Lecture 25: Algorithmic Learning Theory

Michael Dinitz

November 30, 2021
601.433/633 Introduction to Algorithms
Introduction

Machine Learning from the point of view of theoretical computer science
- Proofs about performance
- Minimize assumptions
- *Not* going to talk about useful in practice, etc.

Today:
- Concept Learning
- Online Learning
Concept Learning
Concept Learning Intro

Trying to learn “Yes/No” labels
 ▶ Given a photo, does it have a dog in it?
 ▶ Given an email, is it spam?

Given some labeled data. Create a good prediction rule (hypothesis) for future data.
Concept Learning Intro

Trying to learn “Yes/No” labels

- Given a photo, does it have a dog in it?
- Given an email, is it spam?

Given some labeled data. Create a good prediction rule (hypothesis) for future data.

Example: spam

- Want to create a rule (hypothesis) that will tell us whether an email is spam
- Given some example emails with labels (Yes / No, Spam / Not Spam)
Example

<table>
<thead>
<tr>
<th>sales</th>
<th>size</th>
<th>Mr.</th>
<th>bad spelling</th>
<th>known-sender</th>
<th>spam?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

Reasonable hypothesis: spam if not known-sender AND (size OR sales)
Example

<table>
<thead>
<tr>
<th>sales</th>
<th>size</th>
<th>Mr.</th>
<th>bad spelling</th>
<th>known-sender</th>
<th>spam?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

Reasonable hypothesis:
spam if not known-sender AND (size OR sales)
Questions

Question 1: Can we efficiently find working hypothesis for given labeled data?
- Mainly about efficiency; like many of the problems we’ve talked about
- Depends on what kinds of hypotheses we’re looking for (structure and quality)

Question 2: Can we be confident that our hypothesis will do well in the future?
- Not primarily about efficiency; about quality
- Requires knowing something about the future!
- Core of machine learning: use the past to make predictions about the future
Formalization: Beginning

Given sample set $S = \{(x^1, y^1), \ldots, (x^m, y^m)\}$. Size m called the sample complexity

- Each x^i drawn from distribution D (not necessarily known)
- $y^i = f(x^i)$ for some unknown f

Our goal: compute hypothesis h with low error on D:

$$\text{err}(h) := \Pr_{x \sim D}[h(x) \neq f(x)] \leq \epsilon$$
Formalization: Beginning

Given sample set \(S = \{(x^1, y^1), \ldots, (x^m, y^m)\} \). Size \(m \) called the \textit{sample complexity}

- Each \(x^i \) drawn from distribution \(D \) (not necessarily known)
- \(y^i = f(x^i) \) for some unknown \(f \)

Our goal: compute hypothesis \(h \) with low \textit{error} on \(D \):

\[
\text{err}(h) := \Pr_{x \sim D}[h(x) \neq f(x)] \leq \epsilon
\]

Generally not possible unless \(m \) extremely large. Proof: random function \(f \)

- Knowing \(f(x^i) \) on sample points doesn’t tell us anything about \(f(x) \) on points not sampled
Formalization: Beginning

Given sample set $S = \{(x^1, y^1), \ldots, (x^m, y^m)\}$. Size m called the *sample complexity*

- Each x^i drawn from distribution D (not necessarily known)
- $y^i = f(x^i)$ for some unknown f

Our goal: compute hypothesis h with low *error* on D:

$$\text{err}(h) := \Pr_{x \sim D}[h(x) \neq f(x)] \leq \epsilon$$

Generally not possible unless m extremely large. Proof: random function f

- Knowing $f(x^i)$ on sample points doesn’t tell us anything about $f(x)$ on points not sampled

Need to restrict f.
Example: Decision Lists

Data point: \(x \in \{0, 1\}^n \)

Decision List:
- If \(x_1 = 1 \) return 0
- Else if \(x_4 = 1 \) return 1
- Else if \(x_2 = 0 \) return 1
- Else return 0

Key features:
- Doesn’t branch
- Each “if” looks at one coordinate and either returns or continues down list
Example: Decision Lists

Data point: \(x \in \{0, 1\}^n \)

