Lecture 24: Online Algorithms

Michael Dinitz

November 18, 2021 601.433/633 Introduction to Algorithms

Introduction

Class until now: difficulty was *computational power*

Today: difficulty is *lack of information*

Online:

- Input / data arrives over time
- Need to make decisions without knowing future

Want to go skiing, but don't know how many times you'll be able to go this year.

Should you rent or buy?

- Renting skis: \$50
- Buying skis: \$500
- Every day you ski and haven't yet bought, need to decide: rent or buy?

Want to go skiing, but don't know how many times you'll be able to go this year.

Should you rent or buy?

- Renting skis: \$50
- Buying skis: \$500
- Every day you ski and haven't yet bought, need to decide: rent or buy?

Buy right away:

Want to go skiing, but don't know how many times you'll be able to go this year.

Should you rent or buy?

- Renting skis: \$50
- Buying skis: \$500
- Every day you ski and haven't yet bought, need to decide: rent or buy?

Buy right away:

 If you only ski once, should have rented (\$50), instead bought (\$500)

Want to go skiing, but don't know how many times you'll be able to go this year.

Should you rent or buy?

- Renting skis: \$50
- Buying skis: \$500
- Every day you ski and haven't yet bought, need to decide: rent or buy?

Buy right away:

 If you only ski once, should have rented (\$50), instead bought (\$500)

Never buy:

Want to go skiing, but don't know how many times you'll be able to go this year.

Should you rent or buy?

- Renting skis: \$50
- Buying skis: \$500
- Every day you ski and haven't yet bought, need to decide: rent or buy?

Buy right away:

 If you only ski once, should have rented (\$50), instead bought (\$500)

Never buy:

- What if you ski M ≈ ∞ times?
- Should have bought (\$500), instead rented (M · \$50)

Want to go skiing, but don't know how many times you'll be able to go this year.

Should you rent or buy?

- Renting skis: \$50
- Buying skis: \$500
- Every day you ski and haven't yet bought, need to decide: rent or buy?

Buy right away:

 If you only ski once, should have rented (\$50), instead bought (\$500)

Never buy:

- What if you ski M ≈ ∞ times?
- Should have bought (\$500), instead rented (M · \$50)

What's the right strategy (for these costs)?

Rent until you realize you should have bought!

BLTN: Rent 9 times, buy on 10'th.

Rent until you realize you should have bought!

BLTN: Rent 9 times, buy on 10'th.

If ski \leq **9** times:

Rent until you realize you should have bought!

BLTN: Rent 9 times, buy on 10'th.

If ski \leq **9** times: optimal

Rent until you realize you should have bought!

BLTN: Rent 9 times, buy on 10'th.

If ski \leq **9** times: optimal

If ski \geq **10** times:

Rent until you realize you should have bought!

BLTN: Rent 9 times, buy on 10'th.

If ski \leq **9** times: optimal

If ski \geq **10** times:

- ► ALG = 450 + 500 = 950
- ▶ OPT = 500

Rent until you realize you should have bought!

BLTN: Rent 9 times, buy on 10'th.

If ski \leq **9** times: optimal

If ski \geq **10** times:

- ► ALG = 450 + 500 = 950
- ▶ OPT = 500

Never more than twice (actually $\frac{19}{10}$ times) what we should have done!

Competitive Ratio

Definition

The *competitive ratio* of algorithm **ALG** is the maximum over all inputs/futures σ of

 $\frac{\mathsf{ALG}(\sigma)}{\mathsf{OPT}(\sigma)},$

where $ALG(\sigma)$ is the cost of ALG on σ and $OPT(\sigma)$ is the optimal cost for σ (knowing the future).

Competitive Ratio

Definition

The *competitive ratio* of algorithm **ALG** is the maximum over all inputs/futures σ of

 $\frac{\mathsf{ALG}(\sigma)}{\mathsf{OPT}(\sigma)},$

where $ALG(\sigma)$ is the cost of ALG on σ and $OPT(\sigma)$ is the optimal cost for σ (knowing the future).

So on ski rental problem with previous values, competitive ratio is $\frac{19}{10}$.

 \mathbf{r} to rent, \mathbf{p} to buy. Assume \mathbf{r} divides \mathbf{p} for simplicity.

