Lecture 23: Approximation Algorithms

Michael Dinitz

November 16, 2021
601.433/633 Introduction to Algorithms
Introduction

What should we do if a problem is NP-hard?

- Give up on efficiency?
- Give up on correctness?
- Give up on worst-case analysis?
Introduction

What should we do if a problem is NP-hard?

- Give up on efficiency?
- Give up on correctness?
- Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).
Introduction

What should we do if a problem is NP-hard?

- Give up on efficiency?
- Give up on correctness?
- Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).

Popular answer: *approximation algorithms* (one of my main research areas!)

- Give up on correctness, but in a provable, bounded way.
- Applies to optimization problems only (not pure decision problems)
- Has to run in polynomial time, but can return answer that is *approximately* correct.
Main Definition

Definition

Let \mathcal{A} be some (minimization) problem, and let I be an instance of that problem. Let $\text{OPT}(I)$ be the cost of the optimal solution on that instance. Let ALG be a polynomial-time algorithm for \mathcal{A}, and let $\text{ALG}(I)$ denote the cost of the solution returned by ALG on instance I. Then we say that ALG is an α-approximation if

$$\frac{\text{ALG}(I)}{\text{OPT}(I)} \leq \alpha$$

for all instances I of \mathcal{A}.

- Approximation always at least 1
- For maximization, can either require $\frac{\text{ALG}(I)}{\text{OPT}(I)} \geq \alpha$ (where $\alpha < 1$) or $\frac{\text{OPT}(I)}{\text{ALG}(I)} \leq \alpha$ (where $\alpha > 1$)
Main Definition

Definition

Let \mathcal{A} be some (minimization) problem, and let I be an instance of that problem. Let $\text{OPT}(I)$ be the cost of the optimal solution on that instance. Let ALG be a polynomial-time algorithm for \mathcal{A}, and let $\text{ALG}(I)$ denote the cost of the solution returned by ALG on instance I. Then we say that ALG is an α-approximation if

$$\frac{\text{ALG}(I)}{\text{OPT}(I)} \leq \alpha$$

for all instances I of \mathcal{A}.

- Approximation always at least 1
- For maximization, can either require $\frac{\text{ALG}(I)}{\text{OPT}(I)} \geq \alpha$ (where $\alpha < 1$) or $\frac{\text{OPT}(I)}{\text{ALG}(I)} \leq \alpha$ (where $\alpha > 1$)
- Also gives “fine-grained” complexity: not all NP-hard problems are equally hard!
Definition: $S \subseteq V$ is a vertex cover of $G = (V, E)$ if $S \cap e \neq \emptyset$ for all $e \in E$.

Definition (Vertex Cover)
Instance is graph $G = (V, E)$. Find vertex cover S, minimize $|S|$.

Last time: Vertex Cover NP-hard (reduction from Independent Set)
Vertex Cover

Definition: $S \subseteq V$ is a *vertex cover* of $G = (V, E)$ if $S \cap e \neq \emptyset$ for all $e \in E$.

Definition (Vertex Cover)

Instance is graph $G = (V, E)$. Find vertex cover S, minimize $|S|$.

Last time: **Vertex Cover NP**-hard (reduction from **Independent Set**)

So cannot expect to compute a minimum vertex cover efficiently. What about an *approximately* minimum vertex cover?

- Not an approximate vertex cover: still needs to be an actual vertex cover!
Obvious Algorithm 1

\[S = \emptyset \]

while there is at least one uncovered edge {
 Pick arbitrary vertex \(v \) incident on at least one uncovered edge
 Add \(v \) to \(S \)
\}

Not a good approximation: star graph.

\[\text{OPT} = 1 \]
\[\text{ALG} = n - 1 \]
Obvious Algorithm 1

\[S = \emptyset \]
while there is at least one uncovered edge {
 Pick arbitrary vertex \(v \) incident on at least one uncovered edge
 Add \(v \) to \(S \)
}

Not a good approximation: star graph.

- \(\text{OPT} = 1 \)
- \(\text{ALG} = n - 1 \)
Obvious Algorithm 2

\[
S = \emptyset
\]
while there is at least one uncovered edge {
 Let \(v \) be vertex incident on most uncovered edges
 Add \(v \) to \(S \)
}
Obvious Algorithm 2

\[S = \emptyset \]

while there is at least one uncovered edge {
 Let \(v \) be vertex incident on most uncovered edges
 Add \(v \) to \(S \)
}

Better, but still not great.
Obvious Algorithm 2

\[S = \emptyset \]

while there is at least one uncovered edge {
 Let \(v \) be vertex incident on most uncovered edges
 Add \(v \) to \(S \)
}

Better, but still not great.

- \(|U| = t \)
- For all \(i \in \{2, 3, \ldots, t\} \), divide \(U \) into
 \(\lceil t/i \rceil \) disjoint sets of size \(i \):
 \(G^i_1, G^i_2, \ldots, G^i_{\lceil t/i \rceil} \)
- Add vertex for each set, edge to all elements.
Obvious Algorithm 2

\[S = \emptyset \]
while there is at least one uncovered edge {
 Let \(v \) be vertex incident on most uncovered edges
 Add \(v \) to \(S \)
}

Better, but still not great.

- \(|U| = t\)
- For all \(i \in \{2, 3, \ldots, t\} \), divide \(U \) into \(\lfloor t/i \rfloor \) disjoint sets of size \(i \):
 \(G^i_1, G^i_2, \ldots, G^i_{\lfloor t/i \rfloor} \)
- Add vertex for each set, edge to all elements.

\[\text{OPT} = t \]
Obvious Algorithm 2

\[S = \emptyset \]
while there is at least one uncovered edge {
 Let \(v \) be vertex incident on most uncovered edges
 Add \(v \) to \(S \)
}

Better, but still not great.

- \(|U| = t\)
- For all \(i \in \{2, 3, \ldots, t\} \), divide \(U \) into \([t/i]\) disjoint sets of size \(i \):
 \(G_i^1, G_i^2, \ldots, G_i^{[t/i]} \)
- Add vertex for each set, edge to all elements.

\[\text{OPT} = t \]
\[\text{ALG} = \sum_{i=2}^{t} \frac{t}{i} \geq \sum_{i=2}^{t} \left(\frac{1}{2} \cdot \frac{t}{i} \right) = \frac{t}{2} \sum_{i=2}^{t} \frac{1}{i} = \Omega(t \log t) \]
Better Algorithm

\[S = \emptyset \]
while there is at least one uncovered edge {
 Pick arbitrary uncovered edge \(\{u, v\} \)
 Add \(u \) and \(v \) to \(S \)
}

Theorem
This algorithm is a 2-approximation.

Suppose algorithm take \(k \) iterations. Let \(L \) be edges chosen by the algorithm, so \(|L| = k \).
\[\implies |S| = 2k \]
\(L \) has structure: it is a matching!
\[\implies \text{OPT} \geq k \]
\[\implies \text{ALG} \leq 2 \cdot \text{OPT} \]
Better Algorithm

\[S = \emptyset \]
while there is at least one uncovered edge {
 Pick arbitrary uncovered edge \(\{u, v\} \)
 Add \(u \) and \(v \) to \(S \)
}

Theorem

This algorithm is a 2-approximation.
Better Algorithm

\[S = \emptyset \]

while there is at least one uncovered edge {
 Pick arbitrary uncovered edge \(\{u, v\} \)
 Add \(u \) and \(v \) to \(S \)
}

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take \(k \) iterations. Let \(L \) be *edges* chosen by the algorithm, so \(|L| = k \).
Better Algorithm

\[S = \emptyset \]

while there is at least one uncovered edge {
 Pick arbitrary uncovered edge \(\{u, v\} \)
 Add \(u \) and \(v \) to \(S \)
}

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take \(k \) iterations. Let \(L \) be edges chosen by the algorithm, so \(|L| = k \).

\[\implies |S| = 2k \]
Better Algorithm

\[S = \emptyset \]

while there is at least one uncovered edge {
 Pick arbitrary uncovered edge \(\{u, v\} \)
 Add \(u \) and \(v \) to \(S \)
}

\[\text{Theorem} \]

This algorithm is a 2-approximation.

Suppose algorithm take \(k \) iterations. Let \(L \) be edges chosen by the algorithm, so \(|L| = k \).

\[\implies |S| = 2k \]

\(L \) has structure: it is a matching!
Better Algorithm

\[S = \emptyset \]
while there is at least one uncovered edge {
 \[\text{Pick arbitrary uncovered edge \{u, v\}} \]
 \[\text{Add u and v to S} \]
}

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take \(k \) iterations. Let \(L \) be edges chosen by the algorithm, so \(|L| = k \).

\[\implies |S| = 2k \]

\(L \) has structure: it is a matching!

\[\implies \text{OPT} \geq k \]
Better Algorithm

\[S = \emptyset \]

while there is at least one uncovered edge {
 Pick arbitrary uncovered edge \(\{u, v\} \)
 Add \(u \) and \(v \) to \(S \)
}

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take \(k \) iterations. Let \(L \) be edges chosen by the algorithm, so \(|L| = k \).

\[\implies |S| = 2k \]

\(L \) has structure: it is a matching!

\[\implies \text{OPT} \geq k \]

\[\implies \text{ALG/OPT} \leq 2. \]
More Complicated Algorithm: LP Rounding

Write LP for vertex cover:

\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} x_v \\
\text{subject to} & \quad x_u + x_v \geq 1 \quad \forall \{u, v\} \in E \\
& \quad 0 \leq x_u \leq 1 \quad \forall u \in V
\end{align*}
\]

Question: Is this enough?

Let \(\text{OPT}(LP) \) denote value of optimal LP solution: does \(\text{OPT}(LP) = \text{OPT} \)?

\(\text{OPT} = 2 \)

\(\text{OPT}(LP) = 3 \)

\(2 \)
More Complicated Algorithm: LP Rounding

Write LP for vertex cover:

\[
\begin{align*}
\min & \quad \sum_{v \in V} x_v \\
\text{subject to} & \quad x_u + x_v \geq 1 \quad \forall \{u, v\} \in E \\
& \quad 0 \leq x_u \leq 1 \quad \forall u \in V
\end{align*}
\]

Question: Is this enough?

Let \(\text{OPT}(\text{LP})\) denote value of optimal LP solution: does \(\text{OPT}(\text{LP}) = \text{OPT}\)?

\[
\text{OPT} = 2 \\
\text{OPT}(\text{LP}) = 3
\]

Michael Dinitz
Lecture 23: Approximation Algorithms
November 16, 2021
8 / 14
More Complicated Algorithm: LP Rounding

Write LP for vertex cover:

\[
\begin{align*}
\min & \quad \sum_{v \in V} x_v \\
\text{subject to} & \quad x_u + x_v \geq 1 \quad \forall \{u, v\} \in E \\
& \quad 0 \leq x_u \leq 1 \quad \forall u \in V
\end{align*}
\]

Question: Is this enough? ❌

- Let \(\text{OPT}(\text{LP})\) denote value of optimal LP solution: does \(\text{OPT}(\text{LP}) = \text{OPT}\)?
More Complicated Algorithm: LP Rounding

Write LP for vertex cover:

$$\min \sum_{v \in V} x_v$$

subject to

$$x_u + x_v \geq 1 \quad \forall \{u, v\} \in E$$

$$0 \leq x_u \leq 1 \quad \forall u \in V$$

Question: Is this enough?