Decision List:
- If \(x_1 = 1 \) return 0
- Else if \(x_4 = 1 \) return 1
- Else if \(x_2 = 0 \) return 1
- Else return 0

Key features:
- Doesn’t branch
- Each “if” looks at one coordinate and either returns or continues down list

Can we “learn” decision lists? Restrict \(f \) to be a DL.
Example: Decision Lists

Data point: \(x \in \{0, 1\}^n \)

Decision List:

- If \(x_1 = 1 \) return 0
- Else if \(x_4 = 1 \) return 1
- Else if \(x_2 = 0 \) return 1
- Else return 0

Key features:

- Doesn’t branch
- Each “if” looks at one coordinate and either returns or continues down list

Can we “learn” decision lists? Restrict \(f \) to be a DL.

Question 1: Given sample data points labeled by some decision list, can we find a decision list that correctly labels the sample?

Question 2: Can we give an error bound with respect to distribution \(D \) that samples come from?
Formalization

Definition

Let X be a collection of instances / data points (e.g., $X = \{0, 1\}^n$). A concept is a boolean function $h : X \to \{0, 1\}$ (e.g., a decision list), and a concept class \mathcal{H} is a collection of concepts (e.g., all DLs).
Formalization

Definition

Let \(X \) be a collection of instances / data points (e.g., \(X = \{0, 1\}^n \)). A concept is a boolean function \(h : X \rightarrow \{0, 1\} \) (e.g., a decision list), and a concept class \(\mathcal{H} \) is a collection of concepts (e.g., all DLs).

Let \(m : \mathbb{R}^2 \rightarrow \mathbb{N} \).

Definition

A concept class \(\mathcal{H} \) is PAC-learnable with sample complexity \(m(\epsilon, \delta) \) if there is an algorithm \(A \) such that for all \(f \in \mathcal{H} \):

1. Input of \(A \) is \(0 < \epsilon < 1/2 \) and \(0 < \delta < 1/2 \) and set \(S = \{(x^1, y^1), \ldots, (x^m(\epsilon, \delta), y^m(\epsilon, \delta))\} \) where \(y^i = f(x^i) \) for all \(i \)
2. \(A \) outputs a concept \(h \) that is “probably approximately correct”:

\[
\Pr_{S \sim D^m(\epsilon, \delta)}[\text{err}(h) \leq \epsilon] = \Pr_{S \sim D^m(\epsilon, \delta)}\left[\Pr_{x \sim D}[h(x) \neq f(x)] \leq \epsilon\right] \geq 1 - \delta
\]
Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?
Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

\[S' = S, L = \emptyset \]

while \(S' \neq \emptyset \) {

Find if-then rule \(\alpha \) consistent with \(S' \) that labels at least 1 element of \(S' \)

Add \(\alpha \) to the bottom of \(L \)

Remove data labeled by \(\alpha \) from \(S' \)

}

Add “else return 0” to bottom of \(L \)

Return \(L \)

Correctness: Why always finds such a rule?

By assumption, there is a DL \(f \) that labels \(S \) and so \(S' \neq \emptyset \)

Highest rule in \(f \) not added to \(L \) will work!
Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

\[
S' = S, \ L = \emptyset \\
\text{while}(S' \neq \emptyset) \ { \\
\quad \text{Find if-then rule } \alpha \text{ consistent with } S' \text{ that labels at least 1 element of } S' \\
\quad \text{Add } \alpha \text{ to the bottom of } L \\
\quad \text{Remove data labeled by } \alpha \text{ from } S' \\
}\}
\]

Add “else return 0” to bottom of L

Return L

Correctness: Why can we always find such an \(\alpha \)?
Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

\[
S' = S, \ L = \emptyset
\]

while \((S' \neq \emptyset)\) {
 Find if-then rule \(\alpha\) consistent with \(S'\) that labels at least 1 element of \(S'\)
 Add \(\alpha\) to the bottom of \(L\)
 Remove data labeled by \(\alpha\) from \(S'\)
}

Add “else return 0” to bottom of \(L\)

Return \(L\)

Correctness: Why can we always find such an \(\alpha\)?

