathbf{e}_i \leq \mathbf{p} \leq \mathbf{e}_j$$
: $\mathbf{E}[\mathbf{X}_{ij} \mid \mathbf{e}_i \leq \mathbf{p} \leq \mathbf{e}_j] = \frac{2}{j-i+1}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の Q @

If $\mathbf{p} = \mathbf{e}_i$ or $\mathbf{p} = \mathbf{e}_j$: $\mathbf{X}_{ij} = \mathbf{1}$

 $\text{If } e_i$

If $p < e_i$ or $p > e_j$: ? Both e_i , e_j in same recursive call.

- Condition on $\mathbf{e}_i \le \mathbf{p} \le \mathbf{e}_j$: $\mathbf{E}[\mathbf{X}_{ij} \mid \mathbf{e}_i \le \mathbf{p} \le \mathbf{e}_j] = \frac{2}{j-i+1}$
- Condition on $\mathbf{p} \notin [\mathbf{e}_i, \mathbf{e}_j]$:

If $\mathbf{p} = \mathbf{e}_i$ or $\mathbf{p} = \mathbf{e}_j$: $\mathbf{X}_{ij} = \mathbf{1}$

 $\text{If } e_i$

If $p < e_i$ or $p > e_j$: ? Both e_i , e_j in same recursive call.

- Condition on $\mathbf{e}_i \leq \mathbf{p} \leq \mathbf{e}_j$: $\mathbf{E}[\mathbf{X}_{ij} \mid \mathbf{e}_i \leq \mathbf{p} \leq \mathbf{e}_j] = \frac{2}{j-j+1}$
- Condition on $p \notin [e_i, e_j]$: still undetermined

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

If $p = e_i$ or $p = e_j$: $X_{ij} = 1$

 $\text{If } e_i$

If $p < e_i$ or $p > e_j$: ? Both e_i , e_j in same recursive call.

- Condition on $\mathbf{e}_i \leq \mathbf{p} \leq \mathbf{e}_j$: $\mathbf{E}[\mathbf{X}_{ij} \mid \mathbf{e}_i \leq \mathbf{p} \leq \mathbf{e}_j] = \frac{2}{j-j+1}$
- Condition on $p \notin [e_i, e_j]$: still undetermined

So X_{ij} not determined until $e_i \le p \le e_j$, and when it is determined has $E[X_{ij}] = \frac{2}{j-i+1}$ $\implies E[X_{ij}] = \frac{2}{j-i+1}$

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let Y_k be event that the k'th pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$

- E

JQ (?

Let Y_k be event that the k'th pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$ \implies by definition, the Y_k events are disjoint and partition sample space

JQ P

・ロト ・部ト ・ヨト ・ヨト - ヨー

Let Y_k be event that the k'th pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$ \implies by definition, the Y_k events are disjoint and partition sample space

Showed that $\mathbf{E}[\mathbf{X}_{ij}|\mathbf{Y}_k] = \frac{2}{j-i+1}$ for all **k**.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Let Y_k be event that the k'th pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$ \implies by definition, the Y_k events are disjoint and partition sample space

Showed that $\mathbf{E}[\mathbf{X}_{ij}|\mathbf{Y}_k] = \frac{2}{j-i+1}$ for all **k**.

$$E[X_{ij}] = \sum_{k=1}^{n} E[X_{ij}|Y_k]Pr[Y_k]$$
$$= \frac{2}{j-i+1} \sum_{k=1}^{n} Pr[Y_k]$$
$$= \frac{2}{j-i+1}$$

 $(\mathbf{Y}_{\mathbf{k}} \text{ disjoint and partition } \mathbf{\Omega})$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○
Randomized Quicksort: Final Analysis

Expected running time of randomized quicksort:

 $\mathbf{E}[\mathbf{X}] = \sum_{n=1}^{n-1} \sum_{i=1}^{n} \mathbf{E}[\mathbf{X}_{ij}]$ (linearity of expectations) i=1 i=i+1 $=\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\frac{2}{j-i+1}$ $= 2\sum_{i=1}^{n-1} \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-i+1} \right)$ $\leq 2\sum_{i=1}^{n-1} H_n$ $\left(\mathsf{H}_{\mathsf{n}} = \sum_{i=1}^{\mathsf{n}} \frac{1}{\mathsf{i}}\right)$ $\leq 2nH_n$ $t/m = \Theta(l \cdot s n)$ $\leq O(n \log n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで