Lecture 25: Algorithmic Learning Theory

Michael Dinitz

November 30, 2021
601.433/633 Introduction to Algorithms

Introduction

Machine Learning from the point of view of theoretical computer science

- Proofs about performance
- Minimize assumptions
- Not going to talk about useful in practice, etc.

Today:

- Concept Learning
- Online Learning

Concept Learning

Concept Learning Intro

Trying to learn "Yes/No" labels

- Given a photo, does it have a dog in it?
- Given an email, is it spam?

Given some labeled data. Create a good prediction rule (hypothesis) for future data.

Concept Learning Intro

Trying to learn "Yes/No" labels

- Given a photo, does it have a dog in it?
- Given an email, is it spam?

Given some labeled data. Create a good prediction rule (hypothesis) for future data.

Example: spam

- Want to create a rule (hypothesis) that will tell us whether an email is spam
- Given some example emails with labels (Yes / No, Spam / Not Spam)

Example

sales	size	Mr.	bad spelling	known-sender	spam?
Y	N	Y	Y	N	Y
N	N	N	Y	Y	N
N	Y	N	N	N	Y
Y	N	N	N	Y	N
N	N	Y	N	Y	N
Y	N	N	Y	N	Y
N	N	Y	N	N	N
N	Y	N	Y	N	Y

Example

sales	size	Mr.	bad spelling	known-sender	spam?
Y	N	Y	Y	N	Y
N	N	N	Y	Y	N
N	Y	N	N	N	Y
Y	N	N	N	Y	N
N	N	Y	N	Y	N
Y	N	N	Y	N	Y
N	N	Y	N	N	N
N	Y	N	Y	N	Y

Reasonable hypothesis: spam if not known-sender AND (size OR sales)

Questions

Question 1: Can we efficiently find working hypothesis for given labeled data?

- Mainly about efficiency; like many of the problems we've talked about
- Depends on what kinds of hypotheses we're looking for (structure and quality)

Question 2: Can we be confident that our hypothesis will do well in the future?

- Not primarily about efficiency; about quality
- Requires knowing something about the future!
- Core of machine learning: use the past to make predictions about the future

Formalization: Beginning

Given sample set $\mathbf{S}=\left\{\left(\mathbf{x}^{\mathbf{1}}, \mathbf{y}^{\mathbf{1}}\right), \ldots\left(\mathbf{x}^{\mathbf{m}}, \mathbf{y}^{\mathbf{m}}\right)\right\}$. Size \mathbf{m} called the sample complexity

- Each $\mathbf{x}^{\mathbf{i}}$ drawn from distribution \mathbf{D} (not necessarily known)
- $y^{\mathbf{i}}=\mathbf{f}\left(x^{\mathbf{i}}\right)$ for some unknown \mathbf{f}

Our goal: compute hypothesis \mathbf{h} with low error on \mathbf{D} :

$$
\operatorname{err}(h):=\operatorname{Pr}_{x \sim D}[h(x) \neq f(x)] \leq \epsilon
$$

Formalization: Beginning

Given sample set $\mathbf{S}=\left\{\left(\mathbf{x}^{\mathbf{1}}, \mathbf{y}^{\mathbf{1}}\right), \ldots\left(\mathbf{x}^{\mathbf{m}}, \mathbf{y}^{\mathbf{m}}\right)\right\}$. Size \mathbf{m} called the sample complexity

- Each $\mathbf{x}^{\mathbf{i}}$ drawn from distribution \mathbf{D} (not necessarily known)
- $y^{i}=\mathbf{f}\left(x^{i}\right)$ for some unknown \mathbf{f}

Our goal: compute hypothesis \mathbf{h} with low error on \mathbf{D} :

$$
\operatorname{err}(h):=\operatorname{Pr}_{x \sim D}[h(x) \neq f(x)] \leq \epsilon
$$

Generally not possible unless \mathbf{m} extremely large. Proof: random function \mathbf{f}

- Knowing $\mathbf{f}\left(\mathbf{x}^{\mathbf{i}}\right)$ on sample points doesn't tell us anything about $\mathbf{f}(\mathbf{x})$ on points not sampled

Formalization: Beginning

Given sample set $\mathbf{S}=\left\{\left(\mathbf{x}^{\mathbf{1}}, \mathbf{y}^{\mathbf{1}}\right), \ldots\left(\mathbf{x}^{\mathbf{m}}, \mathbf{y}^{\mathbf{m}}\right)\right\}$. Size \mathbf{m} called the sample complexity

- Each $\mathbf{x}^{\mathbf{i}}$ drawn from distribution \mathbf{D} (not necessarily known)
- $y^{i}=\mathbf{f}\left(x^{i}\right)$ for some unknown \mathbf{f}

Our goal: compute hypothesis \mathbf{h} with low error on \mathbf{D} :

$$
\operatorname{err}(h):=\operatorname{Pr}_{x \sim D}[h(x) \neq f(x)] \leq \epsilon
$$

Generally not possible unless \mathbf{m} extremely large. Proof: random function \mathbf{f}

- Knowing $\mathbf{f}\left(\mathbf{x}^{\mathbf{i}}\right)$ on sample points doesn't tell us anything about $\mathbf{f}(\mathbf{x})$ on points not sampled

Need to restrict \mathbf{f}.

