Lecture 23: Approximation Algorithms

Michael Dinitz

November 16, 2021
601.433/633 Introduction to Algorithms

Introduction

What should we do if a problem is NP-hard?

- Give up on efficiency?
- Give up on correctness?
- Give up on worst-case analysis?

Introduction

What should we do if a problem is NP-hard?

- Give up on efficiency?
- Give up on correctness?
- Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).

Introduction

What should we do if a problem is NP-hard?

- Give up on efficiency?
- Give up on correctness?
- Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).
Popular answer: approximation algorithms (one of my main research areas!)

- Give up on correctness, but in a provable, bounded way.
- Applies to optimization problems only (not pure decision problems)
- Has to run in polynomial time, but can return answer that is approximately correct.

Main Definition

Definition

Let \mathcal{A} be some (minimization) problem, and let I be an instance of that problem. Let OPT(I) be the cost of the optimal solution on that instance. Let ALG be a polynomial-time algorithm for \mathcal{A}, and let $\mathbf{A L G} \mathbf{(I)}$ denote the cost of the solution returned by ALG on instance \mathbf{I}. Then we say that ALG is an $\boldsymbol{\alpha}$-approximation if

$$
\frac{\mathrm{ALG}(\mathrm{I})}{\mathrm{OPT}(\mathrm{I})} \leq \alpha
$$

for all instances I of \mathcal{A}.

- Approximation always at least 1
- For maximization, can either require $\frac{\operatorname{ALG}(\mathrm{I})}{\operatorname{OPT}(\mathbf{I})} \geq \boldsymbol{\alpha}$ (where $\boldsymbol{\alpha}<\mathbf{1}$) or $\frac{\operatorname{OPT}(\mathrm{I})}{\operatorname{ALG}(\mathrm{I})} \leq \boldsymbol{\alpha}$ (where $\alpha>1$)

Main Definition

Definition

Let \mathcal{A} be some (minimization) problem, and let I be an instance of that problem. Let OPT(I) be the cost of the optimal solution on that instance. Let ALG be a polynomial-time algorithm for \mathcal{A}, and let $\mathbf{A L G}(\mathbf{I})$ denote the cost of the solution returned by $\mathbf{A L G}$ on instance \mathbf{I}. Then we say that ALG is an $\boldsymbol{\alpha}$-approximation if

$$
\frac{\operatorname{ALG}(\mathrm{I})}{\mathrm{OPT}(\mathrm{I})} \leq \alpha
$$

for all instances I of \mathcal{A}.

- Approximation always at least 1
- For maximization, can either require $\frac{\operatorname{ALG}(\mathrm{I})}{\operatorname{OPT}(\mathbf{I})} \geq \boldsymbol{\alpha}$ (where $\boldsymbol{\alpha}<\mathbf{1}$) or $\frac{\operatorname{OPT}(\mathrm{I})}{\operatorname{ALG}(\mathrm{I})} \leq \boldsymbol{\alpha}$ (where $\alpha>1$)
- Also gives "fine-grained" complexity: not all NP-hard problems are equally hard!

Vertex Cover

Definition: $\mathbf{S} \subseteq \mathbf{V}$ is a vertex cover of $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ if $\mathbf{S} \cap \mathbf{e} \neq \varnothing$ for all $\mathbf{e} \in \mathbf{E}$

Definition (Vertex Cover)

Instance is graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$. Find vertex cover \mathbf{S}, minimize $|\mathbf{S}|$.
Last time: Vertex Cover NP-hard (reduction from Independent Set)

Vertex Cover

Definition: $\mathbf{S} \subseteq \mathbf{V}$ is a vertex cover of $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ if $\mathbf{S} \cap \mathbf{e} \neq \varnothing$ for all $\mathbf{e} \in \mathbf{E}$

Definition (Vertex Cover)

Instance is graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$. Find vertex cover \mathbf{S}, minimize $|\mathbf{S}|$.
Last time: Vertex Cover NP-hard (reduction from Independent Set)
So cannot expect to compute a minimum vertex cover efficiently. What about an approximately minimum vertex cover?

- Not an approximate vertex cover: still needs to be an actual vertex cover!

Obvious Algorithm 1

S = \varnothing
while there is at least one uncovered edge \{
Pick arbitrary vertex \mathbf{v} incident on at least one uncovered edge
Add \mathbf{v} to \mathbf{S}
\}

Obvious Algorithm 1

$\mathbf{S}=\varnothing$
while there is at least one uncovered edge \{
Pick arbitrary vertex \mathbf{v} incident on at least one uncovered edge
Add \mathbf{v} to \mathbf{S}
\}

Not a good approximation: star graph.

