
601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz
Topic: Probabilistic Analysis, Randomized Quicksort Date: 9/7/21

3.1 Introduction

As we discussed the first lecture, one issue with trying to do an “average-case” analysis of an
algorithm is figuring out what the average case actually is. Different applications might result in
vastly different empirical input distributions, and when we design basic, low-level algorithms and
data structures we want our guarantees to hold in every possible application.

On the other hand, as we’ll see today, sometimes it turns out that adding randomness can help,
even in the worst-case! This is the paradigm of randomized algorithms: given a (worst-case) input,
we use randomness in our algorithm and provide guarantees either in expectation or with high-
probability. Note how different this is from trying to do an average-case analysis: instead of using
randomness to model the input, we still allow arbitrary inputs but use randomness internally in
our algorithm.

The first approach, of modeling the input using a distribution, is commonly seen in machine learn-
ing, computational biology, and other applications. There is much interesting work there, but if we
model the input as a distribution we are fundamentally tied to that distribution, and lose general-
ity. Adding randomness can be counterintuitive to some people, but allows us to design algorithms
that do not lose generality but instead have guarantees that hold (for any input) in expectation or
with high probability.

As a side note, there is a class offered many fall semesters by Vladimir Braverman on randomized
algorithms. I highly recommend this class. This lecture (and possibly others) is my attempt to add
some randomized algorithms to this class, since in the past 20 years randomized algorithms have
moved from a specialized topic to the mainstream.

3.2 Basics of Quicksort

So today we’re going to discuss a particularly nice use of randomization: randomized quicksort.
First, recall the Quicksort algorithm. For now, let’s assume that we are given an array of length
n in which all elements are distinct – it’s easy to see that allowing equal elements only helps us.
Given an array of length n, quicksort does the following:

1. If n is 0 or 1, return.

2. Pick some element p as the pivot.

3. Compare each element of the array to p, making an array consisting of L (the elements less
than p), followed by p, and then followed by G (the elements greater than p). In other words,
p is now at its final location and all elements are on the correct side of p.

4. Recursively sort L and G.

1



Note that this algorithm is not totally well-specified, since we have not defined how to pick the
pivot p. The traditional thing to do is come up with some arbitrary but deterministic choice. For
example, always choosing the first (not necessarily the smallest) element as the pivot. Next lecture
we will see a better way of deterministically choosing a pivot, but the original (and probably most
common) version of quicksort just picks the first element.

What is the running time of this basic version of quicksort? Everyone should know that the worst-
case running time is Θ(n2), but let’s prove it again.

For an upper bound, note that by definition if we pick a pivot p in step 2 then after step 3 p is
in the right place, and thus step 2 can be executed at most n times. Each time we execute step 2
we also have to execute step 3, but this takes at most O(n) time. Thus the total running time is
O(n2).

For a lower bound, suppose that the array is already sorted. Then when we choose p to be the first
element, all other elements are compared to it and put in G. The pivot then stays where it is, and
we recurse on all remaining elements. So the running time in this case is T (n) = T (n − 1) + cn,
which we now know is Ω(n2).

Thus the worst-case running time of basic quicksort is Θ(n2).

Randomized quicksort is the simple variation that picks a pivot p uniformly at random from the
elements. We will show that in expectation the running time of randomized quicksort is O(n log n).
Moreover, since the randomness is from the algorithm itself rather than over the distribution of
the inputs, this bound holds for every possible input. So on any fixed input the running time is
a random variable, but we will show that this random variable always has expectation at most
O(n log n) (and clearly has maximum at most O(n2)). This is better than an average-case bound
because we don’t have to assume anything about the input – it could be that in some application
the arrays tend to be already sorted or in some other order which makes deterministic quicksort
slow, but since our bound is worst-case (although in expectation over the randomness used by the
algorithm) it still holds.

Before we prove this, though, we will need to cover some basic probability.

3.3 Probability Basics

I’m not going to get too formal, but I highly, highly recommend learning basic probability theory
– either taking a class or teaching yourself. It’s good for you, and also super useful. What follows
is semi-formal, and only what we really need for this kind of basic analysis. You should look at
CLRS Chapter 5 for some more details.

The example we will use is rolling a pair of dice and looking at the sum. The sample space
(traditionally denoted by Ω) is the set of possible outcomes, i.e., the 36 possible pairs of rolls (or
more formally, Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}). An event is a subset of the sample space.
So you could talk about “the event that the first die is 3” (the subset of Ω in which the first
coordinate is 3) or “the event that the dice add up to 7 or 11” (the subset {(x, y) ∈ Ω : (x + y =
7)∨ (x+y = 11)}), etc. A random variable is a function from the sample space to numbers (real or
integers), e.g. X : Ω→ R. For example we could have a random variable X1 equal to the first die,

2



and a random variable X2 equal to the second die. Then we could also define a random variable
X = X1 +X2 which is the sum of the dice.