- Let $\text{OPT}(\text{LP})$ denote value of optimal LP solution: does $\text{OPT}(\text{LP}) = \text{OPT}$?

 - $\text{OPT} = 2$
 - $\text{OPT}(\text{LP}) = 3/2$
LP Structure

\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} x_v \\
\text{subject to} & \quad x_u + x_v \geq 1 \quad \forall \{u, v\} \in E \\
& \quad 0 \leq x_u \leq 1 \quad \forall u \in V
\end{align*}
\]

Lemma

\[\text{OPT}(LP) \leq \text{OPT}\]
LP Structure

\[
\begin{align*}
\min & \quad \sum_{v \in V} x_v \\
\text{subject to} & \quad x_u + x_v \geq 1 \quad \forall \{u, v\} \in E \\
& \quad 0 \leq x_u \leq 1 \quad \forall u \in V
\end{align*}
\]

Lemma

\[\text{OPT}(\text{LP}) \leq \text{OPT}\]

Proof.

Let \(S\) be optimal vertex cover (so \(|S| = \text{OPT}\)).

Let \(x_v = \begin{cases}
1 & \text{if } v \in S \\
0 & \text{otherwise}
\end{cases}\)
LP Structure

\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} x_v \\
\text{subject to} & \quad x_u + x_v \geq 1 \quad \forall \{u, v\} \in E \\
& \quad 0 \leq x_u \leq 1 \quad \forall u \in V
\end{align*}
\]

Lemma

\[\text{OPT} (\text{LP}) \leq \text{OPT}\]

Proof.

Let \(S \) be optimal vertex cover (so \(|S| = \text{OPT}|\).

Let \(x_v = \begin{cases}
1 & \text{if } v \in S \\
0 & \text{otherwise}
\end{cases} \)

\[x_u + x_v \geq 1 \text{ for all } \{u, v\} \in E \text{ by definition of } S\]

\[0 \leq x_v \leq 1 \text{ for all } v \in V \text{ by definition}\]
LP Structure

\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} x_v \\
\text{subject to} & \quad x_u + x_v \geq 1 \quad \forall \{u, v\} \in E \\
& \quad 0 \leq x_u \leq 1 \quad \forall u \in V
\end{align*}
\]

Lemma

\[\text{OPT}(\text{LP}) \leq \text{OPT}\]

Proof.

Let \(S \) be optimal vertex cover (so \(|S| = \text{OPT} \)).

Let \(x_v = \begin{cases}
1 & \text{if } v \in S \\
0 & \text{otherwise}
\end{cases} \)

\(x_u + x_v \geq 1 \) for all \(\{u, v\} \in E \) by definition of \(S \)

\(0 \leq x_v \leq 1 \) for all \(v \in V \) by definition

\[\implies x \text{ feasible}\]
LP Structure

\[\begin{align*}
\text{min} & \quad \sum_{v \in V} x_v \\
\text{subject to} & \quad x_u + x_v \geq 1 \quad \forall \{u, v\} \in E \\
& \quad 0 \leq x_u \leq 1 \quad \forall u \in V
\end{align*} \]

Lemma

\[\text{OPT}(LP) \leq \text{OPT} \]

Proof.

Let \(S \) be optimal vertex cover (so \(|S| = \text{OPT}|\)).

Let \(x_v = \begin{cases}
1 & \text{if } v \in S \\
0 & \text{otherwise}
\end{cases} \)

\(x_u + x_v \geq 1 \) for all \(\{u, v\} \in E \) by definition of \(S \)

\(0 \leq x_v \leq 1 \) for all \(v \in V \) by definition

\(\implies x \text{ feasible} \)

\(\implies \text{OPT}(LP) \leq \sum_{v \in V} x_v = |S| = \text{OPT} \)
LP Structure

\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} x_v \\
\text{subject to} & \quad x_u + x_v \geq 1 \quad \forall \{u, v\} \in E \\
& \quad 0 \leq x_u \leq 1 \quad \forall u \in V
\end{align*}
\]

Lemma

\[\text{OPT}(LP) \leq \text{OPT}\]

Proof.

