Lecture 3: Probabilistic Analysis, Randomized Quicksort

Michael Dinitz

September 7, 2021
601.433/633 Introduction to Algorithms

Introduction: Sorting

- Sorting: given array of comparable elements, put them in sorted order
- Popular topic to cover in Algorithms courses
- This course:
- I assume you know the basics (mergesort, quicksort, insertion sort, selection sort, bubble sort, etc.) from Data Structures
- Today: more advanced sorting (randomized quicksort)
- Next week: Sorting lower bound and ways around it.

Randomized Algorithms and Probabilistic Analysis

First lecture: "Average-case" problematic.

- What is the "average case"?
- Want to design algorithms that work in all applications.

Randomized Algorithms and Probabilistic Analysis

First lecture: "Average-case" problematic.

- What is the "average case"?
- Want to design algorithms that work in all applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization inside algorithm!

- Still assume worst-case inputs, give bound on worst-case expected running time.

Randomized Algorithms and Probabilistic Analysis

First lecture: "Average-case" problematic.

- What is the "average case"?
- Want to design algorithms that work in all applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization inside algorithm!

- Still assume worst-case inputs, give bound on worst-case expected running time.

Many Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!

Randomized Algorithms and Probabilistic Analysis

First lecture: "Average-case" problematic.

- What is the "average case"?
- Want to design algorithms that work in all applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization inside algorithm!

- Still assume worst-case inputs, give bound on worst-case expected running time.

Many Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!
Today: adding randomness into quicksort.

Quicksort Basics (Review)

Input: array \mathbf{A} of length \mathbf{n}.
Algorithm:

1. If $\mathbf{n}=\mathbf{0}$ or $\mathbf{1}$, return \mathbf{A} (already sorted)
2. Pick some element \mathbf{p} as the pivot
3. Compare every element of \mathbf{A} to \mathbf{p}. Let \mathbf{L} be the elements less than \mathbf{p}, let \mathbf{G} be the elements larger than \mathbf{p}. Create array $[\mathbf{L}, \mathbf{p}, \mathbf{G}]$
4. Recursively sort \mathbf{L} and \mathbf{G}.

Quicksort Basics (Review)

Input: array \mathbf{A} of length \mathbf{n}.
Algorithm:

1. If $\mathbf{n}=\mathbf{0}$ or $\mathbf{1}$, return \mathbf{A} (already sorted)
2. Pick some element \mathbf{p} as the pivot
3. Compare every element of \mathbf{A} to \mathbf{p}. Let \mathbf{L} be the elements less than \mathbf{p}, let \mathbf{G} be the elements larger than \mathbf{p}. Create array $[\mathbf{L}, \mathbf{p}, \mathbf{G}]$
4. Recursively sort \mathbf{L} and \mathbf{G}.

Not fully specified: how to choose p?

- Traditionally: some simple deterministic choice (first element, last element, etc.)
- Next lecture: better deterministic choice (not very practical)
- Now: first element

Quicksort Analysis

Upper bound:

If \mathbf{p} picked as pivot in step 2, then in correct place after step 3

Quicksort Analysis

Upper bound:

If \mathbf{p} picked as pivot in step 2, then in correct place after step 3
\Longrightarrow step 2 and $\mathbf{3}$ executed at most \mathbf{n} times.

Quicksort Analysis

Upper bound:

If \mathbf{p} picked as pivot in step 2, then in correct place after step 3
\Longrightarrow step 2 and $\mathbf{3}$ executed at most \mathbf{n} times.
Step 3 takes time $\mathbf{O}(\mathbf{n})$ (compare every element to pivot)

Quicksort Analysis

Upper bound:

If \mathbf{p} picked as pivot in step 2, then in correct place after step 3
\Longrightarrow step 2 and $\mathbf{3}$ executed at most \mathbf{n} times.
Step 3 takes time $\mathbf{O}(\mathbf{n})$ (compare every element to pivot)
\Longrightarrow total time at most $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Quicksort Analysis

Upper bound:

If \mathbf{p} picked as pivot in step 2, then in correct place after step 3
\Longrightarrow step 2 and $\mathbf{3}$ executed at most \mathbf{n} times.

Step 3 takes time $\mathbf{O}(\mathbf{n})$ (compare every element to pivot)
\Longrightarrow total time at most $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Lower Bound:

Suppose A already sorted.

Quicksort Analysis

Upper bound:

If \mathbf{p} picked as pivot in step 2, then in correct place after step 3
\Longrightarrow step 2 and $\mathbf{3}$ executed at most \mathbf{n} times.

Step 3 takes time $\mathbf{O}(\mathbf{n})$ (compare every element to pivot)
\Longrightarrow total time at most $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Lower Bound:

Suppose A already sorted.
$\Longrightarrow \mathbf{p}=\mathbf{A}[\mathbf{0}]$ is smallest element

Quicksort Analysis

Upper bound:

If \mathbf{p} picked as pivot in step 2, then in correct place after step 3
\Longrightarrow step 2 and 3 executed at most \mathbf{n} times.
Step 3 takes time $\mathbf{O}(\mathbf{n})$ (compare every element to pivot)
\Longrightarrow total time at most $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Lower Bound:

Suppose A already sorted.
$\Longrightarrow \mathbf{p}=\mathbf{A}[\mathbf{0}]$ is smallest element $\Longrightarrow \mathbf{L}=\varnothing$ and $\mathbf{G}=\mathbf{A}[\mathbf{1} . . \mathbf{n}-\mathbf{1}]$

Quicksort Analysis

Upper bound:

If \mathbf{p} picked as pivot in step 2, then in correct place after step 3
\Longrightarrow step 2 and 3 executed at most \mathbf{n} times.
Step 3 takes time $\mathbf{O}(\mathbf{n})$ (compare every element to pivot)
\Longrightarrow total time at most $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Lower Bound:

Suppose A already sorted.
$\Longrightarrow \mathbf{p}=\mathbf{A}[\mathbf{0}]$ is smallest element $\Longrightarrow \mathbf{L}=\varnothing$ and $\mathbf{G}=\mathbf{A}[\mathbf{1 . . n - 1]}$
\Longrightarrow in one call to quicksort, do $\boldsymbol{\Omega} \mathbf{(n)}$ work to compare everything to \mathbf{p}, then recurse on array of size \mathbf{n} - $\mathbf{1}$

Quicksort Analysis

Upper bound:

If \mathbf{p} picked as pivot in step 2, then in correct place after step 3
\Longrightarrow step 2 and 3 executed at most \mathbf{n} times.
Step 3 takes time $\mathbf{O}(\mathbf{n})$ (compare every element to pivot)
\Longrightarrow total time at most $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Lower Bound:

Suppose A already sorted.
$\Longrightarrow \mathbf{p}=\mathbf{A}[\mathbf{0}]$ is smallest element $\Longrightarrow \mathbf{L}=\varnothing$ and $\mathbf{G}=\mathbf{A}[\mathbf{1 . . n - 1}]$
\Longrightarrow in one call to quicksort, do $\Omega(\mathbf{n})$ work to compare everything to \mathbf{p}, then recurse on array
of size $\mathbf{n - 1}$
\Longrightarrow running time is $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n}-\mathbf{1})+\mathbf{c n}$

Quicksort Analysis

Upper bound:

If \mathbf{p} picked as pivot in step 2, then in correct place after step 3
\Longrightarrow step 2 and 3 executed at most \mathbf{n} times.
Step 3 takes time $\mathbf{O}(\mathbf{n})$ (compare every element to pivot)
\Longrightarrow total time at most $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Lower Bound:

Suppose A already sorted.
$\Longrightarrow \mathbf{p}=\mathbf{A}[\mathbf{0}]$ is smallest element $\Longrightarrow \mathbf{L}=\varnothing$ and $\mathbf{G}=\mathbf{A}[\mathbf{1 . . n - 1}]$
\Longrightarrow in one call to quicksort, do $\Omega(\mathbf{n})$ work to compare everything to \mathbf{p}, then recurse on array of size $\mathbf{n}-\mathbf{1}$
\Longrightarrow running time is $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n}-\mathbf{1})+\mathbf{c n} \Longrightarrow \mathbf{T}(\mathbf{n})=\boldsymbol{\Theta}\left(\mathbf{n}^{2}\right)$

Randomized Quicksort

Randomized Quicksort: pick \mathbf{p} uniformly at random from \mathbf{A}.
Today: prove that expected running time at most $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ for every input A.

Randomized Quicksort

Randomized Quicksort: pick puniformly at random from \mathbf{A}.
Today: prove that expected running time at most $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ for every input \mathbf{A}.

- Better than an average-case bound: holds for every single input!
- Maybe in one application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!

Randomized Quicksort

Randomized Quicksort: pick puniformly at random from \mathbf{A}.
Today: prove that expected running time at most $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ for every input \mathbf{A}.

- Better than an average-case bound: holds for every single input!
- Maybe in one application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!
- Today only expectation. Can be more clever to get high probability bounds.

Randomized Quicksort

Randomized Quicksort: pick puniformly at random from \mathbf{A}.
Today: prove that expected running time at most $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ for every input \mathbf{A}.

- Better than an average-case bound: holds for every single input!
- Maybe in one application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!
- Today only expectation. Can be more clever to get high probability bounds.

Before doing analysis, quick review of basic probability theory.

Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability
$\boldsymbol{\Omega}$: Sample space. Set of all possible outcomes.

Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability
$\boldsymbol{\Omega}$: Sample space. Set of all possible outcomes.

- Roll two dice. $\Omega=$

Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability
$\boldsymbol{\Omega}$: Sample space. Set of all possible outcomes.

- Roll two dice. $\Omega=\{1,2, \ldots, 6\} \times\{1,2, \ldots, 6\}$.
[6] $\times(6)$

Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability
Ω : Sample space. Set of all possible outcomes.

- Roll two dice. $\Omega=\{\mathbf{1}, \mathbf{2}, \ldots, 6\} \times\{\mathbf{1}, \mathbf{2}, \ldots, 6\}$. $\operatorname{Not}\{\mathbf{2}, \mathbf{3}, \ldots, 12\}$

Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability
$\boldsymbol{\Omega}$: Sample space. Set of all possible outcomes.

- Roll two dice. $\Omega=\{\mathbf{1}, \mathbf{2}, \ldots, 6\} \times\{1,2, \ldots, 6\}$. $\operatorname{Not}\{2,3, \ldots, 12\}$

Event: subset of Ω

Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability
$\boldsymbol{\Omega}$: Sample space. Set of all possible outcomes.

- Roll two dice. $\boldsymbol{\Omega}=\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{6}\} \times\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{6}\}$. $\operatorname{Not}\{\mathbf{2}, \mathbf{3}, \ldots, 12\}$

Event: subset of $\boldsymbol{\Omega}$

- "Event that first die is 3 ": $\{(\mathbf{3}, \mathrm{x}): \mathrm{x} \in\{\mathbf{1}, \mathbf{2}, \ldots, 6\}\}$
- "Event that dice add up to $\mathbf{7}$ or 11 ": $\{(x, y) \in \Omega:(x+y=7)$ or $(x+y=11)\}$

Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability
$\boldsymbol{\Omega}$: Sample space. Set of all possible outcomes.

- Roll two dice. $\boldsymbol{\Omega}=\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{6}\} \times\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{6}\}$. $\operatorname{Not}\{\mathbf{2}, \mathbf{3}, \ldots, 12\}$

Event: subset of $\boldsymbol{\Omega}$

- "Event that first die is 3 ": $\{(3, x): x \in\{1,2, \ldots, 6\}\}$
- "Event that dice add up to $\mathbf{7}$ or 11 ": $\{(\mathbf{x}, \mathrm{y}) \in \Omega:(\mathrm{x}+\mathrm{y}=\mathbf{7})$ or $(\mathrm{x}+\mathrm{y}=11)\}$

Random Variable: X: $\Omega \rightarrow \mathbb{R}$

- X_{1} : value of first die. $X_{1}(x, y)=x$
- X_{2} : value of second die. $X_{2}(x, y)=y$
- $\mathbf{X}=\mathbf{X}_{1}+\mathbf{X}_{2}$: sum of the dice. $\mathbf{X}(\mathbf{x}, \mathrm{y}) \Theta \mathbf{\Theta}+\mathbf{y} \cong \mathbf{X}_{1}(\mathrm{x}, \mathrm{y})+\mathbf{X}_{\mathbf{2}}(\mathrm{x}, \mathrm{y})$

Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability
$\boldsymbol{\Omega}$: Sample space. Set of all possible outcomes.

- Roll two dice. $\Omega=\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{6}\} \times\{\mathbf{1}, \mathbf{2}, \ldots, 6\}$. Not $\{2,3, \ldots, 12\}$

Event: subset of Ω

- "Event that first die is 3 ": $\{(3, x): x \in\{1,2, \ldots, 6\}\}$
- "Event that dice add up to $\mathbf{7}$ or 11 ": $\{(\mathbf{x}, \mathrm{y}) \in \Omega:(\mathrm{x}+\mathrm{y}=\mathbf{7})$ or $(\mathrm{x}+\mathrm{y}=11)\}$

Random Variable: X: $\boldsymbol{\Omega} \rightarrow \mathbb{R}$

- X_{1} : value of first die. $X_{1}(x, y)=x$
- X_{2} : value of second die. $\mathbf{X}_{\mathbf{2}}(\mathbf{x}, \mathbf{y})=\mathbf{y}$
- $\mathbf{X}=\mathbf{X}_{1}+\mathbf{X}_{2}$: sum of the dice. $\mathbf{X}(\mathbf{x}, \mathbf{y})=\mathbf{x}+\mathbf{y}=\mathbf{X}_{\mathbf{1}}(\mathbf{x}, \mathbf{y})+\mathbf{X}_{\mathbf{2}}(\mathbf{x}, \mathbf{y})$

Random variables super important! Running time of randomized quicksort is a random variable.

Probability Basics II

Want to define probabilities. Should use measure theory. Won't.

Probability Basics II

Want to define probabilities. Should use measure theory. Won't.
For each $\mathbf{e} \in \Omega$ let $\operatorname{Pr}[\mathbf{e}]$ be probability of \mathbf{e} (probability distribution)

- $\operatorname{Pr}[\mathbf{e}] \geq 0$ for all $\mathbf{e} \in \Omega$, and $\sum_{\mathrm{e} \in \Omega} \operatorname{Pr}[\mathbf{e}]=\mathbf{1}$
- Probability of an event \mathbf{A} is $\operatorname{Pr}[\mathbf{A}]=\sum_{\mathbf{e} \in \mathbf{A}} \operatorname{Pr}[\mathbf{e}]$

Probability Basics II

Want to define probabilities. Should use measure theory. Won't.
For each $\mathbf{e} \in \Omega$ let $\operatorname{Pr}[\mathbf{e}]$ be probability of \mathbf{e} (probability distribution)

- $\operatorname{Pr}[\mathbf{e}] \geq 0$ for all $\mathbf{e} \in \Omega$, and $\sum_{\mathrm{e} \in \Omega} \operatorname{Pr}[\mathbf{e}]=\mathbf{1}$
- Probability of an event \mathbf{A} is $\operatorname{Pr}[\mathbf{A}]=\sum_{\mathbf{e} \in \mathbf{A}} \operatorname{Pr}[\mathbf{e}]$

Conditional probability: if \mathbf{A} and \mathbf{B} are events:

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}=\frac{\sum_{\mathrm{e} \in \mathrm{~A} \cap \mathrm{~B}} \operatorname{Pr}[\mathrm{e}]}{\sum_{\mathrm{e} \in \mathrm{~A}} \operatorname{Pr}[\mathrm{e}]}
$$

Probability Basics III: Expectations

Expectation of a random variable:

$$
E[X]=\sum_{e \in \Omega} X(e) \operatorname{Pr}[e]
$$

"Average" of the random variable according to probability distribution

Probability Basics III: Expectations

Expectation of a random variable:

$$
E[X]=\sum_{e \in \Omega} X(e) \operatorname{Pr}[e]
$$

"Average" of the random variable according to probability distribution
Can be useful to rearrange terms to get different equation:

$$
E[X]=\sum_{e \in \Omega} X(e) \operatorname{Pr}[e]=\sum_{y \in \mathbb{R}} \sum_{e \in \Omega: X(e)=y} y \cdot \operatorname{Pr}[e]=\sum_{y \in \mathbb{R}} y \cdot \operatorname{Pr}[X=y]
$$