- OPT = 1
- $A L G=n-1$

Obvious Algorithm 2

```
S = \varnothing
while there is at least one uncovered
edge {
    Let v be vertex incident on most
uncovered edges
    Add v to S
}
```


Obvious Algorithm 2

```
S = \varnothing
while there is at least one uncovered
edge {
    Let v be vertex incident on most
uncovered edges
    Add v to S
}
```

Better, but still not great.

Obvious Algorithm 2

```
S = \varnothing
while there is at least one uncovered
edge {
    Let v be vertex incident on most
uncovered edges
    Add v to S
}
```

Better, but still not great.

- $|\mathbf{U}|=\mathbf{t}$
- For all $\mathbf{i} \in\{\mathbf{2}, \mathbf{3}, \ldots, \mathbf{t}\}$, divide \mathbf{U} into $\lfloor\mathbf{t} / \mathbf{i}\rfloor$ disjoint sets of size \mathbf{i} :
$\mathbf{G}_{1}^{\mathbf{i}}, \mathbf{G}_{2}^{\mathbf{i}}, \ldots, \mathbf{G}_{\lfloor\mathrm{t} / \mathrm{i}]}^{\mathbf{i}}$
- Add vertex for each set, edge to all elements.

Obvious Algorithm 2

```
S = \varnothing
while there is at least one uncovered
edge {
    Let v be vertex incident on most
uncovered edges
    Add v to S
}
\}
```

Better, but still not great.

- $|\mathbf{U}|=\mathbf{t}$
- For all $\mathbf{i} \in\{\mathbf{2}, \mathbf{3}, \ldots, \mathbf{t}\}$, divide \mathbf{U} into

$\lfloor\mathbf{t} / \mathbf{i}\rfloor$ disjoint sets of size \mathbf{i} :
$\mathbf{G}_{1}^{\mathbf{i}}, \mathbf{G}_{2}^{\mathbf{i}}, \ldots, \mathbf{G}_{\lfloor\mathrm{t} / \mathrm{i}]}^{\mathbf{i}}$
- Add vertex for each set, edge to all elements.

Obvious Algorithm 2

$$
\mathbf{S}=\varnothing
$$

while there is at least one uncovered edge \{

Let \mathbf{v} be vertex incident on most uncovered edges

Add \mathbf{v} to \mathbf{S}
\}
Better, but still not great.

- $|\mathbf{U}|=\mathbf{t}$
- For all $\mathbf{i} \in\{\mathbf{2}, \mathbf{3}, \ldots, \mathbf{t}\}$, divide \mathbf{U} into $\lfloor\mathbf{t} / \mathbf{i}\rfloor$ disjoint sets of size \mathbf{i} :
$\mathbf{G}_{1}^{\mathbf{i}}, \mathbf{G}_{2}^{\mathbf{i}}, \ldots, \mathrm{G}_{[\mathrm{t} / \mathrm{i}]}^{\mathbf{i}}$
- Add vertex for each set, edge to all elements.

Better Algorithm

S = \varnothing

while there is at least one uncovered edge \{
Pick arbitrary uncovered edge $\{\mathbf{u}, \mathbf{v}\}$

Add \mathbf{u} and \mathbf{v} to \mathbf{S}

\}

Better Algorithm

```
S = \varnothing
while there is at least one uncovered edge {
    Pick arbitrary uncovered edge {u,v}
    Add u}\mathrm{ and v to S
}
```


Theorem

This algorithm is a 2-approximation.

Better Algorithm

```
S = \varnothing
while there is at least one uncovered edge {
    Pick arbitrary uncovered edge {u,v}
    Add u}\mathrm{ and v to S
}
```


Theorem

This algorithm is a 2-approximation.
Suppose algorithm take \mathbf{k} iterations. Let \mathbf{L} be edges chosen by the algorithm, so $|\mathbf{L}|=\mathbf{k}$.

Better Algorithm

```
S = \varnothing
while there is at least one uncovered edge {
    Pick arbitrary uncovered edge {u,v}
    Add u}\mathrm{ and v to S
}
```


Theorem

This algorithm is a 2-approximation.
Suppose algorithm take \mathbf{k} iterations. Let \mathbf{L} be edges chosen by the algorithm, so $|\mathbf{L}|=\mathbf{k}$. $\Longrightarrow|S|=2 k$

Better Algorithm

```
S = \varnothing
while there is at least one uncovered edge {
    Pick arbitrary uncovered edge {u,v}
    Add u}\mathrm{ and v to S
}
```


Theorem

This algorithm is a 2-approximation.
Suppose algorithm take \mathbf{k} iterations. Let \mathbf{L} be edges chosen by the algorithm, so $|\mathbf{L}|=\mathbf{k}$. $\Longrightarrow|S|=2 k$
\mathbf{L} has structure: it is a matching!

Better Algorithm

```
S = \varnothing
while there is at least one uncovered edge {
    Pick arbitrary uncovered edge {u,v}
    Add u}\mathrm{ and v to S
}
```


Theorem

This algorithm is a 2-approximation.
Suppose algorithm take \mathbf{k} iterations. Let \mathbf{L} be edges chosen by the algorithm, so $|\mathbf{L}|=\mathbf{k}$. $\Longrightarrow|\mathbf{S}|=\mathbf{2 k}$
\mathbf{L} has structure: it is a matching!
\Longrightarrow OPT \geq k

Better Algorithm

```
S = \varnothing
while there is at least one uncovered edge {
    Pick arbitrary uncovered edge {u,v}
    Add u}\mathrm{ and v to S
}
```


Theorem

This algorithm is a 2-approximation.
Suppose algorithm take \mathbf{k} iterations. Let \mathbf{L} be edges chosen by the algorithm, so $|\mathbf{L}|=\mathbf{k}$. $\Longrightarrow|\mathbf{S}|=\mathbf{2 k}$
\mathbf{L} has structure: it is a matching!
\Longrightarrow OPT \geq k
$\Longrightarrow \mathrm{ALG} / \mathrm{OPT} \leq 2$.

More Complicated Algorithm: LP Rounding

 Write LP for vertex cover:
More Complicated Algorithm: LP Rounding

Write LP for vertex cover:

\min	$\sum_{\mathbf{v} \in \mathbf{V}} \mathbf{x}_{\mathbf{v}}$	
subject to	$\mathbf{x}_{\mathbf{u}}+\mathbf{x}_{\mathbf{v}} \geq \mathbf{1}$	$\forall\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$
	$\mathbf{0} \leq \mathbf{x}_{\mathbf{u}} \leq \mathbf{1}$	$\forall \mathbf{u} \in \mathbf{V}$

More Complicated Algorithm: LP Rounding

Write LP for vertex cover:

$$
\begin{array}{rll}
\min & \sum_{\mathbf{v} \in \mathbf{V}} \mathbf{x}_{\mathbf{v}} & \\
\text { subject to } & \mathbf{x}_{\mathbf{u}}+\mathbf{x}_{\mathbf{v}} \geq \mathbf{1} & \forall\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E} \\
& \mathbf{0} \leq \mathbf{x}_{\mathbf{u}} \leq \mathbf{1} & \forall \mathbf{u} \in \mathbf{V}
\end{array}
$$

Question: Is this enough? cog t

- Let OPT(LP) denote walue of optimal LP solution: does OPT(LP) = OPT?

More Complicated Algorithm: LP Rounding
Write LP for vertex cover:

$$
\begin{array}{rll}
\min & \sum_{\mathbf{v} \in \mathbf{V}} \mathbf{x}_{\mathbf{v}} & \\
\text { subject to } & \mathbf{x}_{\mathbf{u}}+\mathbf{x}_{\mathbf{v}} \geq \mathbf{1} & \forall\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E} \\
& \mathbf{0} \leq \mathbf{x}_{\mathbf{u}} \leq \mathbf{1} & \forall \mathbf{u} \in \mathbf{V}
\end{array}
$$

Question: Is this enough?

- Let OPT(LP) denote value of optimal LP solution: does OPT(LP) = OPT?

- OPT = 2
- OPT(LP) = 3/2

LP Structure

\min	$\sum_{\mathbf{v} \in \mathbf{V}} \mathrm{x}_{\mathbf{v}}$		Lemma
subject to	$\mathbf{x}_{\mathbf{u}}+\mathbf{x}_{\mathbf{v}} \geq \mathbf{1}$	$\forall\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$	OPT(LP) \leq OPT
	$\mathbf{0} \leq \mathbf{x}_{\mathbf{u}} \leq \mathbf{1}$	$\forall \mathbf{u} \in \mathbf{V}$	

LP Structure

\min	$\sum_{\mathbf{v} \in \mathbf{V}} \mathrm{x}_{\mathbf{v}}$		Lemma
subject to	$\mathbf{x}_{\mathbf{u}}+\mathbf{x}_{\mathbf{v}} \geq \mathbf{1}$	$\forall\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$	OPT(LP) $\leq \mathbf{O P T}$
	$\mathbf{0} \leq \mathbf{x}_{\mathbf{u}} \leq \mathbf{1}$	$\forall \mathbf{u} \in \mathbf{V}$	

Proof.

Let \mathbf{S} be optimal vertex cover (so $|\mathbf{S}|=\mathbf{O P T}$).
Let $\mathbf{x}_{\mathbf{v}}= \begin{cases}\mathbf{1} & \text { if } \mathbf{v} \in \mathbf{S} \\ \mathbf{0} & \text { otherwise }\end{cases}$

LP Structure

\min	$\sum_{\mathbf{v} \in \mathbf{V}} \mathbf{x}_{\mathbf{v}}$		Lemma
subject to	$\mathbf{x}_{\mathbf{u}}+\mathbf{x}_{\mathbf{v}} \geq \mathbf{1}$	$\forall\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$	OPT(LP) $\leq \mathbf{O P T}$
	$\mathbf{0} \leq \mathbf{x}_{\mathbf{u}} \leq \mathbf{1}$	$\forall \mathbf{u} \in \mathbf{V}$	

Proof.

Let \mathbf{S} be optimal vertex cover (so $|\mathbf{S}|=\mathbf{O P T}$).
Let $\mathbf{x}_{\mathbf{v}}= \begin{cases}\mathbf{1} & \text { if } \mathbf{v} \in \mathbf{S} \\ \mathbf{0} & \text { otherwise }\end{cases}$
$\mathbf{x}_{\mathbf{u}}+\mathrm{x}_{\mathbf{v}} \geq \mathbf{1}$ for all $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$ by definition of \mathbf{S}
$\mathbf{0} \leq \mathbf{x}_{\mathbf{v}} \leq \mathbf{1}$ for all $\mathbf{v} \in \mathbf{V}$ by definition

LP Structure

\min	$\sum_{\mathbf{v} \in \mathbf{V}} \mathbf{x}_{\mathbf{v}}$		Lemma
subject to	$\mathbf{x}_{\mathbf{u}}+\mathbf{x}_{\mathbf{v}} \geq \mathbf{1}$	$\forall\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$	OPT(LP) $\leq \mathbf{O P T}$
	$\mathbf{0} \leq \mathbf{x}_{\mathbf{u}} \leq \mathbf{1}$	$\forall \mathbf{u} \in \mathbf{V}$	

Proof.

Let \mathbf{S} be optimal vertex cover (so $|\mathbf{S}|=\mathbf{O P T}$).
Let $x_{v}= \begin{cases}\mathbf{1} & \text { if } v \in S \\ \mathbf{0} & \text { otherwise }\end{cases}$
$\mathbf{x}_{\mathbf{u}}+\mathrm{x}_{\mathbf{v}} \geq \mathbf{1}$ for all $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$ by definition of \mathbf{S}
$\mathbf{0} \leq \mathrm{x}_{\mathbf{v}} \leq \mathbf{1}$ for all $\mathbf{v} \in \mathbf{V}$ by definition
$\Longrightarrow x$ feasible

LP Structure

\min	$\sum_{\mathbf{v} \in \mathbf{V}} \mathbf{x}_{\mathbf{v}}$		
subject to	$\mathbf{x}_{\mathbf{u}}+\mathbf{x}_{\mathbf{v}} \geq \mathbf{1}$	$\forall\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$	Lemma
	$\mathbf{0} \leq \mathbf{x}_{\mathbf{u}} \leq \mathbf{1}$	$\forall \mathbf{u} \in \mathbf{V}$	

Proof.

Let \mathbf{S} be optimal vertex cover (so $|\mathbf{S}|=\mathbf{O P T}$).
Let $\mathbf{x}_{\mathbf{v}}= \begin{cases}\mathbf{1} & \text { if } \mathbf{v} \in \mathbf{S} \\ \mathbf{0} & \text { otherwise }\end{cases}$
$\mathbf{x}_{\mathbf{u}}+\mathrm{x}_{\mathbf{v}} \geq \mathbf{1}$ for all $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$ by definition of \mathbf{S}
$\mathbf{0} \leq \mathbf{x}_{\mathbf{v}} \leq \mathbf{1}$ for all $\mathbf{v} \in \mathbf{V}$ by definition
$\Longrightarrow x$ feasible
$\Longrightarrow \mathrm{OPT}(\mathrm{LP}) \leq \sum_{\mathrm{v} \in \mathrm{V}} \mathrm{x}_{\mathrm{v}}=|\mathrm{S}|=\mathrm{OPT}$

LP Structure

\min	$\sum_{\mathbf{v} \in \mathbf{V}} \mathrm{x}_{\mathbf{v}}$		Lemma
subject to	$\mathbf{x}_{\mathbf{u}}+\mathbf{x}_{\mathbf{v}} \geq \mathbf{1}$	$\forall\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$	OPT(LP) $\leq \mathbf{O P T}$
	$\mathbf{0} \leq \mathbf{x}_{\mathbf{u}} \leq \mathbf{1}$	$\forall \mathbf{u} \in \mathbf{V}$	

Proof.

Let \mathbf{S} be optimal vertex cover (so $|\mathbf{S}|=\mathbf{O P T}$).
Let $\mathbf{x}_{\mathbf{v}}= \begin{cases}\mathbf{1} & \text { if } \mathbf{v} \in \mathbf{S} \\ \mathbf{0} & \text { otherwise }\end{cases}$
$\mathbf{x}_{\mathbf{u}}+\mathrm{x}_{\mathbf{v}} \geq \mathbf{1}$ for all $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$ by definition of \mathbf{S}
$\mathbf{0} \leq \mathbf{x}_{\mathbf{v}} \leq \mathbf{1}$ for all $\mathbf{v} \in \mathbf{V}$ by definition
$\Longrightarrow x$ feasible
$\Longrightarrow \mathrm{OPT}(\mathrm{LP}) \leq \sum_{\mathrm{v} \in \mathrm{V}} \mathrm{x}_{\mathrm{v}}=|\mathrm{S}|=\mathbf{O P T}$

LP Rounding Algorithm

- Solve LP to get \mathbf{x}^{*} (so $\sum_{\mathrm{v} \in \mathrm{V}} \mathrm{x}_{\mathrm{v}}^{*}=\mathbf{O P T}(\mathrm{LP})$)
- Return $S=\left\{v \in V: x_{v}^{*} \geq 1 / 2\right\}$

LP Rounding Algorithm

- Solve LP to get \mathbf{x}^{*} (so $\sum_{\mathrm{v} \in \mathrm{V}} \mathrm{x}_{\mathrm{v}}^{*}=\mathbf{O P T}(\mathrm{LP})$)
- Return $S=\left\{v \in V: x_{v}^{*} \geq 1 / 2\right\}$

Polytime:

LP Rounding Algorithm

- Solve LP to get $\mathbf{x}^{*}\left(\right.$ so $\left.\sum_{\mathrm{v} \in \mathrm{V}} \mathbf{x}_{\mathrm{v}}^{*}=\mathbf{O P T}(\mathrm{LP})\right)$
- Return $S=\left\{v \in V: x_{v}^{*} \geq 1 / 2\right\}$

Polytime:

Lemma

\mathbf{S} is a vertex cover.

LP Rounding Algorithm

- Solve LP to get $\mathbf{x}^{*}\left(\right.$ so $\left.\sum_{\mathbf{v} \in \mathrm{V}} \mathbf{x}_{\mathrm{v}}^{*}=\mathbf{O P T}(\mathrm{LP})\right)$
- Return $S=\left\{v \in V: x_{v}^{*} \geq 1 / 2\right\}$

Polytime:

Lemma

\mathbf{S} is a vertex cover.

Proof.

Let $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$.
By LP constraint, $\mathrm{x}_{\mathrm{u}}^{*}+\mathrm{x}_{\mathrm{v}}^{*} \geq \mathbf{1}$

LP Rounding Algorithm

- Solve LP to get $\mathbf{x}^{*}\left(\right.$ so $\left.\sum_{\mathbf{v} \in \mathrm{V}} \mathbf{x}_{\mathrm{v}}^{*}=\mathbf{O P T}(\mathrm{LP})\right)$
- Return $S=\left\{v \in V: x_{v}^{*} \geq 1 / 2\right\}$

Polytime:

Lemma

\mathbf{S} is a vertex cover.

Proof.
 Let $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$.

By LP constraint, $x_{u}^{*}+x_{v}^{*} \geq 1$
$\Longrightarrow \max \left(x_{u}^{*}, x_{v}^{*}\right) \geq 1 / 2$

LP Rounding Algorithm

- Solve LP to get $\mathbf{x}^{*}\left(\right.$ so $\left.\sum_{\mathbf{v} \in \mathrm{V}} \mathbf{x}_{\mathrm{v}}^{*}=\mathbf{O P T}(\mathrm{LP})\right)$
- Return $S=\left\{v \in V: x_{v}^{*} \geq 1 / 2\right\}$

Polytime:

Lemma

\mathbf{S} is a vertex cover.

Proof.

Let $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$.
By LP constraint, $x_{u}^{*}+x_{v}^{*} \geq 1$
$\Longrightarrow \max \left(x_{u}^{*}, x_{v}^{*}\right) \geq 1 / 2$
\Longrightarrow At least one of \mathbf{u}, \mathbf{v} in \mathbf{S}

LP Rounding Algorithm

- Solve LP to get $\mathbf{x}^{*}\left(\right.$ so $\left.\sum_{\mathbf{v} \in \mathrm{V}} \mathbf{x}_{\mathrm{v}}^{*}=\mathbf{O P T}(\mathrm{LP})\right)$
- Return $S=\left\{v \in V: x_{v}^{*} \geq 1 / 2\right\}$

Polytime: \checkmark

Lemma

\mathbf{S} is a vertex cover.
Lemma
$|S| \leq 2 \cdot O P T$.

Proof.