Example: Decision Lists

Data point: $\mathrm{x} \in\{\mathbf{0}, \mathbf{1}\}^{\mathbf{n}}$

Decision List:

- If $\mathbf{x}_{\mathbf{1}}=\mathbf{1}$ return $\mathbf{0}$
- Else if $\mathbf{x}_{\mathbf{4}}=\mathbf{1}$ return $\mathbf{1}$
- Else if $\mathbf{x}_{2}=\mathbf{0}$ return $\mathbf{1}$
- Else return 0

Key features:

- Doesn't branch
- Each "if" looks at one coordinate and either returns or continues down list

Example: Decision Lists

Data point: $\mathbf{x} \in\{\mathbf{0}, \mathbf{1}\}^{\mathbf{n}}$
Decision List:

- If $\mathbf{x}_{\mathbf{1}}=\mathbf{1}$ return $\mathbf{0}$
- Else if $\mathbf{x}_{4}=\mathbf{1}$ return $\mathbf{1}$
- Else if $\mathbf{x}_{2}=\mathbf{0}$ return $\mathbf{1}$
- Else return 0

Key features:

- Doesn't branch
- Each "if" looks at one coordinate and either returns or continues down list

Can we "learn" decision lists? Restrict \mathbf{f} to be a DL.

Example: Decision Lists

Data point: $\mathbf{x} \in\{\mathbf{0}, \mathbf{1}\}^{\mathbf{n}}$
Decision List:

- If $\mathbf{x}_{\mathbf{1}}=\mathbf{1}$ return $\mathbf{0}$
- Else if $\mathbf{x}_{4}=\mathbf{1}$ return $\mathbf{1}$
- Else if $\mathbf{x}_{2}=\mathbf{0}$ return $\mathbf{1}$
- Else return 0

Key features:

- Doesn't branch
- Each "if" looks at one coordinate and either returns or continues down list

Can we "learn" decision lists? Restrict \mathbf{f} to be a DL.
Question 1: Given sample data points labeled by some decision list, can we find a decision list that correctly labels the sample?

Question 2: Can we give an error bound with respect to distribution \mathbf{D} that samples come from?

Formalization

Definition

Let \mathbf{X} be a collection of instances / data points (e.g., $\mathbf{X}=\{\mathbf{0}, \mathbf{1}\}^{\mathbf{n}}$). A concept is a boolean function $\mathbf{h}: \mathbf{X} \rightarrow\{\mathbf{0}, \mathbf{1}\}$ (e.g., a decision list), and a concept class \mathcal{H} is a collection of concepts (e.g., all DLs).

Formalization

Definition

Let \mathbf{X} be a collection of instances / data points (e.g., $\mathbf{X}=\{\mathbf{0}, \mathbf{1}\}^{\mathbf{n}}$). A concept is a boolean function $\mathbf{h}: \mathbf{X} \rightarrow\{\mathbf{0}, \mathbf{1}\}$ (e.g., a decision list), and a concept class \mathcal{H} is a collection of concepts (e.g., all DLs).

Let $\mathbf{m}: \mathbb{R}^{2} \rightarrow \mathbb{N}$.

Definition

A concept class \mathcal{H} is PAC-learnable with sample complexity $\mathbf{m}(\epsilon, \boldsymbol{\delta})$ if there is an algorithm \mathbf{A} such that for all $\mathbf{f} \in \mathcal{H}$:

1. Input of \mathbf{A} is $\mathbf{0}<\epsilon<\mathbf{1 / 2}$ and $\mathbf{0}<\delta<\mathbf{1 / 2}$ and set $\mathbf{S}=\left\{\left(\mathbf{x}^{\mathbf{1}}, \mathbf{y}^{\mathbf{1}}\right), \ldots,\left(\mathbf{x}^{\mathbf{m}(\epsilon, \delta)}, \mathbf{y}^{\mathbf{m}(\epsilon, \delta)}\right)\right\}$ where $\mathbf{y}^{\mathbf{i}}=\mathbf{f}\left(\mathbf{x}^{\mathbf{i}}\right)$ for all \mathbf{i}
2. A outputs a concept \mathbf{h} that is "probably approximately correct":

Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

```
S'=S,L=\varnothing
while(\mp@subsup{\mathbf{S}}{}{\prime}\not=\varnothing) {
    Find if-then rule }\boldsymbol{\alpha}\mathrm{ consistent with (')
    Add }\boldsymbol{\alpha}\mathrm{ to the bottom of L
    Remove data labeled by }\boldsymbol{\alpha}\mathrm{ from S'
}
Add "else return 0" to bottom of L
Return L
```


Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

```
S'= S,L=\varnothing
while(\mp@subsup{\mathbf{S}}{}{\prime}\not=\varnothing) {
    Find if-then rule }\boldsymbol{\alpha}\mathrm{ consistent with (')
    Add }\boldsymbol{\alpha}\mathrm{ to the bottom of L
    Remove data labeled by }\boldsymbol{\alpha}\mathrm{ from S'
}
Add "else return 0" to bottom of L
Return L
```

Correctness: Why can we always find such an α ?

Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

```
S'= S,L=\varnothing
while(\mp@subsup{\mathbf{S}}{}{\prime}\not=\varnothing) {
    Find if-then rule }\boldsymbol{\alpha}\mathrm{ consistent with }\mp@subsup{\mathbf{S}}{}{\prime}\mathrm{ that labels at least 1 element of (''
    Add }\boldsymbol{\alpha}\mathrm{ to the bottom of L
    Remove data labeled by }\boldsymbol{\alpha}\mathrm{ from S'
}
Add "else return 0" to bottom of L
Return L
```

Correctness: Why can we always find such an $\boldsymbol{\alpha}$?

- By assumption, there is a DL \mathbf{f} that labels \mathbf{S} and so \mathbf{S}^{\prime}
- Highest rule in \mathbf{f} not added to \mathbf{L} will work!

Running Time of Algorithm

Number of iterations: $\leq|\mathbf{S}|=\mathbf{m}(\epsilon, \boldsymbol{\delta})$

Running Time of Algorithm

Number of iterations: $\leq|\mathbf{S}|=\mathbf{m}(\boldsymbol{\epsilon}, \boldsymbol{\delta})$
Time per iteration: check every possible rule, see if consistent with \mathbf{S}^{\prime} (and labels at least one point)

- Number of possible rules ("if $\mathbf{x}_{\mathbf{i}}=\mathbf{0 / 1}$, return $\mathbf{0 / 1}$ "): $\mathbf{4 n}$

Running Time of Algorithm

Number of iterations: $\leq|\mathbf{S}|=\mathbf{m}(\boldsymbol{\epsilon}, \boldsymbol{\delta})$
Time per iteration: check every possible rule, see if consistent with \mathbf{S}^{\prime} (and labels at least one point)

- Number of possible rules ("if $\mathbf{x}_{\mathbf{i}}=\mathbf{0 / 1}$, return $\mathbf{0 / 1}$ "): $\mathbf{4 n}$

Total time at most $\mathbf{O}(\mathbf{n} \cdot \mathbf{m}(\boldsymbol{\epsilon}, \boldsymbol{\delta}))$: pretty good if sample complexity small.

Running Time of Algorithm

Number of iterations: $\leq|\mathbf{S}|=\mathbf{m}(\epsilon, \boldsymbol{\delta})$
Time per iteration: check every possible rule, see if consistent with \mathbf{S}^{\prime} (and labels at least one point)

- Number of possible rules ("if $\mathbf{x}_{\mathbf{i}}=\mathbf{0 / 1}$, return $\mathbf{0 / 1}$ "): $\mathbf{4 n}$

Total time at most $\mathbf{O}(\mathbf{n} \cdot \mathbf{m}(\boldsymbol{\epsilon}, \boldsymbol{\delta}))$: pretty good if sample complexity small.
Sample Complexity: We are worried about outputting DL \mathbf{h} with $\operatorname{err}(\mathbf{h})>\boldsymbol{\epsilon}$: want this to happen with probability at most $\boldsymbol{\delta}$.

- But the DL We output labels S correctly!
- Want to show: since \mathbf{h} labels \mathbf{S} correctly, with probability at least $\mathbf{1}-\boldsymbol{\delta}$ has error at most $\boldsymbol{\epsilon}$
- In other words: prove that with probability at least $\mathbf{1}-\boldsymbol{\delta}$, every $\mathrm{DL} \mathbf{h}$ consistent with \mathbf{S} has error at most $\boldsymbol{\epsilon}$

Sample Complexity

So suppose that \mathbf{h} some DL with error at least $\epsilon\left(\operatorname{Pr}_{\mathrm{x} \sim}[\mathbf{h}(\mathbf{x}) \neq \mathbf{f}(\mathbf{x})] \geq \epsilon\right)$, and let $\mathbf{m}=\mathbf{m}(\epsilon, \delta)=|\mathbf{S}|$