\$r to rent, **\$p** to buy. Assume **r** divides **p** for simplicity.

BLTN: Rent $\frac{p}{r} - 1$ times, then buy.

\$r to rent, **\$p** to buy. Assume **r** divides **p** for simplicity.

BLTN: Rent $\frac{p}{r} - 1$ times, then buy.

Theorem

BLTN has competitive ratio at most $2 - \frac{r}{n}$.

\$r to rent, **\$p** to buy. Assume **r** divides **p** for simplicity.

BLTN: Rent $\frac{p}{r} - 1$ times, then buy.

Theorem

BLTN has competitive ratio at most $2 - \frac{r}{n}$.

Case 1: Ski $z \leq \frac{p}{r} - 1$ times

\$r to rent, **\$p** to buy. Assume **r** divides **p** for simplicity.

BLTN: Rent $\frac{p}{r} - 1$ times, then buy.

Theorem

BLTN has competitive ratio at most $2 - \frac{r}{p}$.

- **Case 1:** Ski $z \le \frac{p}{r} 1$ times
 - ALG = $z \cdot r$

• OPT = min(
$$z \cdot r, p$$
) = $z \cdot r$
= $\frac{ALG}{OPT} = 1$

\$r to rent, **\$p** to buy. Assume **r** divides **p** for simplicity.

BLTN: Rent $\frac{p}{r} - 1$ times, then buy.

Theorem

BLTN has competitive ratio at most $2 - \frac{r}{p}$.

Case 1: Ski $z \le \frac{p}{r} - 1$ times **Case 2:** Ski $z \ge \frac{p}{r}$ times

• ALG = $z \cdot r$

• OPT = min(
$$z \cdot r, p$$
) = $z \cdot r$
⇒ $\frac{ALG}{OPT} = 1$

\$r to rent, **\$p** to buy. Assume **r** divides **p** for simplicity.

BLTN: Rent $\frac{p}{r} - 1$ times, then buy.

Theorem

BLTN has competitive ratio at most $2 - \frac{r}{p}$.

Case 1: Ski $z \le \frac{p}{r} - 1$ times

• ALG = $z \cdot r$

• OPT = min(
$$z \cdot r, p$$
) = $z \cdot r$
• $\frac{ALG}{OPT} = 1$

Case 2: Ski
$$z \ge \frac{p}{r}$$
 times
ALG = $r \cdot (\frac{p}{r} - 1) + p = p - r + p = 2p - r$
OPT = min $(r \cdot z, p) = p$
 $\implies \frac{ALG}{OPT} = \frac{2p-r}{p} = 2 - \frac{r}{p}$

\$r to rent, **\$p** to buy. Assume **r** divides **p** for simplicity.

BLTN: Rent $\frac{p}{r} - 1$ times, then buy.

Theorem

BLTN has competitive ratio at most $2 - \frac{r}{p}$.

Case 1: Ski $z \le \frac{p}{r} - 1$ times Case 2: Ski $z \ge \frac{p}{r}$ time

• ALG =
$$z \cdot r$$

• OPT = min(
$$z \cdot r, p$$
) = $z \cdot r$
• $\frac{ALG}{OPT} = 1$

Case 2: Ski
$$z \ge \frac{p}{r}$$
 times
ALG = $r \cdot (\frac{p}{r} - 1) + p = p - r + p = 2p - r$
OPT = min($r \cdot z, p$) = p
 $\implies \frac{ALG}{OPT} = \frac{2p-r}{p} = 2 - \frac{r}{p}$

So for all inputs / futures,
$$\frac{ALG}{OPT} \leq 2 - \frac{r}{p}$$

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic ALG: "ski x times, then buy".

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic **ALG**: "ski x times, then buy". Input: ski x + 1 times.

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic **ALG**: "ski x times, then buy". Input: ski x + 1 times.

Case 1: $x \ge p/r$

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic **ALG**: "ski x times, then buy". Input: ski x + 1 times.

Case 1: $x \ge p/r$

OPT = min(p, (x + 1)r) = p

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic **ALG**: "ski x times, then buy". Input: ski x + 1 times.