To be truly formal when defining probability we would have to specify a measure over the sample
space. We’re going to be less formal, since I don’t expect anyone here to know much measure
theory and we’re mostly going to care about discrete probability spaces (which are simpler than
continuous ones). Informally, for each e ∈ Ω we let Pr[e] denote the probability of e. So for dice, the
probability of each element of the sample space is exactly 1/36. This lets us define the probability
of an event as the sum of the probabilities of the elements of the sample space that make up the
event, i.e. Pr[A] =

∑
e∈A Pr[e].

We can also define conditional probability in the obvious way. If A and B are events, then

Pr[B|A] =

∑
e∈A∩B Pr[e]∑
e∈A Pr[e]

Random variables are incredibly important, and are in some sense the “right” way to think about
much of probability theory. For us, note that the running time of randomized quicksort is a
random variable: the sample space is the order of the pivots we pick, and the running time is some
function of that (with values between 1 and Θ(n2)). One of the most important properties of a
random variable is its expectation – this is what we will analyze for the running time of randomized
quicksort, for example.

Definition 3.3.1 Let X be a random variable over sample space Ω. Then the expected value of x
is

E[X] =
∑
e∈Ω

Pr[e]X(e). (3.3.1)

So the expectation of a random variable is its average value across the sample space, but weighted
according to the probability of each point in the sample space. It’s common to rearrange this by
grouping together terms on which the random variable has the same value, giving us

E[X] =
∑
y∈R

y ·Pr[X = y] (3.3.2)

The conditional expectation of X is exactly what it sounds like: the expected value of X conditioned
on event A.

E[X|A] =
1

Pr[A]

∑
e∈A

Pr[e]X(e)

One amazing feature of expectations, which we will use over and over again, is linearity of expec-
tations: for any two random variables X and Y , E[X + Y ] = E[X] + E[Y ]. The amazing thing
about this is that it is true for all random variables no matter how weirdly they are correlated. So
we can often break up very complicated random variables into sums of simpler random variables,
and then it suffices to just determine the expectation of each of the simpler random variables.

Consider our dice example. What is the expected sum of the dice? Call this random variable X.
We could analyze it using equation (3.3.1), but that would require a 36-term sum. Or we could

3



analyze it using equation (3.3.2), but that would require figuring out the probability that the sum
equaled 2, the probability in equaled 3, etc. Neither of these are impossible (or even particularly
difficult), but they require some combinatorics.

On the other hand, we can define two other random variables: let X1 be the outcome of the first
die, and let X2 be the outcome of the second. Then X = X1 + X2 (or more formally, X(e) =
X1(e) +X2(e) for all e ∈ Ω), so by linearity of expectations E[X] = E[X1 +X2] = E[X1] + E[X2].
But now by definition we have that

E[X1] = E[X2] =
6∑

y=1

1

6
y =

21

6
= 3.5,

and thus E[X] = 7.

Theorem 3.3.2 (Linearity of Expectations) For any two random variables X and Y , and any
constants α and β, E[αX + βY ] = αE[X] + βE[Y ].

Proof: We will simply use equation (3.3.1):

E[αX + βY ] =
∑
e∈Ω

Pr[x](αX(e) + βY (e)) = α
∑
e∈Ω

Pr[e]X(e) + β
∑
e∈Ω

Pr[e]Y (e)

= αE[X] + βE[Y ],

as claimed.

3.4 Randomized Quicksort

There are a few ways to analyze Randomized Quicksort – I think that the following analysis is
really slick, and demonstrates the power of linearity of expectations. Recall that we’re assuming all
elements are distinct, and note that the running time is essentially the total number of comparisons.

Theorem 3.4.1 The expected number of comparisons in Randomized Quicksort is at most O(n log n).

Proof: Let X be the total number of comparisons made (so X is a random variable). Let ei be
the ith smallest value in the given array, for i ∈ {1, . . . , n}. We define another random variable Xij

for each i, j ∈ {1, . . . , n} with i < j. We set Xij = 1 if the algorithm at some point compares ei
and ej , and otherwise we set Xij = 0.

It is easy to see that Randomized Quicksort will never compare the same two elements more than
once, since if we compare ei and ej then we must have picked either ei or ej as the pivot, so after
that iteration whichever one is the pivot will not be compared to any other elements. This means
that X =

∑n−1
i=1

∑n
j=i+1Xij , so by linearity of expectations we know that

E[X] =

n−1∑
i=1

n∑
j=i+1

E[Xij ]. (3.4.3)

So now we just need to understand E[Xij ]. Let’s start by considering two extremes. First, suppose
that j = i + 1. Then Xij = 1, since we will inevitably compare ei and ei+1 (they will stay in the

4



same subarray throughout the recursion until eventually one of them is chosen as the pivot, when
they will be compared).

On the other hand, suppose that i = 1 and j = n. Then when we choose the first pivot, if we
choose neither e1 nor en then e1 ∈ L and en ∈ G, so the recursive calls separate them and we will
never compare them. So the probability that we compare e1 and en is 2/n, and thus E[X1n] = 2/n.