Sample Complexity

So suppose that \mathbf{h} some DL with error at least $\epsilon\left(\mathbf{P r}_{\mathrm{x} \sim \mathrm{D}}[\mathbf{h}(\mathbf{x}) \neq \mathbf{f}(\mathbf{x})] \geq \epsilon\right)$, and let $\mathbf{m}=\mathbf{m}(\epsilon, \delta)=|\mathbf{S}|$
$\Longrightarrow \operatorname{Pr}_{\mathrm{S} \sim \mathrm{D}^{\mathrm{m}}}[\mathbf{h}$ consistent with $\mathbf{S}] \leq(\mathbf{1}-\epsilon)^{\mathrm{m}}$

Sample Complexity

So suppose that \mathbf{h} some DL with error at least $\boldsymbol{\epsilon}\left(\operatorname{Pr}_{\mathrm{x} \sim} \mathrm{D}[\mathbf{h}(\mathbf{x}) \neq \mathbf{f}(\mathbf{x})] \geq \epsilon\right)$, and let $\mathbf{m}=\mathbf{m}(\epsilon, \delta)=|\mathbf{S}|$
$\Longrightarrow \operatorname{Pr}_{\mathrm{S} \sim \mathrm{D}^{\mathrm{m}}}[\mathrm{h}$ consistent with S$] \leq(\mathbf{1 - \epsilon})^{\mathrm{m}}$
Let $\mathbf{H}=\#$ decision lists.

$$
\underset{\mathbf{S}_{\sim D^{m}}}{\operatorname{Pr}}[\exists \mathrm{~h} \text { s.t. } \operatorname{err}(\mathbf{h})>\epsilon, \mathrm{h} \text { consistent with } \mathrm{S}] \leq \mathbf{H}(\mathbf{1}-\boldsymbol{\epsilon})^{\mathbf{m}} \leq \mathrm{He}^{-\epsilon \boldsymbol{m}}
$$

Sample Complexity

So suppose that \mathbf{h} some DL with error at least $\epsilon\left(\operatorname{Pr}_{\mathrm{x} \sim}[\mathbf{h}(\mathbf{x}) \neq \mathbf{f}(\mathbf{x})] \geq \epsilon\right)$, and let $\mathbf{m}=\mathbf{m}(\epsilon, \delta)=|\mathbf{S}|$
$\Longrightarrow \operatorname{Pr}_{\mathrm{S} \sim \mathrm{D}^{\mathrm{m}}}[\mathrm{h}$ consistent with S$] \leq(\mathbf{1}-\epsilon)^{\mathrm{m}}$
Let $\mathbf{H}=\#$ decision lists.

$$
\underset{\mathbf{S} \sim D^{m}}{\operatorname{Pr}}[\exists \mathbf{h} \text { s.t. } \operatorname{err}(\mathbf{h})>\epsilon, \mathbf{h} \text { consistent with } \mathbf{S}] \leq \mathbf{H}(\mathbf{1}-\epsilon)^{\mathbf{m}} \leq \mathrm{He}^{-\epsilon \boldsymbol{m}}
$$

Set $\mathbf{m}=\frac{1}{\epsilon}\left(\ln \mathbf{H}+\ln \left(\frac{1}{\delta}\right)\right)$:

$$
=\mathrm{He}^{-\epsilon \mathrm{m}} \leq \mathrm{He}^{-\epsilon \frac{1}{\epsilon}\left(\ln |\mathrm{H}|+\ln \left(\frac{1}{\delta}\right)\right)}=\mathrm{He}^{-\left(\ln |\mathrm{H}|+\ln \left(\frac{1}{\delta}\right)\right)}=\mathrm{H}\left(\frac{1}{\mathrm{H}}\right) \delta=\delta
$$

Sample Complexity

So suppose that \mathbf{h} some DL with error at least $\epsilon\left(\operatorname{Pr}_{\mathrm{x} \sim}[\mathbf{h}(\mathbf{x}) \neq \mathbf{f}(\mathbf{x})] \geq \epsilon\right)$, and let $\mathbf{m}=\mathbf{m}(\epsilon, \delta)=|\mathbf{S}|$
$\Longrightarrow \operatorname{Pr}_{\mathrm{S} \sim \mathrm{D}^{\mathrm{m}}}[\mathrm{h}$ consistent with S$] \leq(1-\epsilon)^{\mathrm{m}}$
Let $\mathbf{H}=\#$ decision lists.

$$
\underset{\mathbf{S}_{\sim D^{m}}}{\operatorname{Pr}}[\exists \mathrm{~h} \text { s.t. } \operatorname{err}(\mathbf{h})>\epsilon, \mathrm{h} \text { consistent with } \mathrm{S}] \leq \mathbf{H}(\mathbf{1}-\epsilon)^{m} \leq \mathrm{He}^{-\epsilon \mathrm{m}}
$$

Set $\mathbf{m}=\frac{1}{\epsilon}\left(\ln \mathrm{H}+\ln \left(\frac{1}{\delta}\right)\right)$:

$$
=\mathrm{He} \mathrm{e}^{-\epsilon \mathrm{m}} \leq \mathrm{He}^{-\epsilon \frac{1}{\epsilon}\left(\ln |\mathrm{H}|+\ln \left(\frac{1}{\delta}\right)\right)}=\mathrm{H} \mathrm{e}^{-\left(\ln |\mathrm{H}|+\ln \left(\frac{1}{\delta}\right)\right)}=\mathrm{H}\left(\frac{1}{\mathrm{H}}\right) \delta=\delta
$$

So with probability at least $\mathbf{1 - \delta}$, every DL consistent with \mathbf{S} has error at most $\boldsymbol{\epsilon}$ (including the one we output)!