Probability Basics III: Expectations

Expectation of a random variable:

$$
E[X]=\sum_{e \in \Omega} X(e) \operatorname{Pr}[e]
$$

"Average" of the random variable according to probability distribution
Can be useful to rearrange terms to get different equation:

$$
E[X]=\sum_{e \in \Omega} X(e) \operatorname{Pr}[e]=\sum_{y \in \mathbb{R}} \sum_{e \in \Omega: X(e)=y} y \cdot \operatorname{Pr}[e]=\sum_{y \in \mathbb{R}} y \cdot \operatorname{Pr}[X=y]
$$

Conditional Expectation: \mathbf{A} an event, \mathbf{X} a random variable.

$$
E[X \mid A]=\frac{1}{\operatorname{Pr}[A]} \sum_{e \in A} X(e) \operatorname{Pr}[e]
$$

Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables \mathbf{X} and \mathbf{Y}, and any constants $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$: $\mathrm{E}[\alpha \mathbf{X}+\beta \mathbf{Y}]=\alpha \mathrm{E}[\mathbf{X}]+\beta \mathrm{E}[\mathbf{Y}]$

Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables \mathbf{X} and \mathbf{Y}, and any constants $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$:
$\mathrm{E}[\alpha \mathbf{X}+\beta \mathbf{Y}]=\alpha \mathrm{E}[\mathrm{X}]+\beta \mathrm{E}[\mathbf{Y}]$

Consider rolling two dice. Let \mathbf{X} be sum. What is $\mathbf{E}[\mathbf{X}]$?

- $\mathbf{E}[\mathbf{X}]=\sum_{e \in \Omega} \mathbf{X}(\mathbf{e}) \operatorname{Pr}[\mathbf{e}] .36$ term sum!
- $E[X]=\sum_{y \in \mathbb{R}} y \cdot \operatorname{Pr}[X=y]$. What is $\operatorname{Pr}[X=2], \operatorname{Pr}[X=3], \ldots$?

Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables \mathbf{X} and \mathbf{Y}, and any constants $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$:
$\mathrm{E}[\alpha \mathbf{X}+\beta \mathbf{Y}]=\alpha \mathrm{E}[\mathrm{X}]+\beta \mathrm{E}[\mathbf{Y}]$

Consider rolling two dice. Let \mathbf{X} be sum. What is $\mathbf{E}[\mathbf{X}]$?

- $\mathbf{E}[\mathbf{X}]=\sum_{e \in \Omega} \mathbf{X}(\mathbf{e}) \operatorname{Pr}[\mathbf{e}] .36$ term sum!
- $E[X]=\sum_{y \in \mathbb{R}} \mathbf{y} \cdot \operatorname{Pr}[X=y]$. What is $\operatorname{Pr}[X=2], \operatorname{Pr}[X=3], \ldots$?

Instead: $\mathbf{X}=\mathbf{X}_{1}+\mathbf{X}_{2}$. So $\mathbf{E}[\mathbf{X}]=\mathbf{E}\left[\mathbf{X}_{1}+\mathbf{X}_{2}\right]=\mathbf{E}\left[\mathbf{X}_{1}\right]+\mathbf{E}\left[\mathbf{X}_{2}\right]$

$$
x(e)=x_{1}(v)+f_{2}\left(c_{e}\right) \quad \forall_{e} \in \Omega
$$

Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables \mathbf{X} and \mathbf{Y}, and any constants $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$:
$\mathrm{E}[\alpha \mathbf{X}+\beta \mathbf{Y}]=\alpha \mathrm{E}[\mathrm{X}]+\beta \mathrm{E}[\mathbf{Y}]$

Consider rolling two dice. Let \mathbf{X} be sum. What is $\mathbf{E}[\mathbf{X}]$?

- $E[X]=\sum_{e \in \Omega} \mathbf{X}(\mathbf{e}) \operatorname{Pr}[\mathbf{e}] .36$ term sum!
- $E[X]=\sum_{y \in \mathbb{R}} \mathbf{y} \cdot \operatorname{Pr}[X=y]$. What is $\operatorname{Pr}[X=2], \operatorname{Pr}[X=3], \ldots$?

Instead: $\mathbf{X}=\mathbf{X}_{1}+\mathbf{X}_{2}$. So $\mathrm{E}[\mathbf{X}]=E\left[\mathbf{X}_{1}+\mathbf{X}_{2}\right]=E\left[\mathbf{X}_{1}\right]+E\left[\mathbf{X}_{2}\right]$

$$
\mathrm{E}\left[\mathrm{X}_{1}\right]=\mathrm{E}\left[\mathrm{X}_{2}\right]=\sum_{\mathrm{y}=1}^{6} \frac{1}{6} \mathrm{y}=\frac{21}{6}=3.5
$$

Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables \mathbf{X} and \mathbf{Y}, and any constants $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$:
$\mathrm{E}[\alpha \mathbf{X}+\beta \mathbf{Y}]=\alpha \mathrm{E}[\mathrm{X}]+\beta \mathrm{E}[\mathbf{Y}]$

Consider rolling two dice. Let \mathbf{X} be sum. What is $\mathbf{E}[\mathbf{X}]$?

- $E[X]=\sum_{e \in \Omega} \mathbf{X}(\mathbf{e}) \operatorname{Pr}[\mathbf{e}] .36$ term sum!
- $E[X]=\sum_{y \in \mathbb{R}} \mathbf{y} \cdot \operatorname{Pr}[X=y]$. What is $\operatorname{Pr}[X=2], \operatorname{Pr}[X=3], \ldots$?

Instead: $\mathbf{X}=\mathbf{X}_{1}+\mathbf{X}_{2}$. So $\mathbf{E}[\mathbf{X}]=\mathbf{E}\left[\mathbf{X}_{1}+\mathbf{X}_{2}\right]=\mathbf{E}\left[\mathbf{X}_{1}\right]+\mathbf{E}\left[\mathbf{X}_{2}\right]$

$$
E\left[X_{1}\right]=E\left[X_{2}\right]=\sum_{y=1}^{6} \frac{1}{6} y=\frac{21}{6}=3.5
$$

$\Longrightarrow E[X]=3.5+3.5=7$

Linearity of Expectations: Proof

Theorem

For any two random variables \mathbf{X} and \mathbf{Y}, and any constants $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$: $\mathrm{E}[\alpha \mathbf{X}+\beta \mathrm{Y}]=\alpha \mathrm{E}[\mathrm{X}]+\beta \mathrm{E}[\mathbf{Y}]$

Proof.
$\mathrm{E}[\alpha \mathbf{X}+\beta \mathbf{Y}]=\sum_{\mathrm{e} \in \Omega} \operatorname{Pr}[\mathrm{e}](\alpha \mathbf{X}(\mathrm{e})+\beta \mathbf{Y}(\mathrm{e}))$

Linearity of Expectations: Proof

Theorem

For any two random variables \mathbf{X} and \mathbf{Y}, and any constants $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$: $\mathrm{E}[\alpha \mathrm{X}+\beta \mathrm{Y}]=\alpha \mathrm{E}[\mathrm{X}]+\beta \mathrm{E}[\mathbf{Y}]$

Proof.

$$
\begin{aligned}
\mathrm{E}[\alpha \mathrm{X}+\beta \mathrm{Y}] & =\sum_{\mathrm{e} \in \Omega} \operatorname{Pr}[\mathrm{e}](\alpha \mathbf{X}(\mathrm{e})+\beta \mathrm{Y}(\mathrm{e})) \\
& =\alpha \sum_{\mathrm{e} \in \Omega} \operatorname{Pr}[\mathrm{e}] \mathbf{X}(\mathrm{e})+\beta \sum_{\mathrm{e} \in \Omega} \operatorname{Pr}[\mathrm{e}] \mathbf{X}(\mathrm{e})
\end{aligned}
$$

Linearity of Expectations: Proof

Theorem

For any two random variables \mathbf{X} and \mathbf{Y}, and any constants $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$: $\mathrm{E}[\alpha \mathbf{X}+\beta \mathbf{Y}]=\alpha \mathrm{E}[\mathrm{X}]+\beta \mathrm{E}[\mathrm{Y}]$

Proof.

$$
\begin{aligned}
\mathrm{E}[\alpha \mathbf{X}+\beta \mathbf{Y}] & =\sum_{\mathrm{e} \in \Omega} \operatorname{Pr}[\mathrm{e}](\alpha \mathbf{X}(\mathrm{e})+\beta \mathbf{Y}(\mathrm{e})) \\
& =\alpha \sum_{\mathrm{e} \in \Omega} \operatorname{Pr}[\mathrm{e}] \mathbf{X}(\mathrm{e})+\beta \sum_{\mathrm{e} \in \Omega} \operatorname{Pr}[\mathrm{e}] \mathbf{X}(\mathrm{e}) \\
& =\alpha \mathrm{E}[\mathbf{X}]+\beta \mathrm{E}[\mathbf{Y}]
\end{aligned}
$$

Linearity of Expectations: Proof

Theorem

For any two random variables \mathbf{X} and \mathbf{Y}, and any constants $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$: $\mathrm{E}[\alpha \mathbf{X}+\beta \mathbf{Y}]=\alpha \mathrm{E}[\mathbf{X}]+\beta \mathrm{E}[\mathbf{Y}]$

Proof.

$$
\begin{aligned}
\mathrm{E}[\alpha \mathbf{X}+\beta \mathrm{Y}] & =\sum_{\mathrm{e} \in \Omega} \operatorname{Pr}[\mathrm{e}](\alpha \mathbf{X}(\mathrm{e})+\beta \mathbf{Y}(\mathrm{e})) \\
& =\alpha \sum_{\mathrm{e} \in \Omega} \operatorname{Pr}[\mathrm{e}] \mathbf{X}(\mathrm{e})+\beta \sum_{\mathrm{e} \in \Omega} \operatorname{Pr}[\mathrm{e}] \mathbf{X}(\mathrm{e}) \\
& =\alpha \mathrm{E}[\mathbf{X}]+\beta \mathrm{E}[\mathbf{Y}]
\end{aligned}
$$

Holds no matter how correlated \mathbf{X} and \mathbf{Y} are!

Randomized Quicksort I

Theorem

The expected running time of randomized quicksort is at most $\mathbf{O}(\mathbf{n} \log \mathbf{n})$.