Let \(S\) be optimal vertex cover (so \(|S| = \text{OPT}\)).

Let \(x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{otherwise} \end{cases}\)

\(x_u + x_v \geq 1\) for all \(\{u, v\} \in E\) by definition of \(S\)

\(0 \leq x_v \leq 1\) for all \(v \in V\) by definition

\[\Rightarrow x\text{ feasible}
\]

\[\Rightarrow \text{OPT}(LP) \leq \sum_{v \in V} x_v = |S| = \text{OPT}\]
LP Rounding Algorithm

- Solve LP to get x^* (so $\sum_{v \in V} x^*_v = \text{OPT}(\text{LP})$)
- Return $S = \{v \in V : x^*_v \geq 1/2\}$
LP Rounding Algorithm

- Solve LP to get x^* (so $\sum_{v \in V} x_v^* = \text{OPT}(LP)$)
- Return $S = \{v \in V : x_v^* \geq 1/2\}$

Polytime: ✓
LP Rounding Algorithm

- Solve LP to get x^* (so $\sum_{v \in V} x_v^* = \text{OPT}(LP)$)
- Return $S = \{v \in V : x_v^* \geq 1/2\}$

Polytime: ✓

Lemma

S is a vertex cover.
LP Rounding Algorithm

- Solve LP to get x^* (so $\sum_{v \in V} x_v^* = \text{OPT}(LP)$)
- Return $S = \{v \in V : x_v^* \geq 1/2\}$

Polytime: ✓

Lemma

S is a vertex cover.

Proof.

Let $\{u, v\} \in E$.

By LP constraint, $x_u^* + x_v^* \geq 1$
LP Rounding Algorithm

- Solve LP to get x^* (so $\sum_{v \in V} x_v^* = \text{OPT}(LP)$)
- Return $S = \{v \in V : x_v^* \geq 1/2\}$

Lemma

S is a vertex cover.

Proof.

Let $\{u, v\} \in E$.

By LP constraint, $x_u^* + x_v^* \geq 1$

$\implies \max(x_u^*, x_v^*) \geq 1/2$
LP Rounding Algorithm

- Solve LP to get x^* (so $\sum_{v \in V} x^*_v = \text{OPT}(LP)$)
- Return $S = \{v \in V : x^*_v \geq 1/2\}$

Polytime: ✓

Lemma

S is a vertex cover.

Proof.

Let $\{u, v\} \in E$.

By LP constraint, $x^*_u + x^*_v \geq 1$

$\implies \max(x^*_u, x^*_v) \geq 1/2$

\implies At least one of u, v in S
LP Rounding Algorithm

- Solve LP to get x^* (so $\sum_{v \in V} x^*_v = \text{OPT}(LP)$)
- Return $S = \{v \in V : x^*_v \geq 1/2\}$

Polytime: ✓

Lemma

S is a vertex cover.

Proof.

Let $\{u, v\} \in E$.

By LP constraint, $x^*_u + x^*_v \geq 1$

$\implies \max(x^*_u, x^*_v) \geq 1/2$

\implies At least one of u, v in S
LP Rounding Algorithm

- Solve LP to get x^* (so $\sum_{v \in V} x_v^* = \text{OPT}(\text{LP})$)
- Return $S = \{v \in V : x_v^* \geq 1/2\}$

Polytime: \checkmark

Lemma

S is a vertex cover.

Proof.

Let $\{u, v\} \in E$.

By LP constraint, $x_u^* + x_v^* \geq 1$

$\implies \max(x_u^*, x_v^*) \geq 1/2$

\implies At least one of u, v in S

Lemma

$|S| \leq 2 \cdot \text{OPT}$.

Proof.