Sample Complexity

So suppose that \mathbf{h} some DL with error at least $\boldsymbol{\epsilon}\left(\operatorname{Pr}_{\mathbf{x \sim D}^{D}}[\mathbf{h}(\mathbf{x}) \neq \mathbf{f}(\mathbf{x})] \geq \boldsymbol{\epsilon}\right)$, and let $\mathbf{m}=\mathbf{m}(\epsilon, \delta)=|\mathbf{S}|$
$\Longrightarrow \operatorname{Pr}_{\mathbf{S} \sim \mathrm{D}^{\mathrm{m}}}[\mathrm{h}$ consistent with S$] \leq(\mathbf{1 - \epsilon})^{\mathbf{m}}$
Let $\mathbf{H}=\#$ decision lists.

$$
\underset{\mathbf{S N D}_{\sim}}{\operatorname{Pr}}[\exists \mathrm{h} \text { s.t. } \operatorname{err}(\mathbf{h})>\epsilon, \mathrm{h} \text { consistent with } \mathrm{S}] \leq \mathbf{H}(\mathbf{1}-\epsilon)^{m} \leq \mathrm{He}^{-\epsilon \boldsymbol{m}}
$$

Set $\mathbf{m}=\frac{1}{\epsilon}\left(\ln \mathrm{H}+\ln \left(\frac{1}{\delta}\right)\right)$:

$$
=\mathrm{He}^{-\epsilon \mathrm{m}} \leq \mathrm{He}^{-\epsilon \frac{1}{\epsilon}\left(\ln |\mathrm{H}|+\ln \left(\frac{1}{\delta}\right)\right)}=\mathrm{He}^{-\left(\ln |\mathrm{H}|+\ln \left(\frac{1}{\delta}\right)\right)}=\mathrm{H}\left(\frac{1}{\mathrm{H}}\right) \delta=\delta
$$

So with probability at least $\mathbf{1 - \delta}$, every DL consistent with \mathbf{S} has error at most $\boldsymbol{\epsilon}$ (including the one we output)!
$\mathbf{H} \leq n!4^{\mathbf{n}}$, since at most n ! orderings of coordinates, and at most 4 rules/coordinate $\Longrightarrow \mathbf{m}=\boldsymbol{\Theta}\left(\frac{1}{\epsilon}\left(\mathrm{n} \ln \mathrm{n}+\ln \left(\frac{1}{\delta}\right)\right)\right)$

Occam's Razor

"Prefer simple explanations to complicated ones"
Only thing we used about DL in sample complexity analysis: $\mathbf{H} \leq \mathbf{n}!4^{\mathbf{n}}$
"Simple" hypothesis: expressible in $\leq \mathbf{s}$ bits

Occam's Razor

"Prefer simple explanations to complicated ones"
Only thing we used about DL in sample complexity analysis: $\mathbf{H} \leq \mathbf{n}!4^{\mathbf{n}}$
"Simple" hypothesis: expressible in $\leq \mathbf{s}$ bits
$\Longrightarrow \leq 2^{\text {s }}$ simple hypotheses

Occam's Razor

"Prefer simple explanations to complicated ones"
Only thing we used about DL in sample complexity analysis: $\mathbf{H} \leq \mathbf{n}!4^{\mathbf{n}}$
"Simple" hypothesis: expressible in $\leq \mathbf{s}$ bits
$\Longrightarrow \leq 2^{\text {s }}$ simple hypotheses
\Longrightarrow after $\frac{1}{\epsilon}\left(\operatorname{s} \ln 2+\ln \left(\frac{1}{\delta}\right)\right)$ samples, unlikely for us to get fooled by a simple hypothesis that's actually wrong!

Online Learning

Online Learning

Learning over time, not just one-shot

- Similar to online algorithms: see data one piece at a time
- Instead of trying to minimize competitive ratio, trying to use the data to make decisions as we go.

Remove assumption that \mathbf{D} fixed

Learning From Expert Advice

Intuition: stock market

- n experts
- Every day:
- Every expert predicts up/down
- Algorithm makes prediction
- Find out what happened

What can/should we do? Can we always make an accurate prediction?

Learning From Expert Advice

Intuition: stock market

- \mathbf{n} experts
- Every day:
- Every expert predicts up/down
- Algorithm makes prediction
- Find out what happened

What can/should we do? Can we always make an accurate prediction?