- By assumption, there is a DL \(f\) that labels \(S\) and so \(S'\)
- Highest rule in \(f\) not added to \(L\) will work!
Running Time of Algorithm

Number of iterations: $\leq |S| = m(\epsilon, \delta)$

Time per iteration: check every possible rule, see if consistent with S' (and labels at least one point)

Number of possible rules ("if $x_i = 0 \implies 1$", return 0): $4n$

Total time at most $O(n \cdot m(\epsilon, \delta))$: pretty good if sample complexity small.

Sample Complexity: We are worried about outputting DL h with $\text{err}(h) > \epsilon$: want this to happen with probability at most δ.

But the DL H we output labels S correctly!

Want to show: since h labels S correctly, with probability at least $1 - \delta$, has error at most ϵ.

In other words: prove that with probability at least $1 - \delta$, every DL h consistent with S has error at most ϵ.

Michael Dinitz

Lecture 25: Algorithmic Learning Theory

November 30, 2021 11 / 21
Running Time of Algorithm

Number of iterations: $\leq |S| = m(\epsilon, \delta)$

Time per iteration: check every possible rule, see if consistent with S' (and labels at least one point)
- Number of possible rules ("if $x_i = 0/1$, return $0/1$"): $4n$
Running Time of Algorithm

Number of iterations: \(\leq |S| = m(\epsilon, \delta) \)

Time per iteration: check every possible rule, see if consistent with \(S' \) (and labels at least one point)

- Number of possible rules ("if \(x_i = 0/1 \), return 0/1"): \(4n \)

Total time at most \(O(n \cdot m(\epsilon, \delta)) \): pretty good if sample complexity small.
Running Time of Algorithm

Number of iterations: $|\mathcal{S}| = m(\epsilon, \delta)$

Time per iteration: check every possible rule, see if consistent with \mathcal{S}' (and labels at least one point)
 - Number of possible rules (“if $x_i = 0/1$, return 0/1”): $4n$

Total time at most $O(n \cdot m(\epsilon, \delta))$: pretty good if sample complexity small.

Sample Complexity: We are worried about outputting DL h with $\text{err}(h) > \epsilon$: want this to happen with probability at most δ.
 - But the DL H we output labels \mathcal{S} correctly!
 - Want to show: since h labels \mathcal{S} correctly, with probability at least $1 - \delta$ has error at most ϵ
 - In other words: prove that with probability at least $1 - \delta$, every DL h consistent with \mathcal{S} has error at most ϵ
Sample Complexity
So suppose that h some DL with error at least ϵ ($\Pr_{x \sim D}[h(x) \neq f(x)] \geq \epsilon$), and let $m = m(\epsilon, \delta) = |S|$
Sample Complexity

So suppose that \(h \) some DL with error at least \(\epsilon \) \((\Pr_{x \sim D}[h(x) \neq f(x)] \geq \epsilon) \), and let \(m = m(\epsilon, \delta) = |S| \)

\[\implies \Pr_{S \sim D^m}[h \text{ consistent with } S] \leq (1 - \epsilon)^m \]
Sample Complexity

So suppose that \(h \) some DL with error at least \(\epsilon \) (\(\Pr_{x \sim D}[h(x) \neq f(x)] \geq \epsilon \)), and let \(m = m(\epsilon, \delta) = |S| \)

\[\implies \Pr_{S \sim D^m}[h \text{ consistent with } S] \leq (1 - \epsilon)^m \]

Let \(H = \# \text{ decision lists.} \)

\[\Pr_{S \sim D^m}[\exists h \text{ s.t. } \text{err}(h) > \epsilon, h \text{ consistent with } S] \leq H(1 - \epsilon)^m \leq He^{-\epsilon m} \]
Sample Complexity

So suppose that \(h \) some DL with error at least \(\epsilon (\Pr_{x \sim D}[h(x) \neq f(x)] \geq \epsilon) \), and let
\[
m = m(\epsilon, \delta) = |S|
\]

\[\implies \Pr_{S \sim D^m}[h \text{ consistent with } S] \leq (1 - \epsilon)^m\]

Let \(H = \# \) decision lists.