Let $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$.
By LP constraint, $x_{u}^{*}+x_{v}^{*} \geq 1$
$\Longrightarrow \max \left(x_{u}^{*}, x_{v}^{*}\right) \geq 1 / 2$
\Longrightarrow At least one of \mathbf{u}, \mathbf{v} in \mathbf{S}

LP Rounding Algorithm

- Solve LP to get $\mathbf{x}^{*}\left(\right.$ so $\left.\sum_{\mathbf{v} \in \mathrm{V}} \mathbf{x}_{\mathrm{v}}^{*}=\mathbf{O P T}(\mathrm{LP})\right)$
- Return $S=\left\{v \in V: x_{v}^{*} \geq 1 / 2\right\}$

Polytime:

Lemma

\mathbf{S} is a vertex cover.
Lemma

$$
|S| \leq 2 \cdot \mathrm{OPT} .
$$

Proof.

$$
\begin{aligned}
|S| & =\sum_{v \in S} 1 \leq \sum_{v \in S} 2 x_{v}^{*} \leq 2 \sum_{v \in V} x_{v}^{*} \\
& =2 \cdot \mathrm{OPT}(\mathrm{LP}) \leq 2 \cdot \mathrm{OPT}
\end{aligned}
$$

Why Use LP Rounding?

Important reason: much more flexible!

Why Use LP Rounding?

Important reason: much more flexible!
Weighted Vertex Cover. Also given w:V $\rightarrow \mathbb{R}^{+}$. Find vertex cover \mathbf{S} minimizing $\sum_{\mathbf{v} \in \mathbf{S}} \mathbf{w}(\mathbf{v})$

Why Use LP Rounding?

Important reason: much more flexible!
Weighted Vertex Cover. Also given w:V $\rightarrow \mathbb{R}^{+}$. Find vertex cover \mathbf{S} minimizing $\sum_{\mathbf{v} \in \mathbf{S}} \mathbf{w}(\mathbf{v})$

\min	$\sum_{\mathbf{v} \in \mathbf{V}} w(\mathbf{v}) \mathbf{x}_{\mathbf{v}}$	
subject to	$\mathbf{x}_{\mathbf{u}}+\mathbf{x}_{\mathbf{v}} \geq \mathbf{1}$	$\forall\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$
	$\mathbf{0} \leq \mathbf{x}_{\mathbf{u}} \leq \mathbf{1}$	$\forall \mathbf{u} \in \mathbf{V}$

Why Use LP Rounding?

Important reason: much more flexible!
Weighted Vertex Cover. Also given w:V $\rightarrow \mathbb{R}^{+}$. Find vertex cover \mathbf{S} minimizing $\sum_{\mathbf{v} \in \mathbf{S}} \mathbf{w}(\mathbf{v})$

min	$\sum_{v \in V} w(v) x_{v}$		
subject to	$\mathrm{x}_{\mathrm{u}}+\mathrm{x}_{\mathrm{v}} \geq 1$	$\forall\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$	- Solve LP to get \mathbf{x}^{*} - Return $S=\left\{v \in V: x_{v}^{*} \geq \mathbf{1} / 2\right\}$
	$0 \leq x_{u} \leq 1$	$\forall \mathbf{u} \in \mathbf{V}$	

Why Use LP Rounding?

Important reason: much more flexible!
Weighted Vertex Cover. Also given w:V $\rightarrow \mathbb{R}^{+}$. Find vertex cover \mathbf{S} minimizing $\sum_{\mathbf{v} \in \mathbf{S}} \mathbf{w}(\mathbf{v})$

\min	$\sum_{\mathbf{v} \in \mathbf{V}} w(\mathbf{v}) \mathbf{x}_{\mathbf{v}}$	
subject to	$\mathbf{x}_{\mathbf{u}}+\mathbf{x}_{\mathbf{v}} \geq \mathbf{1}$	$\forall\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$
	$\mathbf{0} \leq \mathbf{x}_{\mathbf{u}} \leq \mathbf{1}$	$\forall \mathbf{u} \in \mathbf{V}$

- Solve LP to get \mathbf{x}^{*}
- Return $S=\left\{v \in V: x_{v}^{*} \geq \mathbf{1} / 2\right\}$

Still:

- Polytime
- S a vertex cover
- OPT(LP) \leq OPT

Why Use LP Rounding?

Important reason: much more flexible!
Weighted Vertex Cover. Also given w:V $\rightarrow \mathbb{R}^{+}$. Find vertex cover \mathbf{S} minimizing $\sum_{\mathbf{v} \in \mathbf{S}} \mathbf{w}(\mathbf{v})$

\min			
	$\sum_{v \in V} w(v) x_{v}$		- Solve LP to get x^{*}
subject to	$\mathrm{x}_{\mathrm{u}}+\mathrm{x}_{\mathrm{v}} \geq 1$	$\forall\{\mathbf{u}, \mathbf{v}\} \in \mathrm{E}$	- Return $S=\left\{v \in V: x_{v}^{*} \geq 1 / 2\right\}$
	$0 \leq x_{u} \leq 1$	$\forall \mathbf{u} \in \mathbf{V}$	
- Polytime			
- S a verte		$\mathbf{w}(\mathbf{v}) \leq \sum_{\mathrm{v} \in \mathrm{~S}}:$	$\leq 2 \sum_{v \in V} w(v) x_{v}^{*}=2 \cdot O P T(L P)$

- OPT(LP) \leq OPT

Why Use LP Rounding?

