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Introduction

Class until now: di�culty was computational power

Today: di�culty is lack of information

Online:

� Input / data arrives over time

� Need to make decisions without knowing future
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Ski Rental Problem

Want to go skiing, but don’t know how many
times you’ll be able to go this year.

Should you rent or buy?

� Renting skis: $50
� Buying skis: $500
� Every day you ski and haven’t yet bought,
need to decide: rent or buy?

Buy right away:

� If you only ski once, should have rented
($50), instead bought ($500)

Never buy:

� What if you ski M ≈∞ times?

� Should have bought ($500), instead
rented (M ⋅ $50)

What’s the right strategy (for these costs)?
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Better Late Than Never

Rent until you realize you should have bought!

BLTN: Rent 9 times, buy on 10’th.

If ski ≤ 9 times: optimal

If ski ≥ 10 times:

� ALG = 450 + 500 = 950
� OPT = 500

Never more than twice (actually 19

10
times) what we should have done!
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Competitive Ratio

Definition

The competitive ratio of algorithm ALG is the maximum over all inputs/futures � of

ALG(�)
OPT(�) ,

where ALG(�) is the cost of ALG on � and OPT(�) is the optimal cost for � (knowing the
future).

So on ski rental problem with previous values, competitive ratio is 19

10
.
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Ski Rental: Generalized

$r to rent, $p to buy. Assume r divides p for simplicity.

BLTN: Rent p

r
− 1 times, then buy.

Theorem

BLTN has competitive ratio at most 2 − r

p
.

Case 1: Ski z ≤ p

r
− 1 times

� ALG = z ⋅ r
� OPT =min(z ⋅ r,p) = z ⋅ r

�⇒ ALG

OPT
= 1

Case 2: Ski z ≥ p

r
times

� ALG = r ⋅ �p
r
− 1� + p = p − r + p = 2p − r

� OPT =min(r ⋅ z,p) = p
�⇒ ALG

OPT
= 2p−r

p
= 2 − r

p

So for all inputs / futures, ALG

OPT
≤ 2 − r

p
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Lower Bound

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic ALG: “ski x times, then buy”.
Input: ski x + 1 times.

Case 1: x ≥ p�r
� OPT =min(p, (x + 1)r) = p
� ALG = xr + p ≥ 2p

�⇒ ALG

OPT
≥ 2 > 2 − r

p

Case 2: x ≤ p

r
− 1

� OPT =min(p, (x + 1)r) = (x + 1)r
� ALG = xr + p

ALG

OPT
= xr + p
(x + 1)r =

xr + p
xr + r = 1 +

p − r
xr + r

≥ 1 + p − r
(p
r
− 1)r + r = 1 +

p − r
p
= 2 − r

p
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Elevator Problem

Trying to get up a building: takes E seconds by elevator, S seconds by stairs.

� How long should we wait for the elevator?

� Example: E = 15,S = 45.

BLTN: Wait S − E seconds, then give up and take stairs

If elevator arrives at x ≤ S − E:
� OPT =min(S,x + E) = x + E
� ALG = x + E

�⇒ ALG

OPT
= 1

If elevator arrives at x > S − E:
� OPT =min(S,x + E) = S
� ALG = (S − E) + S = 2S − E

�⇒ ALG

OPT
= 2S−E

S
= 2 − E

S
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� How long should we wait for the elevator?

� Example: E = 15,S = 45.
BLTN: Wait S − E seconds, then give up and take stairs

If elevator arrives at x ≤ S − E:
� OPT =min(S,x + E) = x + E
� ALG = x + E

�⇒ ALG

OPT
= 1
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Paging

Classical problem in computer systems/theory

� Disk (slow) with N pages

� Memory (fast) with room for k < N pages
� If OS/application requests a page not in memory: “page fault”

� Need to bring requested page into memory, evict a page from memory (if currently full)

� Question: What to evict?

Example: k = 3. Requests: 1,2,3,2,4,3,4,1,2,3,4

(Convention: initial page faults to fill table don’t count: only pay when we evict a page)
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LRU

Standard algorithm: “Least Recently Used” (LRU)

� Evict page from memory that hasn’t been used in the longest time

� Intuition:
� Want to evict page that’s next used furthest in the future. But don’t know future!
� Hope that since it hasn’t been used for a long time, won’t be requested again for a long time.

Is this a good algorithm? What’s the competitive ratio? Cost = # evictions.

� k = 3, N = 4
� Requests: 1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4, . . .

So LRU has competitive ratio ≈ k
� LRU evicts every time, OPT evicts 1 out of every k times.
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Lower Bound

Theorem

No deterministic algorithm has competitive ratio less than k.

Let ALG be some deterministic algorithm. Set N = k + 1

Request sequence: Whatever is not in memory for ALG!

�⇒ ALG has an eviction every time (after initialization)

OPT: evict page whose next request is furthest in the future

� Every page in memory needs to be requested before next eviction. So next eviction is in
at least k steps.

�⇒ ALG

OPT
≥ k
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Marking Algorithm

Get around lower bound by using randomization

� Lower bound argument doesn’t apply because can’t set request sequence to ask for
whatever’s not in memory, since that involved randomness! (Oblivious adversary)

Assume memory initially 1,2, . . . ,k.
Set all pages in memory to be “unmarked”

When page requested:

� If already in memory, “mark” it
� If not in memory:

� If all pages in memory “marked”, unmark all
� Choose an unmarked page uniformly at random to evict
� Bring in new page, mark it
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Marking Analysis

Theorem

Expected competitive ratio at most O(log k):
E[ALG(�)]
OPT(�) ≤ O(log k) for all request sequences �.

Proof sketch for N = k + 1: full generality more complicated

Phase: time between “unmark all” events.

In each phase:

� OPT ≥ 1, since all N pages requested
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ALG in each phase

Key point: the one page not in memory is uniformly distributed among all unmarked pages.

When page requested:

� If marked: in memory, no eviction
� If unmarked: if currently i unmarked pages, then
Pr[eviction] = Pr[requested page not in memory] = 1�i

� Becomes marked

At beginning of phase i = N, at end of phase i = 1. Goes down by one every time page gets
marked.

�⇒ expected cost in phase at most 1

N
+ 1

N−1 + 1

N−2 + ⋅ ⋅ ⋅ + 1

2
+ 1 = O(logN) = O(log k)
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