- No! Experts could all be essentially random, uncorrelated with market

Learning From Expert Advice

Intuition: stock market

- \mathbf{n} experts
- Every day:
- Every expert predicts up/down
- Algorithm makes prediction
- Find out what happened

What can/should we do? Can we always make an accurate prediction?

- No! Experts could all be essentially random, uncorrelated with market

Easier (but still interesting) goal: can we do as well as the best expert?

- Don't try to learn the market: learn which expert knows the market best

Warmup

Assume best expert makes $\mathbf{0}$ mistakes: always correctly predicts the market. How should we predict market to minimize \#mistakes?

Warmup

Assume best expert makes $\mathbf{0}$ mistakes: always correctly predicts the market. How should we predict market to minimize \#mistakes?

Each day:

Warmup

Assume best expert makes $\mathbf{0}$ mistakes: always correctly predicts the market. How should we predict market to minimize \#mistakes?

Each day:

- Majority vote of remaining experts
- Remove incorrect experts

Warmup

Assume best expert makes $\mathbf{0}$ mistakes: always correctly predicts the market. How should we predict market to minimize \#mistakes?

Each day:

- Majority vote of remaining experts
- Remove incorrect experts

Best expert makes $\mathbf{0}$ mistakes
We make:

Warmup

Assume best expert makes $\mathbf{0}$ mistakes: always correctly predicts the market. How should we predict market to minimize \#mistakes?

Each day:

- Majority vote of remaining experts
- Remove incorrect experts

Best expert makes $\mathbf{0}$ mistakes
We make: $\mathbf{O}(\log \mathbf{n})$ mistakes

Warmup

Assume best expert makes $\mathbf{0}$ mistakes: always correctly predicts the market. How should we predict market to minimize \#mistakes?

Each day:

- Majority vote of remaining experts
- Remove incorrect experts

Best expert makes $\mathbf{0}$ mistakes
We make: $\mathbf{O}(\log \mathbf{n})$ mistakes

- Each mistake decreases \# experts by $\mathbf{1 / 2}$

General case: no perfect expert

General case: no perfect expert

Weighted Majority

- Initialize all experts to weight 1
- Predict based on weighted majority vote
- Penalize mistakes by cutting weights in half
$\mathbf{M}=\#$ mistakes we've made
$\mathbf{m}=\#$ mistakes best expert has made
$\mathbf{W}=$ total weight

General case: no perfect expert

Weighted Majority

- Initialize all experts to weight 1
- Predict based on weighted majority vote
- Penalize mistakes by cutting weights in half
$\mathbf{M}=\#$ mistakes we've made
$\mathbf{m}=\#$ mistakes best expert has made
$\mathbf{W}=$ total weight
$W \geq(1 / 2)^{m}$
- Best expert has weight at least (1/2) ${ }^{m}$

General case: no perfect expert

Weighted Majority

- Initialize all experts to weight 1
- Predict based on weighted majority vote
- Penalize mistakes by cutting weights in half
$\mathbf{M}=\#$ mistakes we've made
$\mathbf{m}=\#$ mistakes best expert has made
$\mathbf{W}=$ total weight
$W \geq(1 / 2)^{m}$
- Best expert has weight at least $(\mathbf{1 / 2})^{m}$
$\mathbf{W} \leq \mathbf{n}(3 / 4)^{\mathrm{M}}$
- Every time we make a mistake, at least $1 / 2$ the total weight gets decreased by $1 / 2$, so left with at most $3 / 4$ of the original total weight

General case: no perfect expert

Weighted Majority

- Initialize all experts to weight 1
- Predict based on weighted majority vote
- Penalize mistakes by cutting weights in half
$\mathbf{M}=\#$ mistakes we've made
$\mathbf{m}=\#$ mistakes best expert has made
$\mathbf{W}=$ total weight
$W \geq(1 / 2)^{m}$
- Best expert has weight at least $(1 / 2)^{m}$

$$
\begin{aligned}
& \Longrightarrow(1 / 2)^{m} \leq n(3 / 4)^{M} \Longrightarrow(4 / 3)^{M} \leq n 2^{m} \\
& \Longrightarrow M \leq \log _{4 / 3}\left(n 2^{m}\right)=\frac{m+\log n}{\log (4 / 3)} \approx 2.4(m+\log n)
\end{aligned}
$$

Improved Algorithm

How to do better?

Improved Algorithm

How to do better? Randomization!