Important reason: much more flexible!
Weighted Vertex Cover. Also given w:V $\rightarrow \mathbb{R}^{+}$. Find vertex cover \mathbf{S} minimizing $\sum_{\mathbf{v} \in \mathbf{S}} \mathbf{w}(\mathbf{v})$

\min	$\sum_{\mathbf{v} \in \mathbf{V}} w(\mathbf{v}) \mathbf{x}_{\mathbf{v}}$	
subject to	$\mathbf{x}_{\mathbf{u}}+\mathbf{x}_{\mathbf{v}} \geq \mathbf{1}$	$\forall\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$
	$\mathbf{0} \leq \mathbf{x}_{\mathbf{u}} \leq \mathbf{1}$	$\forall \mathbf{u} \in \mathbf{V}$

- Solve LP to get \mathbf{x}^{*}
- Return $S=\left\{v \in V: x_{v}^{*} \geq 1 / 2\right\}$

Still:

- Polytime
- S a vertex cover

$$
\sum_{v \in S} w(v) \leq \sum_{v \in S} 2 x_{v}^{*} w(v) \leq 2 \sum_{v \in V} w(v) x_{v}^{*}=2 \cdot \text { OPT(LP) } \leq 2 \cdot \text { OPT }
$$

- OPT(LP) \leq OPT

Higher level: LP provides lower bound on OPT. Often main difficulty!

Reductions and Approximation

Proved Vertex Cover NP-hard by reduction from Independent Set:

- Polytime algorithm for Vertex Cover \Longrightarrow polytime algorithm for Independent Set

So does this mean that a 2-approximation for VERTEX COVER \Longrightarrow 2-approximation for Independent Set?

Reductions and Approximation

Proved Vertex Cover NP-hard by reduction from Independent Set:

- Polytime algorithm for Vertex Cover \Longrightarrow polytime algorithm for Independent Set

So does this mean that a 2-approximation for VERTEX COVER \Longrightarrow 2-approximation for Independent Set?

No!

Reductions and Approximation

Proved Vertex Cover NP-hard by reduction from Independent Set:

- Polytime algorithm for Vertex Cover \Longrightarrow polytime algorithm for Independent SET

So does this mean that a 2-approximation for VERTEX COVER \Longrightarrow 2-approximation for Independent Set?

No!

Theorem

Assuming $\mathbf{P} \neq \mathbf{N P}$, for all constants $\boldsymbol{\epsilon}>\mathbf{0}$ there is no polytime $\mathbf{n}^{\mathbf{1 - \epsilon}}$-approximation for Independent Set.

Reductions and Approximation

Proved Vertex Cover NP-hard by reduction from Independent Set:

- Polytime algorithm for Vertex Cover \Longrightarrow polytime algorithm for Independent SET

So does this mean that a 2-approximation for VERTEX COVER \Longrightarrow 2-approximation for Independent Set?

No!

Theorem

Assuming $\mathbf{P} \neq \mathbf{N P}$, for all constants $\boldsymbol{\epsilon}>\mathbf{0}$ there is no polytime $\mathbf{n}^{\mathbf{1 - \epsilon}}$-approximation for Independent Set.

So these two problems are actually very different!

Reductions and Approximation

Proved Vertex Cover NP-hard by reduction from Independent Set:

- Polytime algorithm for Vertex Cover \Longrightarrow polytime algorithm for Independent Set

So does this mean that a 2-approximation for VERTEX COVER \Longrightarrow 2-approximation for Independent Set?

No!

Theorem

Assuming $\mathbf{P} \neq \mathbf{N P}$, for all constants $\boldsymbol{\epsilon}>\mathbf{0}$ there is no polytime $\mathbf{n}^{\mathbf{1 - \epsilon}}$-approximation for Independent Set.

So these two problems are actually very different!
There is a notion of "approximation-preserving reduction", but it is more involved than a normal reduction.

Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

- E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

- E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Optimization version: Max-E3SAT

- Find assignment to maximize \# satisfied clauses

Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

- E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Optimization version: Max-E3SAT

- Find assignment to maximize \# satisfied clauses

Easy randomized algorithm:

Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has $\leq \mathbf{3}$ literals

- E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Optimization version: Max-E3SAT

- Find assignment to maximize \# satisfied clauses

Easy randomized algorithm: Choose random assignment!

Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has $\leq \mathbf{3}$ literals

- E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Optimization version: Max-E3SAT

- Find assignment to maximize \# satisfied clauses

Easy randomized algorithm: Choose random assignment!