Randomized Quicksort I

Theorem

The expected running time of randomized quicksort is at most $\mathbf{O}(\mathbf{n} \log \mathbf{n})$.
Assume for simplicity all elements distinct. Running time $=\boldsymbol{\Theta}$ (\# of comparisons)

Randomized Quicksort I

Theorem

The expected running time of randomized quicksort is at most $\mathbf{O}(\mathbf{n} \log \mathbf{n})$.
Assume for simplicity all elements distinct. Running time $=\boldsymbol{\Theta}$ (\# of comparisons)
Definitions:

- $\mathbf{X}=\#$ of comparisons (random variable)
- $\mathbf{e}_{\mathbf{i}}=\mathbf{i}$ 'th smallest element (for $\mathbf{i} \in\{\mathbf{1}, \ldots, \mathbf{n}\}$)
- \mathbf{X}_{ij} random variable for all $\mathbf{i}, \mathbf{j} \in\{\mathbf{1}, \ldots, \mathbf{n}\}$ with $\mathbf{i}<\mathbf{j}$:

$$
\mathbf{X}_{\mathbf{i j}}= \begin{cases}\mathbf{1} & \text { if algorithm compares } \mathbf{e}_{\mathbf{i}} \text { and } \mathbf{e}_{\mathbf{j}} \text { at any point in time } \\ \mathbf{0} & \text { otherwise }\end{cases}
$$

Randomized Quicksort II

Algorithm never compares the same two elements more than once $\Longrightarrow \mathbf{X}=\sum_{\mathrm{i}=1}^{\mathrm{n}-1} \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathbf{X}_{\mathrm{ij}}$

Randomized Quicksort II

Algorithm never compares the same two elements more than once $\Longrightarrow \mathbf{X}=\sum_{\mathrm{i}=1}^{\mathrm{n}-1} \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathbf{X}_{\mathrm{ij}}$

$$
E[X]=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]
$$

Randomized Quicksort II

Algorithm never compares the same two elements more than once $\Longrightarrow \mathbf{X}=\sum_{\mathrm{i}=1}^{\mathrm{n}-1} \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathbf{X}_{\mathrm{ij}}$

$$
E[X]=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]
$$

So just need to understand $\mathbf{E}\left[\mathbf{X}_{\mathrm{ij}}\right]$

Randomized Quicksort II

Algorithm never compares the same two elements more than once $\Longrightarrow \mathbf{X}=\sum_{\mathrm{i}=1}^{\mathrm{n}-1} \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathbf{X}_{\mathrm{ij}}$

$$
E[X]=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]
$$

So just need to understand $\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]$
Simple cases:

Randomized Quicksort II

Algorithm never compares the same two elements more than once $\Longrightarrow \mathbf{X}=\sum_{\mathrm{i}=1}^{\mathrm{n}-1} \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathbf{X}_{\mathrm{ij}}$

$$
E[X]=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]
$$

So just need to understand $\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]$
Simple cases:

- $\mathbf{j}=\mathbf{i}+\mathbf{1}$:

Randomized Quicksort II

Algorithm never compares the same two elements more than once $\Longrightarrow \mathbf{X}=\sum_{\mathrm{i}=1}^{\mathrm{n}-1} \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathbf{X}_{\mathrm{ij}}$

$$
E[X]=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]
$$

So just need to understand $\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]$
Simple cases:

- $\mathbf{j}=\mathbf{i}+\mathbf{1}: \mathbf{X}_{\mathrm{ij}}=\mathbf{1}$ no matter what, so $\mathbf{E}\left[\mathbf{X}_{\mathrm{ij}}\right]=\mathbf{1}$

Randomized Quicksort II

Algorithm never compares the same two elements more than once $\Longrightarrow \mathbf{X}=\sum_{\mathrm{i}=1}^{\mathrm{n}-1} \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathbf{X}_{\mathrm{ij}}$

$$
E[X]=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]
$$

So just need to understand $\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]$
Simple cases:

- $\mathbf{j}=\mathbf{i}+\mathbf{1}: \mathbf{X}_{\mathrm{ij}}=\mathbf{1}$ no matter what, so $\mathbf{E}\left[\mathbf{X}_{\mathrm{ij}}\right]=\mathbf{1}$
- $\mathrm{i}=\mathbf{1 , j} \mathbf{~ = ~} \mathrm{n}$:

Randomized Quicksort II

Algorithm never compares the same two elements more than once $\Longrightarrow \mathbf{X}=\sum_{\mathrm{i}=1}^{\mathrm{n}-\mathbf{1}} \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathbf{X}_{\mathrm{ij}}$

$$
E[X]=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]
$$

So just need to understand $\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]$
Simple cases:

- $\mathbf{j}=\mathbf{i}+\mathbf{1}: \mathbf{X}_{\mathrm{ij}}=\mathbf{1}$ no matter what, so $\mathbf{E}\left[\mathbf{X}_{\mathrm{ij}}\right]=\mathbf{1}$
- $\mathbf{i}=\mathbf{1}, \mathbf{j}=\mathbf{n}$: $\mathbf{e}_{\mathbf{1}}$ and $\mathbf{e}_{\mathbf{n}}$ compared if and only if first pivot chosen is $\mathbf{e}_{\mathbf{1}}$ or $\mathbf{e}_{\mathbf{n}}$
$\Longrightarrow E\left[X_{1 n}\right]=\frac{2}{n}=1 \cdot \frac{2}{n}+O \cdot\left(\left(-\frac{2}{4}\right)\right.$
$\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]$: General Case $(\mathbf{i}<\mathbf{j})$

If $\mathbf{p}=\mathbf{e}_{\mathbf{i}}$ or $\mathbf{p}=\mathbf{e}_{\mathbf{j}}$:
 pivot betere $9 \rightarrow 1 e_{k}, i<k<j$

$\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]:$ General Case $(\mathbf{i}<\mathbf{j})$

$$
\text { If } \mathbf{p}=\mathbf{e}_{\mathbf{i}} \text { or } \mathbf{p}=\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathbf{i j}}=\mathbf{1}
$$