\[\Pr_{S \sim D^m}[\exists h \text{ s.t. err}(h) > \epsilon, h \text{ consistent with } S] \leq H(1 - \epsilon)^m \leq He^{-\epsilon m}\]

Set \(m = \frac{1}{\epsilon} \left(\ln H + \ln \left(\frac{1}{\delta} \right) \right) \):

\[= He^{-\epsilon m} \leq He^{-\epsilon \left(\frac{1}{\epsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right) \right)} = He^{-\left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = H \left(\frac{1}{H} \right) \delta = \delta\]
Sample Complexity

So suppose that \mathbf{h} some DL with error at least $\epsilon \left(\Pr_{x \sim D}[h(x) \neq f(x)] \geq \epsilon \right)$, and let

$m = m(\epsilon, \delta) = |S|$

$\implies \Pr_{S \sim D^m}[\exists h \text{ consistent with } S] \leq (1 - \epsilon)^m$

Let $H = \#$ decision lists.

$$\Pr_{S \sim D^m}[\exists h \text{ s.t. } \text{err}(h) > \epsilon, h \text{ consistent with } S] \leq H(1 - \epsilon)^m \leq H e^{-\epsilon m}$$

Set $m = \frac{1}{\epsilon} \left(\ln H + \ln \left(\frac{1}{\delta} \right) \right)$:

$$= H e^{-\epsilon m} \leq H e^{-\epsilon \frac{1}{\epsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = H e^{-\left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = H \left(\frac{1}{H} \right) \delta = \delta$$

So with probability at least $1 - \delta$, every DL consistent with S has error at most ϵ (including the one we output)!
Sample Complexity

So suppose that h some DL with error at least ϵ ($\Pr_{x \sim D}[h(x) \neq f(x)] \geq \epsilon$), and let $m = m(\epsilon, \delta) = |S|$

$$\implies \Pr_{S \sim D^m}[h \text{ consistent with } S] \leq (1 - \epsilon)^m$$

Let $H = \#$ decision lists.

$$\Pr_{S \sim D^m}[\exists h \text{ s.t. } \text{err}(h) > \epsilon, h \text{ consistent with } S] \leq H(1 - \epsilon)^m \leq H e^{-\epsilon m}$$

Set $m = \frac{1}{\epsilon} \left(\ln H + \ln \left(\frac{1}{\delta} \right) \right)$:

$$= He^{-\epsilon m} \leq He^{-\frac{1}{\epsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = He^{-\left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = H \left(\frac{1}{H} \right) \delta = \delta$$

So with probability at least $1 - \delta$, every DL consistent with S has error at most ϵ (including the one we output)!

$H \leq n!4^n$, since at most $n!$ orderings of coordinates, and at most 4 rules/coordinate

$$\implies m = \Theta \left(\frac{1}{\epsilon} \left(n \ln n + \ln \left(\frac{1}{\delta} \right) \right) \right)$$
Occam’s Razor

“Prefer simple explanations to complicated ones”

Only thing we used about DL in sample complexity analysis: \(H \leq n!4^n \)

“Simple” hypothesis: expressible in \(\leq s \) bits
Occam’s Razor

“Prefer simple explanations to complicated ones”

Only thing we used about DL in sample complexity analysis: $H \leq n!4^n$

“Simple” hypothesis: expressible in $\leq s$ bits

$\implies \leq 2^s$ simple hypotheses
Occam’s Razor

“Prefer simple explanations to complicated ones”

Only thing we used about DL in sample complexity analysis: $H \leq n!4^n$

“Simple” hypothesis: expressible in $\leq s$ bits

$\implies \leq 2^s$ simple hypotheses

\implies after $\frac{1}{\epsilon} \left(s \ln 2 + \ln \left(\frac{1}{\delta} \right) \right)$ samples, unlikely for us to get fooled by a simple hypothesis that’s actually wrong!
Online Learning
Online Learning

Learning over time, not just one-shot

- Similar to online algorithms: see data one piece at a time
- Instead of trying to minimize competitive ratio, trying to use the data to make decisions as we go.