$|S| = \sum_{v \in S} 1 \leq \sum_{v \in S} 2x_v^* \leq 2 \sum_{v \in V} x_v^*$

$= 2 \cdot \text{OPT}(\text{LP}) \leq 2 \cdot \text{OPT}$
Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w: V \rightarrow \mathbb{R}^+$. Find vertex cover S minimizing $\sum_{v \in S} w(v)$ subject to $x_u + x_v \geq 1 \quad \forall \{u, v\} \in E$.

Solve LP to get x^\ast. Return $S = \{v \in V : x^\ast_v \geq 1\}$.

Still: Polytime S a vertex cover $\leq \text{OPT}(LP) \leq 2\cdot \text{OPT}(LP) \leq 2 \cdot \text{OPT}$. Higher level: LP provides lower bound on OPT. Often handy!
Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given \(w : V \rightarrow \mathbb{R}^+ \). Find vertex cover \(S \) minimizing \(\sum_{v \in S} w(v) \)
Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w : V \to \mathbb{R}^+$. Find vertex cover S minimizing $\sum_{v \in S} w(v)$

$$\min \sum_{v \in V} w(v)x_v$$

subject to

$$x_u + x_v \geq 1 \quad \forall \{u, v\} \in E$$

$$0 \leq x_u \leq 1 \quad \forall u \in V$$
Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given \(w : V \to \mathbb{R}^+ \). Find vertex cover \(S \) minimizing \(\sum_{v \in S} w(v) \)

\[
\begin{align*}
\min \quad & \sum_{v \in V} w(v)x_v \\
\text{subject to} \quad & x_u + x_v \geq 1 \quad \forall \{u, v\} \in E \\
\quad & 0 \leq x_u \leq 1 \quad \forall u \in V \\
\end{align*}
\]

- Solve LP to get \(x^* \)
- Return \(S = \{v \in V : x_v^* \geq 1/2\} \)
Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given \(w : V \rightarrow \mathbb{R}^+ \). Find vertex cover \(S \) minimizing \(\sum_{v \in S} w(v) \)

\[
\begin{align*}
\min & \quad \sum_{v \in V} w(v)x_v \\
\text{subject to} & \quad x_u + x_v \geq 1 \quad \forall \{u, v\} \in E \\
& \quad 0 \leq x_u \leq 1 \quad \forall u \in V \\
\end{align*}
\]

Still:
- Polytime
- \(S \) a vertex cover
- \(\text{OPT}(LP) \leq \text{OPT} \)

- Solve LP to get \(x^* \)
- Return \(S = \{v \in V : x_v^* \geq 1/2\} \)
Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w: V \to \mathbb{R}^+$. Find vertex cover S minimizing $\sum_{v \in S} w(v)$

\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} w(v)x_v \\
\text{subject to} & \quad x_u + x_v \geq 1 \quad \forall \{u, v\} \in E \\
& \quad 0 \leq x_u \leq 1 \quad \forall u \in V
\end{align*}
\]

Still:

- Polytime
- S a vertex cover
- $\text{OPT}(LP) \leq \text{OPT}$

Solve LP to get x^*

Return $S = \{v \in V : x^*_v \geq 1/2\}$

\[
\sum_{v \in S} w(v) \leq \sum_{v \in S} 2x^*_v w(v) \leq 2 \sum_{v \in V} w(v)x^*_v = 2 \cdot \text{OPT}(LP) \leq 2 \cdot \text{OPT}
\]
Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w : V \rightarrow \mathbb{R}^+$. Find vertex cover S minimizing $\sum_{v \in S} w(v)$

$$\min \sum_{v \in V} w(v)x_v$$

subject to

- $x_u + x_v \geq 1 \quad \forall \{u, v\} \in E$
- $0 \leq x_u \leq 1 \quad \forall u \in V$

Still:

- Polytime
- S a vertex cover
- $\text{OPT}(LP) \leq \text{OPT}$

Higher level: LP provides *lower bound* on OPT. Often main difficulty!
Reductions and Approximation