$\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]$: General Case $(\mathbf{i}<\mathbf{j})$

$$
\text { If } \mathbf{p}=\mathbf{e}_{\mathbf{i}} \text { or } \mathbf{p}=\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathbf{i j}}=\mathbf{1}
$$

If $\mathbf{e}_{\mathbf{i}}<\mathbf{p}<\mathbf{e}_{\mathbf{j}}$:

$\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]:$ General Case $(\mathbf{i}<\mathbf{j})$

$$
\begin{aligned}
& \text { If } \mathbf{p}=\mathbf{e}_{\mathbf{i}} \text { or } \mathbf{p}=\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathrm{ij}}=\mathbf{1} \\
& \text { If } \mathbf{e}_{\mathbf{i}}<\mathbf{p}<\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathrm{ij}}=\mathbf{0}
\end{aligned}
$$

$\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]$: General Case $(\mathbf{i}<\mathbf{j})$

$$
\begin{aligned}
& \text { If } \mathbf{p}=\mathbf{e}_{\mathbf{i}} \text { or } \mathbf{p}=\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathbf{i j}}=\mathbf{1} \\
& \text { If } \mathbf{e}_{\mathbf{i}}<\mathbf{p}<\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathbf{i j}}=\mathbf{0} \\
& \text { If } \mathbf{p}<\mathbf{e}_{\mathbf{i}} \text { or } \mathbf{p}>\mathbf{e}_{\mathbf{j}}:
\end{aligned}
$$

$\mathbf{E}\left[\mathbf{X}_{\mathrm{ij}}\right]:$ General Case $(\mathbf{i}<\mathbf{j})$

$$
\begin{aligned}
& \text { If } \mathbf{p}=\mathbf{e}_{\mathbf{i}} \text { or } \mathbf{p}=\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathbf{i j}}=\mathbf{1} \\
& \text { If } \mathbf{e}_{\mathbf{i}}<\mathbf{p}<\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathbf{i j}}=\mathbf{0} \\
& \text { If } \mathbf{p}<\mathbf{e}_{\mathbf{i}} \text { or } \mathbf{p}>\mathbf{e}_{\mathbf{j}}: \text { ? Both } \mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}} \text { in same recursive call. }
\end{aligned}
$$

$\mathbf{E}\left[\mathbf{X}_{\mathrm{ij}}\right]:$ General Case $(\mathbf{i}<\mathbf{j})$

$$
\begin{aligned}
& \text { If } \mathbf{p}=\mathbf{e}_{\mathbf{i}} \text { or } \mathbf{p}=\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathbf{i j}}=\mathbf{1} \\
& \text { If } \mathbf{e}_{\mathbf{i}}<\mathbf{p}<\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathbf{i j}}=\mathbf{0} \\
& \text { If } \mathbf{p}<\mathbf{e}_{\mathbf{i}} \text { or } \mathbf{p}>\mathbf{e}_{\mathbf{j}}: \text { ? Both } \mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}} \text { in same recursive call. }
\end{aligned}
$$

- Condition on $\mathbf{e}_{\mathbf{i}} \leq \mathbf{p} \leq \mathbf{e}_{\mathbf{j}}$:

$\mathbf{E}\left[\mathbf{X}_{\mathrm{ij}}\right]:$ General Case $(\mathbf{i}<\mathbf{j})$

$$
\text { If } \mathbf{p}=\mathbf{e}_{\mathbf{i}} \text { or } \mathbf{p}=\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathbf{i j}}=\mathbf{1}
$$

If $\mathbf{e}_{\mathbf{i}}<\mathbf{p}<\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathbf{i j}}=\mathbf{0}$
If $\mathbf{p}<\mathbf{e}_{\mathbf{i}}$ or $\mathbf{p}>\mathbf{e}_{\mathbf{j}}$: ? Both $\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}$ in same recursive call.

- Condition on $\mathbf{e}_{\mathbf{i}} \leq \mathbf{p} \leq \mathbf{e}_{\mathbf{j}}: \mathbf{E}\left[\mathbf{X}_{\mathrm{ij}} \mid \mathbf{e}_{\mathbf{i}} \leq \mathbf{p} \leq \mathbf{e}_{\mathbf{j}}\right]=\frac{\mathbf{2}}{\mathbf{j}-\mathbf{i}+1}$

$\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]:$ General Case $(\mathbf{i}<\mathbf{j})$

If $\mathbf{p}=\mathbf{e}_{\mathbf{i}}$ or $\mathbf{p}=\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathbf{i j}}=\mathbf{1}$
If $\mathbf{e}_{\mathbf{i}}<\mathbf{p}<\mathbf{e}_{\mathrm{j}}: \mathbf{X}_{\mathrm{ij}}=\mathbf{0}$
If $\mathbf{p}<\mathbf{e}_{\mathbf{i}}$ or $\mathbf{p}>\mathbf{e}_{\mathbf{j}}$: ? Both $\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}$ in same recursive call.

- Condition on $\mathbf{e}_{\mathbf{i}} \leq \mathbf{p} \leq \mathbf{e}_{\mathbf{j}}: \mathbf{E}\left[\mathbf{X}_{\mathbf{i j}} \mid \mathbf{e}_{\mathbf{i}} \leq \mathbf{p} \leq \mathbf{e}_{\mathbf{j}}\right]=\frac{2}{\mathbf{j}-\mathbf{i}+1}$
- Condition on $\mathbf{p} \notin\left[\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}\right]$:

$\mathrm{E}\left[\mathrm{X}_{\mathrm{ij}}\right]$: General Case $(\mathbf{i}<\mathbf{j})$

If $\mathbf{p}=\mathbf{e}_{\mathbf{i}}$ or $\mathbf{p}=\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathbf{i j}}=\mathbf{1}$
If $\mathbf{e}_{\mathbf{i}}<\mathbf{p}<\mathbf{e}_{\mathrm{j}}: \mathbf{X}_{\mathrm{ij}}=\mathbf{0}$
If $\mathbf{p}<\mathbf{e}_{\mathbf{i}}$ or $\mathbf{p}>\mathbf{e}_{\mathbf{j}}$: ? Both $\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}$ in same recursive call.