Remove assumption that D fixed
Learning From Expert Advice

Intuition: stock market

- n experts
- Every day:
 - Every expert predicts up/down
 - Algorithm makes prediction
 - Find out what happened

What can/should we do? Can we always make an accurate prediction?
Learning From Expert Advice

Intuition: stock market

- n experts
- Every day:
 - Every expert predicts up/down
 - Algorithm makes prediction
 - Find out what happened

What can/should we do? Can we always make an accurate prediction?

- No! Experts could all be essentially random, uncorrelated with market
Learning From Expert Advice

Intuition: stock market

- \(n \) experts
- Every day:
 - Every expert predicts up/down
 - Algorithm makes prediction
 - Find out what happened

What can/should we do? Can we always make an accurate prediction?

- No! Experts could all be essentially random, uncorrelated with market

Easier (but still interesting) goal: can we do as well as the best expert?

- Don’t try to learn the market: learn which expert knows the market best
Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize #mistakes?
Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize \#mistakes?

Each day:
Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize #mistakes?

Each day:
- Majority vote of remaining experts
- Remove incorrect experts
Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize #mistakes?

Each day:
- Majority vote of remaining experts
- Remove incorrect experts

Best expert makes 0 mistakes

We make:
Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize #mistakes?

Each day:
- Majority vote of remaining experts
- Remove incorrect experts

Best expert makes 0 mistakes
We make: $O(\log n)$ mistakes
Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize $\#$ mistakes?

Each day:
- Majority vote of remaining experts
- Remove incorrect experts

Best expert makes 0 mistakes

We make: $O(\log n)$ mistakes
- Each mistake decreases $\#$ experts by $1/2$
General case: no perfect expert

Weighted Majority

Initialize all experts to weight $\frac{1}{2}$

Predict based on weighted majority vote

Penalize mistakes by cutting weights in half

$W = \text{total weight}$

$W \geq \left(\frac{1}{2} \right)^M$

Best expert has weight at least $\left(\frac{1}{2} \right)^M$

$W \leq n \left(\frac{3}{4} \right)^M$

Every time we make a mistake, at least $\frac{1}{2}$ the total weight gets decreased by $\frac{1}{2}$, so left with at most $\frac{3}{4}$ of the original total weight

$\Rightarrow \left(\frac{1}{2} \right)^M \leq n \left(\frac{3}{4} \right)^M$

$\Rightarrow \left(\frac{4}{3} \right)^M \leq n^2 M$

$\Rightarrow M \leq \log_4 \left(\frac{3}{4} \right) (n^2 M)$

$\approx 2^{m + \log n}$

Michael Dinitz
Lecture 25: Algorithmic Learning Theory
November 30, 2021 18 / 21
General case: no perfect expert

Weighted Majority
- Initialize all experts to weight 1
- Predict based on *weighted* majority vote
- Penalize mistakes by cutting weights in half

\[M = \# \text{ mistakes we've made} \]
\[m = \# \text{ mistakes best expert has made} \]
\[W = \text{ total weight} \]
General case: no perfect expert

Weighted Majority

- Initialize all experts to weight 1
- Predict based on weighted majority vote
- Penalize mistakes by cutting weights in half

\[M = \# \text{ mistakes we've made} \]
\[m = \# \text{ mistakes best expert has made} \]
\[W = \text{ total weight} \]

\[W \geq 1/2^m \]

- Best expert has weight at least \((1/2)^m \)
General case: no perfect expert

Weighted Majority
- Initialize all experts to weight 1
- Predict based on weighted majority vote
- Penalize mistakes by cutting weights in half

\(M = \# \text{ mistakes we've made} \)
\(m = \# \text{ mistakes best expert has made} \)
\(W = \text{ total weight} \)

\[W \geq (1/2)^m \]
- Best expert has weight at least \((1/2)^m\)

\[W \leq n(3/4)^M \]
- Every time we make a mistake, at least 1/2 the total weight gets decreased by 1/2, so left with at most 3/4 of the original total weight

Michael Dinitz
Lecture 25: Algorithmic Learning Theory
November 30, 2021 18 / 21
General case: no perfect expert

Weighted Majority

- Initialize all experts to weight 1
- Predict based on weighted majority vote
- Penalize mistakes by cutting weights in half

\[M = \# \text{ mistakes we’ve made} \]
\[m = \# \text{ mistakes best expert has made} \]
\[W = \text{ total weight} \]

\[W \geq (1/2)^m \]

- Best expert has weight at least \((1/2)^m\)

\[\implies (1/2)^m \leq n (3/4)^M \]
\[\implies (4/3)^M \leq n^{2^m} \]
\[\implies M \leq \log_{4/3} (n^{2^m}) = \frac{m + \log n}{\log (4/3)} \approx 2.4 (m + \log n) \]
Improved Algorithm

How to do better?