Case 1: $x \ge p/r$

- OPT = min(p, (x + 1)r) = p
- ALG = $xr + p \ge 2p$

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic **ALG**: "ski x times, then buy". Input: ski x + 1 times.

```
Case 1: x \ge p/r
```

- OPT = min(p, (x + 1)r) = p
- ALG = $xr + p \ge 2p$
- $\implies \frac{ALG}{OPT} \ge 2 > 2 \frac{r}{p}$

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic **ALG**: "ski x times, then buy". Input: ski x + 1 times.

Case 1: $x \ge p/r$ • OPT = min(p, (x + 1)r) = p • ALG = xr + p \ge 2p $\implies \frac{ALG}{OPT} \ge 2 > 2 - \frac{r}{p}$ Case 2: $x \le \frac{p}{r} - 1$

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic **ALG**: "ski x times, then buy". Input: ski x + 1 times.

Case 1: $x \ge p/r$ • OPT = min(p, (x + 1)r) = p • ALG = $xr + p \ge 2p$ $\Rightarrow \frac{ALG}{OPT} \ge 2 > 2 - \frac{r}{p}$ Case 2: $x \le \frac{p}{r} - 1$ • OPT = min(p, (x + 1)r) = (x + 1)r

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic **ALG**: "ski x times, then buy". Input: ski x + 1 times.

Case 1: x ≥ p/r • OPT = min(p, (x + 1)r) = p • ALG = xr + p ≥ 2p

 $\frac{ALG}{OPT} \ge 2 > 2 - \frac{r}{p}$

Case 2:
$$x \le \frac{p}{r} - 1$$

• OPT = min(p, (x + 1)r) = (x + 1)r
• Al G = xr + p

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic **ALG**: "ski x times, then buy". Input: ski x + 1 times.

Case 1: $x \ge p/r$ • OPT = min(p, (x + 1)r) = p • ALG = xr + p \ge 2p

 $\frac{ALG}{OPT} \ge 2 > 2 - \frac{r}{p}$

Case 2: $x \le \frac{p}{r} - 1$ • OPT = min(p, (x + 1)r) = (x + 1)r • ALG = xr + p

$$\frac{ALG}{OPT} = \frac{xr+p}{(x+1)r} = \frac{xr+p}{xr+r} = 1 + \frac{p-r}{xr+r}$$
$$\geq 1 + \frac{p-r}{(\frac{p}{r}-1)r+r} = 1 + \frac{p-r}{p} = 2 - \frac{r}{p}$$

Elevator Problem

Trying to get up a building: takes **E** seconds by elevator, **S** seconds by stairs.

- How long should we wait for the elevator?
- Example: **E** = **15**, **S** = **45**.

Trying to get up a building: takes **E** seconds by elevator, **S** seconds by stairs.

- How long should we wait for the elevator?
- Example: **E** = **15**, **S** = **45**.

BLTN: Wait **S** – **E** seconds, then give up and take stairs

Trying to get up a building: takes **E** seconds by elevator, **S** seconds by stairs.

- How long should we wait for the elevator?
- Example: **E** = **15**, **S** = **45**.

BLTN: Wait S - E seconds, then give up and take stairs

If elevator arrives at $x \leq S - E$:

Trying to get up a building: takes **E** seconds by elevator, **S** seconds by stairs.

- How long should we wait for the elevator?
- Example: **E** = **15**, **S** = **45**.

BLTN: Wait **S** – **E** seconds, then give up and take stairs

If elevator arrives at $x \leq S - E$:

- OPT = min(S, x + E) = x + E
- ► ALG = x + E
- $\implies \frac{ALG}{OPT} = 1$

Trying to get up a building: takes **E** seconds by elevator, **S** seconds by stairs.

- How long should we wait for the elevator?
- Example: **E** = **15**, **S** = **45**.

BLTN: Wait $\mathbf{S} - \mathbf{E}$ seconds, then give up and take stairs

If elevator arrives at $\mathbf{x} \leq \mathbf{S} - \mathbf{E}$:

If elevator arrives at x > S - E:

- OPT = min(S, x + E) = x + E
- ► ALG = x + E
- $\implies \frac{ALG}{OPT} = 1$

Trying to get up a building: takes **E** seconds by elevator, **S** seconds by stairs.

- How long should we wait for the elevator?
- Example: **E** = **15**, **S** = **45**.