- Condition on $\mathbf{e}_{\mathbf{i}} \leq \mathbf{p} \leq \mathbf{e}_{\mathbf{j}}: \mathbf{E}\left[\mathbf{X}_{\mathbf{i j}} \mid \mathbf{e}_{\mathbf{i}} \leq \mathbf{p} \leq \mathbf{e}_{\mathbf{j}}\right]=\frac{2}{\mathbf{j}-\mathbf{i}+1}$
-Condition on $\mathbf{p} \notin\left[\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}\right]$: still undetermined

$\mathrm{E}\left[\mathrm{X}_{\mathrm{ij}}\right]$: General Case $(\mathbf{i}<\mathbf{j})$

If $\mathbf{p}=\mathbf{e}_{\mathbf{i}}$ or $\mathbf{p}=\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathbf{i j}}=\mathbf{1}$
If $\mathbf{e}_{\mathbf{i}}<\mathbf{p}<\mathbf{e}_{\mathbf{j}}: \mathbf{X}_{\mathrm{ij}}=\mathbf{0}$
If $\mathbf{p}<\mathbf{e}_{\mathbf{i}}$ or $\mathbf{p}>\mathbf{e}_{\mathbf{j}}$: ? Both $\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}$ in same recursive call.

- Condition on $\mathbf{e}_{\mathbf{i}} \leq \mathbf{p} \leq \mathbf{e}_{\mathbf{j}}: \mathbf{E}\left[\mathbf{X}_{\mathrm{ij}} \mid \mathbf{e}_{\mathbf{i}} \leq \mathbf{p} \leq \mathbf{e}_{\mathbf{j}}\right]=\frac{2}{\mathbf{j}-\mathbf{i}+1}$
- Condition on $\mathbf{p} \notin\left[\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}\right]$: still undetermined

So $\mathbf{X}_{\mathbf{i j}}$ not determined until $\mathbf{e}_{\mathbf{i}} \leq \mathbf{p} \leq \mathbf{e}_{\mathbf{j}}$, and when it is determined has $\mathbf{E}\left[\mathbf{X}_{\mathbf{i j}}\right]=\frac{\mathbf{2}}{\mathbf{j} \mathbf{i}+\mathbf{1}}$
$\Longrightarrow E\left[X_{i j}\right]=\frac{2}{j-i+1}$

$\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]$: General Case (formally)

Let $\mathbf{Y}_{\mathbf{k}}$ be event that the \mathbf{k} 'th pivot is in $\left[\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}\right]$ and all previous pivots not in $\left[\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}\right]$

$\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]$: General Case (formally)

Let $\mathbf{Y}_{\mathbf{k}}$ be event that the \mathbf{k} 'th pivot is in $\left[\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}\right]$ and all previous pivots not in $\left[\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}\right]$ \Longrightarrow by definition, the $\mathbf{Y}_{\mathbf{k}}$ events are disjoint and partition sample space

$\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]$: General Case (formally)

Let $\mathbf{Y}_{\mathbf{k}}$ be event that the \mathbf{k} 'th pivot is in $\left[\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}\right]$ and all previous pivots not in $\left[\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}\right]$ \Longrightarrow by definition, the $\mathbf{Y}_{\mathbf{k}}$ events are disjoint and partition sample space

Showed that $\mathbf{E}\left[\mathbf{X}_{\mathbf{i j}} \mid \mathbf{Y}_{\mathbf{k}}\right]=\frac{\mathbf{2}}{\mathbf{j}-\mathbf{i}+\mathbf{1}}$ for all \mathbf{k}.

$\mathrm{E}\left[\mathbf{X}_{\mathrm{ij}}\right]$: General Case (formally)

Let $\mathbf{Y}_{\mathbf{k}}$ be event that the \mathbf{k} 'th pivot is in $\left[\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}\right]$ and all previous pivots not in $\left[\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}\right]$ \Longrightarrow by definition, the $\mathbf{Y}_{\mathbf{k}}$ events are disjoint and partition sample space

Showed that $\mathbf{E}\left[\mathbf{X}_{\mathbf{i j}} \mid \mathbf{Y}_{\mathbf{k}}\right]=\frac{\mathbf{2}}{\mathbf{j - i + 1}}$ for all \mathbf{k}.

$$
\begin{aligned}
E\left[X_{i j}\right] & =\sum_{k=1}^{n} E\left[X_{i j} \mid Y_{k}\right] \operatorname{Pr}\left[Y_{k}\right] \\
& =\frac{2}{j-i+1} \sum_{k=1}^{n} \operatorname{Pr}\left[Y_{k}\right] \\
& =\frac{2}{j-i+1}
\end{aligned}
$$

Randomized Quicksort: Final Analysis

Expected running time of randomized quicksort:

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =2 \sum_{i=1}^{n-1}\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-i+1}\right) \\
& \leq 2 \sum_{i=1}^{n-1} H_{n} \\
& \leq 2 n H_{n} \\
& \leq O(n \log n) \quad t f_{m}=\theta(\log a)
\end{aligned}
$$