Improved Algorithm

How to do better? Randomization! (and change $1 / 2$ to $(1-\boldsymbol{\epsilon})$)

Improved Algorithm

How to do better? Randomization! (and change $\mathbf{1 / 2}$ to ($1-\boldsymbol{\epsilon})$)
Randomized Weighted Majority

- Let $\mathbf{W}_{\mathbf{i}}=\mathbf{1}$ be weight of expert \mathbf{i}, let $\mathbf{W}=\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{W}_{\mathbf{i}}$.
- Do what expert \mathbf{i} says with probability $\mathbf{W}_{\mathbf{i}} / \mathbf{W}$
- If expert \mathbf{i} incorrect, set $\mathbf{W}_{\mathbf{i}} \leftarrow(\mathbf{1 - \boldsymbol { \epsilon }}) \mathbf{W}_{\mathbf{i}}$

Improved Algorithm

How to do better? Randomization! (and change $\mathbf{1 / 2}$ to ($1-\boldsymbol{\epsilon})$)
Randomized Weighted Majority

- Let $\mathbf{W}_{\mathbf{i}}=\mathbf{1}$ be weight of expert \mathbf{i}, let $\mathbf{W}=\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{W}_{\mathbf{i}}$.
- Do what expert \mathbf{i} says with probability $\mathbf{W}_{\mathbf{i}} / \mathbf{W}$
- If expert \mathbf{i} incorrect, set $\mathbf{W}_{\mathbf{i}} \leftarrow(\mathbf{1} \boldsymbol{- \epsilon}) \mathbf{W}_{\mathbf{i}}$

Theorem

Let $\mathbf{M}=\#$ mistakes we've made, let $\mathbf{m}=\#$ mistakes best expert has made.
When $\epsilon \leq \mathbf{1 / 2}$:

$$
\mathrm{E}[\mathrm{M}] \leq(1+\epsilon) \mathrm{m}+\frac{1}{\epsilon} \ln \mathrm{n}
$$

Randomized Weighted Majority Analysis

Let:

- $\mathbf{F}_{\mathbf{i}}=$ fraction of weight at time \mathbf{i} on experts who make mistake at time \mathbf{i}
- $\mathbf{W}_{\mathbf{i}}=$ total weight after time \mathbf{i} (at beginning of time $\mathbf{i}+\mathbf{1}$)

Randomized Weighted Majority Analysis

Let:

- $\mathbf{F}_{\mathbf{i}}=$ fraction of weight at time \mathbf{i} on experts who make mistake at time \mathbf{i}
- $\mathbf{W}_{\mathbf{i}}=$ total weight after time \mathbf{i} (at beginning of time $\mathbf{i}+\mathbf{1}$)

$$
\mathbf{W}_{0}=n
$$

Randomized Weighted Majority Analysis

Let:

- $\mathbf{F}_{\mathbf{i}}=$ fraction of weight at time \mathbf{i} on experts who make mistake at time \mathbf{i}
- $\mathbf{W}_{\mathbf{i}}=$ total weight after time \mathbf{i} (at beginning of time $\mathbf{i}+\mathbf{1}$)

$$
\begin{aligned}
\mathrm{W}_{0} & =n \\
\mathrm{~W}_{1} & =F_{1} W_{0}(1-\epsilon)+\left(1-F_{1}\right) W_{0}=F_{1} n(1-\epsilon)+\left(1-F_{1}\right) n \\
& =n\left(F_{1}-\epsilon F_{1}+1-F_{1}\right)=\left(1-\epsilon F_{1}\right) n
\end{aligned}
$$

Randomized Weighted Majority Analysis

Let:

- $\mathbf{F}_{\mathbf{i}}=$ fraction of weight at time \mathbf{i} on experts who make mistake at time \mathbf{i}
- $\mathbf{W}_{\mathbf{i}}=$ total weight after time \mathbf{i} (at beginning of time $\mathbf{i}+\mathbf{1}$)

$$
\begin{aligned}
\mathrm{W}_{0} & =n \\
\mathrm{~W}_{1} & =F_{1} \mathrm{~W}_{0}(1-\epsilon)+\left(1-F_{1}\right) W_{0}=F_{1} n(1-\epsilon)+\left(1-F_{1}\right) n \\
& =n\left(F_{1}-\epsilon F_{1}+1-F_{1}\right)=\left(1-\epsilon F_{1}\right) n \\
W_{2} & =F_{2} W_{1}(1-\epsilon)+\left(1-F_{2}\right) W_{1}=\left(1-\epsilon F_{2}\right) W_{1}=\left(1-\epsilon F_{2}\right)(1-\epsilon) F_{1} n
\end{aligned}
$$

Randomized Weighted Majority Analysis

Let:

- $\mathbf{F}_{\mathbf{i}}=$ fraction of weight at time \mathbf{i} on experts who make mistake at time \mathbf{i}
- $\mathbf{W}_{\mathbf{i}}=$ total weight after time \mathbf{i} (at beginning of time $\mathbf{i}+\mathbf{1}$)

$$
\begin{aligned}
\mathrm{W}_{0} & =n \\
\mathrm{~W}_{1} & =\mathrm{F}_{1} \mathrm{~W}_{0}(1-\epsilon)+\left(1-F_{1}\right) \mathrm{W}_{0}=F_{1} n(1-\epsilon)+\left(1-F_{1}\right) n \\
& =n\left(F_{1}-\epsilon F_{1}+1-F_{1}\right)=\left(1-\epsilon F_{1}\right) n \\
\mathbf{W}_{2} & =F_{2} W_{1}(1-\epsilon)+\left(1-F_{2}\right) W_{1}=\left(1-\epsilon F_{2}\right) W_{1}=\left(1-\epsilon F_{2}\right)(1-\epsilon) F_{1} n \\
& \vdots \\
W_{t} & =n \prod_{i=1}^{t}\left(1-\epsilon F_{i}\right) \leq n \prod_{i=1}^{t} e^{-\epsilon F_{i}}=n e^{-\epsilon \sum_{i=1}^{t} F_{i}}
\end{aligned}
$$

Randomized Weighted Majority Analysis (cont'd)

Note: probability we make mistake at time \mathbf{i} is exactly $\mathbf{F}_{\mathbf{i}} \Longrightarrow \mathbf{E}[\mathbf{M}]=\sum_{\mathbf{i}=1}^{\mathrm{t}} \mathbf{F}_{\mathbf{i}}$

Randomized Weighted Majority Analysis (cont'd)

Note: probability we make mistake at time \mathbf{i} is exactly $\mathbf{F}_{\mathbf{i}} \Longrightarrow \mathbf{E}[\mathbf{M}]=\sum_{\mathbf{i}=1}^{\mathbf{t}} \mathbf{F}_{\mathbf{i}}$

$$
\Longrightarrow \ln W_{t} \leq \ln \left(n e^{-\epsilon \sum_{i=1}^{t} F_{i}}\right)=\ln n-\epsilon \sum_{i=1}^{t} F_{i}=\ln n-\epsilon E[M]
$$

Randomized Weighted Majority Analysis (cont'd)

Note: probability we make mistake at time \mathbf{i} is exactly $\mathbf{F}_{\mathbf{i}} \Longrightarrow \mathbf{E}[\mathbf{M}]=\sum_{\mathbf{i}=1}^{\mathbf{t}} \mathbf{F}_{\mathbf{i}}$

$$
\Longrightarrow \ln W_{t} \leq \ln \left(n e^{-\epsilon \sum_{i=1}^{t} F_{i}}\right)=\ln n-\epsilon \sum_{i=1}^{t} F_{i}=\ln n-\epsilon E[M]
$$

But best expert makes \mathbf{m} mistakes

$$
\Longrightarrow W_{t} \geq(1-\epsilon)^{m} \Longrightarrow \ln W_{t} \geq m \ln (1-\epsilon)
$$

Randomized Weighted Majority Analysis (cont'd)

Note: probability we make mistake at time \mathbf{i} is exactly $\mathbf{F}_{\mathbf{i}} \Longrightarrow \mathbf{E}[\mathbf{M}]=\sum_{\mathbf{i}=1}^{\mathbf{t}} \mathbf{F}_{\mathbf{i}}$

$$
\Longrightarrow \ln W_{t} \leq \ln \left(n e^{-\epsilon \sum_{i=1}^{t} F_{i}}\right)=\ln n-\epsilon \sum_{i=1}^{t} F_{i}=\ln n-\epsilon E[M]
$$

But best expert makes \mathbf{m} mistakes

$$
\Longrightarrow W_{t} \geq(1-\epsilon)^{m} \Longrightarrow \ln W_{t} \geq m \ln (1-\epsilon)
$$

So $m \ln (1-\epsilon) \leq \ln n-\epsilon E[M]$

Randomized Weighted Majority Analysis (cont'd)

Note: probability we make mistake at time \mathbf{i} is exactly $\mathbf{F}_{\mathbf{i}} \Longrightarrow \mathbf{E}[\mathbf{M}]=\sum_{\mathbf{i}=1}^{\mathrm{t}} \mathbf{F}_{\mathbf{i}}$

$$
\Longrightarrow \ln W_{t} \leq \ln \left(n e^{-\epsilon \sum_{i=1}^{t} F_{i}}\right)=\ln n-\epsilon \sum_{i=1}^{t} F_{i}=\ln n-\epsilon E[M]
$$

But best expert makes \mathbf{m} mistakes

$$
\Longrightarrow W_{t} \geq(1-\epsilon)^{m} \Longrightarrow \ln W_{t} \geq m \ln (1-\epsilon)
$$

So $m \ln (1-\epsilon) \leq \ln n-\epsilon E[M]$

$$
\Longrightarrow E[M] \leq \frac{1}{\epsilon}(\ln n-m \ln (1-\epsilon)) \leq(1+\epsilon) m+\frac{1}{\epsilon} \ln n
$$

(using fact that $\frac{-\ln (1-\epsilon)}{\epsilon} \leq 1+\epsilon$ for all $0<\epsilon \leq 1 / 2$)