BLTN: Wait S - E seconds, then give up and take stairs

If elevator arrives at $\mathbf{x} \leq \mathbf{S} - \mathbf{E}$:

- OPT = min(S, x + E) = x + E
- ► ALG = x + E
- $\implies \frac{ALG}{OPT} = 1$

If elevator arrives at $\mathbf{x} > \mathbf{S} - \mathbf{E}$:

• ALG =
$$(S - E) + S = 2S - E$$

$$\implies \frac{ALG}{OPT} = \frac{2S-E}{S} = 2 - \frac{E}{S}$$

Paging

Classical problem in computer systems/theory

- Disk (slow) with N pages
- Memory (fast) with room for k < N pages</p>
- If OS/application requests a page not in memory: "page fault"
 - Need to bring requested page into memory, evict a page from memory (if currently full)
- Question: What to evict?

Paging

Classical problem in computer systems/theory

- Disk (slow) with N pages
- Memory (fast) with room for k < N pages</p>
- If OS/application requests a page not in memory: "page fault"
 - Need to bring requested page into memory, evict a page from memory (if currently full)
- Question: What to evict?

Example: k = 3. Requests: 1, 2, 3, 2, 4, 3, 4, 1, 2, 3, 4

(Convention: initial page faults to fill table don't count: only pay when we *evict* a page)

Standard algorithm: "Least Recently Used" (LRU)

Evict page from memory that hasn't been used in the longest time

Standard algorithm: "Least Recently Used" (LRU)

- Evict page from memory that hasn't been used in the longest time
- Intuition:
 - Want to evict page that's next used furthest in the future. But don't know future!
 - Hope that since it hasn't been used for a long time, won't be requested again for a long time.

Standard algorithm: "Least Recently Used" (LRU)

- Evict page from memory that hasn't been used in the longest time
- Intuition:
 - Want to evict page that's next used furthest in the future. But don't know future!
 - Hope that since it hasn't been used for a long time, won't be requested again for a long time.

Is this a good algorithm? What's the competitive ratio? Cost = # evictions.

Standard algorithm: "Least Recently Used" (LRU)

- Evict page from memory that hasn't been used in the longest time
- Intuition:
 - Want to evict page that's next used furthest in the future. But don't know future!
 - Hope that since it hasn't been used for a long time, won't be requested again for a long time.

Is this a good algorithm? What's the competitive ratio? Cost = # evictions.

▶ k = 3, N = 4

Standard algorithm: "Least Recently Used" (LRU)

- Evict page from memory that hasn't been used in the longest time
- Intuition:
 - Want to evict page that's next used furthest in the future. But don't know future!
 - Hope that since it hasn't been used for a long time, won't be requested again for a long time.

Is this a good algorithm? What's the competitive ratio? Cost = # evictions.

- ▶ k = 3, N = 4 • $\kappa = 3$, N = 4• Requests: 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, ...



Standard algorithm: "Least Recently Used" (LRU)

- Evict page from memory that hasn't been used in the longest time
- Intuition:
 - Want to evict page that's next used furthest in the future. But don't know future!
 - Hope that since it hasn't been used for a long time, won't be requested again for a long time.

Is this a good algorithm? What's the competitive ratio? Cost = # evictions.

- ▶ k = 3, N = 4
- Requests: 1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,...

So LRU has competitive ratio $\approx \mathbf{k}$

LRU evicts every time, OPT evicts 1 out of every k times.

Theorem

No deterministic algorithm has competitive ratio less than k.

Let **ALG** be some deterministic algorithm. Set N = k + 1

Theorem

No deterministic algorithm has competitive ratio less than k.

Let **ALG** be some deterministic algorithm. Set N = k + 1Request sequence:

Theorem

No deterministic algorithm has competitive ratio less than k.

Let **ALG** be some deterministic algorithm. Set N = k + 1Request sequence: Whatever is not in memory for **ALG**!

Theorem

No deterministic algorithm has competitive ratio less than k.

Let **ALG** be some deterministic algorithm. Set N = k + 1Request sequence: Whatever is not in memory for **ALG**!

 \implies ALG has an eviction every time (after initialization)

Theorem

No deterministic algorithm has competitive ratio less than k.

Let **ALG** be some deterministic algorithm. Set N = k + 1Request sequence: Whatever is not in memory for **ALG**!