- For each variable $\mathbf{x}_{\mathbf{i}}$, set $\mathbf{x}_{\mathbf{i}}=\mathbf{T}$ with probability $\mathbf{1 / 2}$ and \mathbf{F} with probability $\mathbf{1 / 2}$

Max-E3SAT: Analysis

Algorithm: Choose random assignment

Max-E3SAT: Analysis

Algorithm: Choose random assignment
Clause \mathbf{i} : probability satisfied =

Max-E3SAT: Analysis

Algorithm: Choose random assignment
Clause \mathbf{i} : probability satisfied $=7 / 8$

Max-E3SAT: Analysis

Algorithm: Choose random assignment
Clause i: probability satisfied = 7/8
Random variables:

- For $\mathbf{i} \in\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{m}\}$, let $\mathbf{X}_{\mathbf{i}}= \begin{cases}\mathbf{1} & \text { if clause } \mathbf{i} \text { satisfied } \\ \mathbf{0} & \text { otherwise }\end{cases}$
- $E\left[X_{i}\right]=7 / 8$

Max-E3SAT: Analysis

Algorithm: Choose random assignment
Clause i: probability satisfied = 7/8
Random variables:

- For $\mathbf{i} \in\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{m}\}$, let $\mathbf{X}_{\mathbf{i}}= \begin{cases}\mathbf{1} & \text { if clause } \mathbf{i} \text { satisfied } \\ \mathbf{0} & \text { otherwise }\end{cases}$
- $E\left[X_{i}\right]=7 / 8$
- Let $\mathbf{X}=\#$ clauses satisfied $=\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{m}} \mathbf{X}_{\mathbf{i}}$

Max-E3SAT: Analysis

Algorithm: Choose random assignment
Clause \mathbf{i} : probability satisfied $=7 / 8$
Random variables:

- For $\mathbf{i} \in\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{m}\}$, let $\mathbf{X}_{\mathbf{i}}= \begin{cases}\mathbf{1} & \text { if clause } \mathbf{i} \text { satisfied } \\ \mathbf{0} & \text { otherwise }\end{cases}$
- $\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]=7 / 8$
- Let $\mathbf{X}=\#$ clauses satisfied $=\sum_{i=1}^{m} \mathbf{X}_{\mathbf{i}}$

$$
E[X]=E\left[\sum_{i=1}^{m} X_{i}\right]=\sum_{i=1}^{m} E\left[X_{i}\right]=\sum_{i=1}^{m} \frac{7}{8}=\frac{7}{8} m \geq \frac{7}{8} O P T
$$

Max-E3SAT: Analysis

Algorithm: Choose random assignment
Clause i: probability satisfied = 7/8
Random variables:

- For $\mathbf{i} \in\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{m}\}$, let $\mathbf{X}_{\mathbf{i}}= \begin{cases}\mathbf{1} & \text { if clause } \mathbf{i} \text { satisfied } \\ \mathbf{0} & \text { otherwise }\end{cases}$
- $\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]=7 / 8$
- Let $\mathbf{X}=\#$ clauses satisfied $=\sum_{i=1}^{m} \mathbf{X}_{\mathbf{i}}$

$$
E[X]=E\left[\sum_{i=1}^{m} X_{i}\right]=\sum_{i=1}^{m} E\left[X_{i}\right]=\sum_{i=1}^{m} \frac{7}{8}=\frac{7}{8} m \geq \frac{7}{8} O P T
$$

Can be derandomized (method of conditional expectations)

Max-E3SAT: Analysis

Algorithm: Choose random assignment
Clause i: probability satisfied = 7/8
Random variables:

- For $\mathbf{i} \in\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{m}\}$, let $\mathbf{X}_{\mathbf{i}}= \begin{cases}\mathbf{1} & \text { if clause } \mathbf{i} \text { satisfied } \\ \mathbf{0} & \text { otherwise }\end{cases}$
- $\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]=7 / 8$
- Let $\mathbf{X}=\#$ clauses satisfied $=\sum_{\mathbf{i}=1}^{\mathbf{m}} \mathbf{X}_{\mathbf{i}}$

$$
E[X]=E\left[\sum_{i=1}^{m} X_{i}\right]=\sum_{i=1}^{m} E\left[X_{i}\right]=\sum_{i=1}^{m} \frac{7}{8}=\frac{7}{8} m \geq \frac{7}{8} O P T
$$

Can be derandomized (method of conditional expectations)

Theorem (Håstad '01)

Assuming $\mathbf{P} \neq \mathbf{N P}$, for all constant $\boldsymbol{\epsilon}>\mathbf{0}$ there is no polytime $\left(\frac{7}{8}+\boldsymbol{\epsilon}\right)$-approximation for Max-E3SAT.