Proved Vertex Cover \(\text{NP} \)-hard by reduction from Independent Set:

- Polytime algorithm for Vertex Cover \(\implies \) polytime algorithm for Independent Set

So does this mean that a 2-approximation for Vertex Cover \(\implies \) 2-approximation for Independent Set?
Reductions and Approximation

Proved Vertex Cover NP-hard by reduction from Independent Set:

- Polytime algorithm for Vertex Cover \implies polytime algorithm for Independent Set

So does this mean that a 2-approximation for Vertex Cover \implies 2-approximation for Independent Set?

No!
Reductions and Approximation

Proved **Vertex Cover** NP-hard by reduction from **Independent Set**:

- Polytime algorithm for **Vertex Cover** \implies polytime algorithm for **Independent Set**

So does this mean that a 2-approximation for **Vertex Cover** \implies 2-approximation for **Independent Set**?

No!

Theorem

*Assuming P \neq NP, for all constants $\epsilon > 0$ there is no polytime $n^{1-\epsilon}$-approximation for **Independent Set**.*
Reductions and Approximation

Proved **Vertex Cover** NP-hard by reduction from **Independent Set**:

- Polytime algorithm for **Vertex Cover** \implies polytime algorithm for **Independent Set**

So does this mean that a 2-approximation for **Vertex Cover** \implies 2-approximation for **Independent Set**?

No!

Theorem

*Assuming P \neq NP, for all constants $\epsilon > 0$ there is no polytime $n^{1-\epsilon}$-approximation for **Independent Set**.*

So these two problems are actually very different!
Reductions and Approximation

Proved **Vertex Cover** **NP**-hard by reduction from **Independent Set**:

- Polytime algorithm for **Vertex Cover** \implies polytime algorithm for **Independent Set**

So does this mean that a 2-approximation for **Vertex Cover** \implies 2-approximation for **Independent Set**?

No!

Theorem

*Assuming P ≠ NP, for all constants $\epsilon > 0$ there is no polytime $n^{1-\epsilon}$-approximation for **Independent Set**.*

So these two problems are actually very different!

There is a notion of “approximation-preserving reduction”, but it is more involved than a normal reduction.
Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

- E3-SAT: Same, but every clause has exactly three literals (still NP-complete)
Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

- E3-SAT: Same, but every clause has \textit{exactly} three literals (still \textbf{NP}-complete)

Optimization version: Max-E3SAT

- Find assignment to maximize \# satisfied clauses
Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals
- E3-SAT: Same, but every clause has \textit{exactly} three literals (still \textbf{NP}-complete)

Optimization version: Max-E3SAT
- Find assignment to maximize \# satisfied clauses

Easy \textit{randomized} algorithm:
Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has \(\leq 3 \) literals

- E3-SAT: Same, but every clause has \textit{exactly} three literals (still \textbf{NP}-complete)

Optimization version: Max-E3SAT

- Find assignment to maximize \# satisfied clauses

Easy \textit{randomized} algorithm: Choose random assignment!
Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

- E3-SAT: Same, but every clause has *exactly* three literals (still NP-complete)

Optimization version: Max-E3SAT

- Find assignment to maximize # satisfied clauses

Easy *randomized* algorithm: Choose random assignment!

- For each variable x_i, set $x_i = T$ with probability $1/2$ and F with probability $1/2$
Max-E3SAT: Analysis

Algorithm: Choose random assignment

Clause i: probability satisfied $= \frac{7}{8}$

Random variables:

For $i \in \{1, 2, \ldots, m\}$, let $X_i = \begin{cases} 1 & \text{if clause } i \text{ is satisfied} \\ 0 & \text{otherwise} \end{cases}$

$E[X_i] = \frac{7}{8}$

Let $X = \# \text{clauses satisfied} = \sum_{i=1}^{m} X_i$

$E[X] = E[\sum_{i=1}^{m} X_i] = \sum_{i=1}^{m} E[X_i] = \frac{7}{8} m \geq \frac{7}{8} \text{OPT}$