 \implies ALG has an eviction every time (after initialization)

OPT: evict page whose next request is furthest in the future

 Every page in memory needs to be requested before next eviction. So next eviction is in at least k steps.

Theorem

No deterministic algorithm has competitive ratio less than k.

Let **ALG** be some deterministic algorithm. Set N = k + 1Request sequence: Whatever is not in memory for **ALG**!

 \implies ALG has an eviction every time (after initialization)

OPT: evict page whose next request is furthest in the future

 Every page in memory needs to be requested before next eviction. So next eviction is in at least k steps.

$$\implies \frac{\mathsf{ALG}}{\mathsf{OPT}} \ge \mathsf{k}$$

Marking Algorithm

Get around lower bound by using randomization

Lower bound argument doesn't apply because can't set request sequence to ask for whatever's not in memory, since that involved randomness! (Oblivious adversary)

Marking Algorithm

Get around lower bound by using randomization

Lower bound argument doesn't apply because can't set request sequence to ask for whatever's not in memory, since that involved randomness! (Oblivious adversary)

Assume memory initially 1,2,...,k. Set all pages in memory to be "unmarked"

When page requested:

- If already in memory, "mark" it
- If not in memory:
 - If all pages in memory "marked", unmark all
 - Choose an unmarked page uniformly at random to evict
 - Bring in new page, mark it

Marking Analysis

Theorem

Expected competitive ratio at most O(log k):

 $\frac{\mathsf{E}[\mathsf{ALG}(\sigma)]}{\mathsf{OPT}(\sigma)} \leq \mathsf{O}(\log \mathsf{k}) \text{ for all request sequences } \sigma.$

Marking Analysis

Theorem

Expected competitive ratio at most O(log k):

 $\frac{\mathsf{E}[\mathsf{ALG}(\sigma)]}{\mathsf{OPT}(\sigma)} \leq \mathsf{O}(\mathsf{log}\,\mathsf{k}) \text{ for all request sequences } \sigma.$

Proof sketch for N = k + 1: full generality more complicated

Marking Analysis

Theorem

Expected competitive ratio at most O(log k):

 $\frac{\mathsf{E}[\mathsf{ALG}(\sigma)]}{\mathsf{OPT}(\sigma)} \leq \mathsf{O}(\log \mathsf{k}) \text{ for all request sequences } \sigma.$

Proof sketch for N = k + 1: full generality more complicated

Phase: time between "unmark all" events.

Theorem

Expected competitive ratio at most O(log k):

 $\frac{\mathsf{E}[\mathsf{ALG}(\sigma)]}{\mathsf{OPT}(\sigma)} \leq \mathsf{O}(\log \mathsf{k}) \text{ for all request sequences } \sigma.$

Proof sketch for N = k + 1: full generality more complicated

Phase: time between "unmark all" events.

In each phase:

• **OPT** \geq **1**, since all **N** pages requested

Key point: the one page not in memory is uniformly distributed among all unmarked pages.

Key point: the one page not in memory is uniformly distributed among all unmarked pages.

When page requested:

- If marked: in memory, no eviction
- If unmarked: if currently i unmarked pages, then Pr[eviction] = Pr[requested page not in memory] = 1/i
 - Becomes marked

Key point: the one page not in memory is uniformly distributed among all unmarked pages.

When page requested:

- If marked: in memory, no eviction
- If unmarked: if currently i unmarked pages, then Pr[eviction] = Pr[requested page not in memory] = 1/i
 - Becomes marked

At beginning of phase $\mathbf{i} = \mathbf{N}$, at end of phase $\mathbf{i} = \mathbf{1}$. Goes down by one every time page gets marked.

Key point: the one page not in memory is uniformly distributed among all unmarked pages.

When page requested:

- If marked: in memory, no eviction
- If unmarked: if currently i unmarked pages, then Pr[eviction] = Pr[requested page not in memory] = 1/i
 - Becomes marked

At beginning of phase $\mathbf{i} = \mathbf{N}$, at end of phase $\mathbf{i} = \mathbf{1}$. Goes down by one every time page gets marked.

$$\implies$$
 expected cost in phase at most $\frac{1}{N} + \frac{1}{N-1} + \frac{1}{N-2} + \dots + \frac{1}{2} + 1 = O(\log N) = O(\log k)$