Now consider general i and j. Let ep be the pivot that we pick. If p = i or p = j then we will
compare ei and ej . If i < p < j then ei ∈ L while ej ∈ G, so we will not compare them.

The more subtle cases are if p < i or p > j. Suppose p < i. Then ei and ej are both in G, so are in
the same subarray in the recursive call. So they may be compared, but they may not. Similarly, is
p > j then ei and ej are both in L, so may be compared later on but may not.

But let’s look more closely. What if we condition on i ≤ p ≤ j? Then the probability that Xij = 1
is exactly 2

j−i+1 . This is independent of n, and since if we pick p < i or p > j we simply retry (albeit
with a smaller value of n), this means that eventually i ≤ p ≤ j and so Xij = 1 with probability

2
j−i+1 . Thus E[Xij ] = 2

j−i+1 .

To see this more formally, let Yk be the event that the k’th pivot picked is between ei and ej
(inclusive) and all of the previous pivots picked are either less than ei or greater than ej . Note
that Yk occurs for exactly one value of k, so the events are disjoint and partition the sample space.
Then we argued above that E[Xij |Yk] = 2

j−i+1 . So we get that

E[Xij ] =

n∑
k=1

E[Xij |Yk]Pr[Yk] =
2

j − i+ 1

n∑
k=1

Pr[Yk] =
2

j − i+ 1

as claimed.

Another way of saying this, which is possibly simpler, is to convince yourself of the following: ei and
ej are compared if and only if either ei or ej is chosen as the pivot before any ek with i < k < j.
This isn’t too hard to see. For the “if” direction: If ei or ej is chosen as a pivot before any such
ek, then clearly ei and ej are still in the same subarray when one of them becomes the pivot, and
hence they will be compared. On the other hand, for the “only if” direction, suppose that ei and
ej are compared. Then they must be in the same subarray when one of them is chosen as the
pivot, which means that no ek with i < k < j has been chosen as the pivot yet. Now that we have
this iff condition, it immediately implies that E[Xij ] = 2

j−i+1 , since the ordering of pivots is chosen
uniformly at random.

Putting this together with equation (3.4.3), we get that

E[X] =

n−1∑
i=1

n∑
j=i+1

2

j − i+ 1
= 2

n−1∑
i=1

(
1

2
+

1

3
+ · · ·+ 1

n− i+ 1

)
≤ 2nHn = O(n log n),

where Hn = 1 + 1
2 + 1

3 + 1
4 + · · ·+ 1

n is the nth harmonic number, which is O(log n) (you can prove
this by considering the integral of 1/x).

A possibly easier way to see the bound on E[Xij ] is through a “dart game”1. When we pick a pivot
p, we are essentially throwing a dart uniformly at random at the (sorted) array. If p < i then since

1I first saw this analysis from Avrim Blum in the undergraduate algorithms class at CMU.

5



we recurse on G and ei and ej are both in G, we simply throw another dart but now uniformly
distributed over G. Similarly, if p > j we throw another dart but uniformly distributed over L. We
keep doing this until eventually a dart lands in {i, i+ 1, . . . , j}, when we stop. If this final dart hits
i or j then Xij = 1, otherwise Xij = 0.

3.4.1 Another analysis

There’s another analysis of randomized quicksort that is much less slick, but is a little more “direct”.
It goes via a recurrence relation. Let T (n) denote the expected number of comparisons on an input
of size n. When we pick a pivot ep, we do n− 1 comparisons and then call quicksort recursively on
pieces of size p− 1 and n− p. Since each p is equally likely, by linearity of expectations we get that

T (n) = (n− 1) +
n∑

i=1

Pr[ei is pivot]E[# comparisons | ei is pivot]

= (n− 1) +
1

n

n∑
i=1

(T (i− 1) + T (n− i)) (3.4.4)

Clearly T (0) = 0 (since there are no comparisons made for an array of size 1), so we can rewrite
equation (3.4.4) as

T (n) = (n− 1) +
2

n

n−1∑
i=1

T (i)

To solve this recurrence, we will use the “guess and check” method. Let’s guess that T (n) ≤ cn lnn
for some constant c. This is clearly true in the base case of T (1). Now to verify it inductively, we
do the following:

T (n) = (n− 1) +
2

n

n−1∑
i=1

T (i)

≤ (n− 1) +
2

n

n−1∑
i=1

ci ln i

≤ (n− 1) +
2c

n

∫ n

1
(x lnx)dx

= (n− 1) +
2c

n

(
1

2
x2 lnx− 1

4
x2

)n

x=1

= (n− 1) +
2c

n

(
1

2
n2 lnn− 1

4
n2 +

1

4

)
≤ n− 1 + cn lnn− c

2
n+

c

2n
≤ cn lnn,

as long as c ≥ 2.

6


	Introduction
	Basics of Quicksort
	Probability Basics
	Randomized Quicksort
	Another analysis