Can be derandomized (method of conditional expectations)

Theorem (Håstad '01)

Assuming $P \neq \text{NP}$, for all constant $\varepsilon > 0$, there is no polytime $\frac{7}{8} + \varepsilon$-approximation for Max-E3SAT.
Max-E3SAT: Analysis

Algorithm: Choose random assignment

Clause i: probability satisfied = $\frac{7}{8}$
Max-E3SAT: Analysis

Algorithm: Choose random assignment

Clause i: probability satisfied $= \frac{7}{8}$
Max-E3SAT: Analysis

Algorithm: Choose random assignment

Clause i: probability satisfied = $7/8$

Random variables:

- For $i \in \{1, 2, \ldots, m\}$, let $X_i = \begin{cases} 1 & \text{if clause } i \text{ satisfied} \\ 0 & \text{otherwise} \end{cases}$

- $E[X_i] = 7/8$
Max-E3SAT: Analysis

Algorithm: Choose random assignment

Clause i: probability satisfied $= \frac{7}{8}$

Random variables:

- For $i \in \{1, 2, \ldots, m\}$, let $X_i = \begin{cases} 1 & \text{if clause } i \text{ satisfied} \\ 0 & \text{otherwise} \end{cases}$
 - $E[X_i] = \frac{7}{8}$
- Let $X = \# \text{ clauses satisfied} = \sum_{i=1}^{m} X_i$
Max-E3SAT: Analysis

Algorithm: Choose random assignment

Clause i: probability satisfied = $7/8$

Random variables:

- For $i \in \{1, 2, \ldots, m\}$, let $X_i = \begin{cases}
1 & \text{if clause } i \text{ satisfied} \\
0 & \text{otherwise}
\end{cases}$

 - $E[X_i] = 7/8$

- Let $X = \#$ clauses satisfied = $\sum_{i=1}^{m} X_i$

\[
E[X] = E\left[\sum_{i=1}^{m} X_i \right] = \sum_{i=1}^{m} E[X_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8}m \geq \frac{7}{8}\text{OPT}
\]
Max-E3SAT: Analysis

Algorithm: Choose random assignment

Clause i: probability satisfied = $\frac{7}{8}$

Random variables:

- For $i \in \{1, 2, \ldots, m\}$, let $X_i = \begin{cases} 1 & \text{if clause } i \text{ satisfied} \\ 0 & \text{otherwise} \end{cases}$

 - $E[X_i] = \frac{7}{8}$

- Let $X = \# \text{ clauses satisfied} = \sum_{i=1}^{m} X_i$

 $$E[X] = E\left[\sum_{i=1}^{m} X_i\right] = \sum_{i=1}^{m} E[X_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8}m \geq \frac{7}{8} \text{OPT}$$

Can be derandomized (method of conditional expectations)
Max-E3SAT: Analysis

Algorithm: Choose random assignment

Clause \(i \): probability satisfied = \(\frac{7}{8} \)

Random variables:

- For \(i \in \{1, 2, \ldots, m\} \), let \(X_i = \begin{cases} 1 & \text{if clause } i \text{ satisfied} \\ 0 & \text{otherwise} \end{cases} \)

- \(E[X_i] = \frac{7}{8} \)

- Let \(X = \# \text{ clauses satisfied} = \sum_{i=1}^{m} X_i \)

- \(E[X] = E \left[\sum_{i=1}^{m} X_i \right] = \sum_{i=1}^{m} E[X_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8} m \geq \frac{7}{8} \text{OPT} \)

Can be derandomized (method of conditional expectations)

Theorem (Håstad ’01)

Assuming \(P \neq NP \), for all constant \(\epsilon > 0 \) there is no polytime \(\left(\frac{7}{8} + \epsilon \right) \)-approximation for Max-E3SAT.