Randomization!

Let $W_i = 1$ be weight of expert i, let $W = \sum_{i=1}^{n} W_i$.

Do what expert i says with probability W_i / W.

If expert i incorrect, set $W_i \leftarrow (1 - \varepsilon) W_i$.

Theorem

Let $M =$ mistakes we've made, let $m =$ mistakes best expert made.

When $\varepsilon \leq \frac{1}{2}$:

$$E[M] \leq \left(1 + \varepsilon\right)m + \frac{1}{\varepsilon} \ln n$$
Improved Algorithm

How to do better? Randomization!

Let $W_i = 1$ be the weight of expert i, let $W = \sum_{i=1}^{n} W_i$.

- Do what expert i says with probability W_i / W.
- If expert i is incorrect, set $W_i \leftarrow (1 - \epsilon) W_i$.

Theorem

Let $M =$ number of mistakes we've made, let $m =$ number of mistakes by the best expert.

When $\epsilon \leq 1/2$:

$$\mathbb{E}[M] \leq (1 + \epsilon) m + \frac{1}{\epsilon} \ln n.$$
Improved Algorithm

How to do better? Randomization! (and change $1/2$ to $(1 - \epsilon)$)
Improved Algorithm

How to do better? Randomization! (and change $1/2$ to $(1 - \epsilon)$)

Randomized Weighted Majority
- Let $W_i = 1$ be weight of expert i, let $W = \sum_{i=1}^{n} W_i$.
- Do what expert i says with probability W_i/W
- If expert i incorrect, set $W_i \leftarrow (1 - \epsilon)W_i$
Improved Algorithm

How to do better? Randomization! (and change $1/2$ to $(1 - \epsilon)$)

Randomized Weighted Majority

- Let $W_i = 1$ be weight of expert i, let $W = \sum_{i=1}^{n} W_i$.
- Do what expert i says with probability W_i/W.
- If expert i incorrect, set $W_i \leftarrow (1 - \epsilon)W_i$.

Theorem

Let $M = \#$ mistakes we’ve made, let $m = \#$ mistakes best expert has made.

When $\epsilon \leq 1/2$:

$$E[M] \leq (1 + \epsilon)m + \frac{1}{\epsilon} \ln n$$
Randomized Weighted Majority Analysis

Let:

- \(F_i \) = fraction of weight at time \(i \) on experts who make mistake at time \(i \)
- \(W_i \) = total weight after time \(i \) (at beginning of time \(i + 1 \))
Randomized Weighted Majority Analysis

Let:

- $F_i =$ fraction of weight at time i on experts who make mistake at time i
- $W_i =$ total weight *after* time i (at beginning of time $i+1$)

\[W_0 = n \]
Randomized Weighted Majority Analysis

Let:

- \(F_i \) = fraction of weight at time \(i \) on experts who make mistake at time \(i \)
- \(W_i \) = total weight after time \(i \) (at beginning of time \(i + 1 \))

\[
\begin{align*}
W_0 &= n \\
W_1 &= F_1 W_0 (1 - \epsilon) + (1 - F_1) W_0 = F_1 n (1 - \epsilon) + (1 - F_1) n \\
&= n (F_1 - \epsilon F_1 + 1 - F_1) = (1 - \epsilon F_1) n
\end{align*}
\]
Randomized Weighted Majority Analysis

Let:

- \(F_i \) = fraction of weight at time \(i \) on experts who make mistake at time \(i \)
- \(W_i \) = total weight after time \(i \) (at beginning of time \(i + 1 \))

\[
W_0 = n \\
W_1 = F_1 W_0 (1 - \epsilon) + (1 - F_1) W_0 = F_1 n (1 - \epsilon) + (1 - F_1) n \\
= n (F_1 - \epsilon F_1 + 1 - F_1) = (1 - \epsilon F_1) n \\
W_2 = F_2 W_1 (1 - \epsilon) + (1 - F_2) W_1 = (1 - \epsilon F_2) W_1 = (1 - \epsilon F_2) (1 - \epsilon) F_1 n
\]
Randomized Weighted Majority Analysis

Let:
- $F_i =$ fraction of weight at time i on experts who make mistake at time i
- $W_i =$ total weight after time i (at beginning of time $i + 1$)

\[
\begin{align*}
W_0 &= n \\
W_1 &= F_1 W_0 (1 - \epsilon) + (1 - F_1) W_0 = F_1 n (1 - \epsilon) + (1 - F_1) n \\
 &= n (F_1 - \epsilon F_1 + 1 - F_1) = (1 - \epsilon F_1) n \\
W_2 &= F_2 W_1 (1 - \epsilon) + (1 - F_2) W_1 = (1 - \epsilon F_2) W_1 = (1 - \epsilon F_2) (1 - \epsilon) F_1 n \\
 &\vdots \\
W_t &= n \prod_{i=1}^{t} (1 - \epsilon F_i) \leq n \prod_{i=1}^{t} e^{-\epsilon F_i} = ne^{-\epsilon \sum_{i=1}^{t} F_i}
\end{align*}
\]
Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time \(i \) is exactly \(F_i \) \(\implies \) \(E[M] = \sum_{i=1}^{t} F_i \)
Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time i is exactly $F_i \implies E[M] = \sum_{i=1}^{t} F_i$

\[\implies \ln W_t \leq \ln \left(ne^{-\epsilon \sum_{i=1}^{t} F_i} \right) = \ln n - \epsilon \sum_{i=1}^{t} F_i = \ln n - \epsilon E[M] \]
Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time \(i \) is exactly \(F_i \) \(\implies \) \(E[M] = \sum_{i=1}^{t} F_i \)

\[
\ln W_t \leq \ln \left(ne^{-\varepsilon \sum_{i=1}^{t} F_i} \right) = \ln n - \varepsilon \sum_{i=1}^{t} F_i = \ln n - \varepsilon E[M]
\]

But best expert makes \(m \) mistakes

\[
\implies W_t \geq (1 - \varepsilon)^m \implies \ln W_t \geq m \ln(1 - \varepsilon)
\]
Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time \(i \) is exactly \(F_i \)

\[\implies E[M] = \sum_{i=1}^{t} F_i \]

\[\implies \ln W_t \leq \ln \left(n e^{-\epsilon \sum_{i=1}^{t} F_i} \right) = \ln n - \epsilon \sum_{i=1}^{t} F_i = \ln n - \epsilon E[M] \]

But best expert makes \(m \) mistakes

\[\implies W_t \geq (1 - \epsilon)^m \implies \ln W_t \geq m \ln(1 - \epsilon) \]

So \(m \ln(1 - \epsilon) \leq \ln n - \epsilon E[M] \)
Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time i is exactly $F_i \implies \mathbb{E}[M] = \sum_{i=1}^{t} F_i$

$$\implies \ln W_t \leq \ln \left(ne^{-\varepsilon \sum_{i=1}^{t} F_i} \right) = \ln n - \varepsilon \sum_{i=1}^{t} F_i = \ln n - \varepsilon \mathbb{E}[M]$$

But best expert makes m mistakes

$$\implies W_t \geq (1 - \varepsilon)^m \implies \ln W_t \geq m \ln(1 - \varepsilon)$$

So $m \ln(1 - \varepsilon) \leq \ln n - \varepsilon \mathbb{E}[M]$

$$\implies \mathbb{E}[M] \leq \frac{1}{\varepsilon} \left(\ln n - m \ln(1 - \varepsilon) \right) \leq (1 + \varepsilon)m + \frac{1}{\varepsilon} \ln n$$

(using fact that $\frac{-\ln(1-\varepsilon)}{\varepsilon} \leq 1 + \varepsilon$ for all $0 < \varepsilon \leq 1/2$)