Lecture 22: NP-Completeness II

Michael Dinitz

November 11, 2021
601.433/633 Introduction to Algorithms
Introduction

Last time: Definition of \mathbf{P}, \mathbf{NP}, reductions, \mathbf{NP}-completeness. Proof that Circuit-SAT is \mathbf{NP}-complete.

Today: more \mathbf{NP}-complete problems.

Definition

A decision problem \mathbf{Q} is in \mathbf{NP} (nondeterministic polynomial time) if there exists a polynomial time algorithm $\mathbf{V(I,X)}$ (called the verifier) such that

1. If \mathbf{I} is a YES-instance of \mathbf{Q}, then there is some \mathbf{X} (usually called the witness, proof, or solution) with size polynomial in $|\mathbf{I}|$ so that $\mathbf{V(I,X)} = \text{YES}$.
2. If \mathbf{I} is a NO-instance of \mathbf{Q}, then $\mathbf{V(I,X)} = \text{NO}$ for all \mathbf{X}.
Reducions

Definition

A Many-one or Karp reduction from \(A \) to \(B \) is a function \(f \) which takes arbitrary instances of \(A \) and transforms them into instances of \(B \) so that

1. If \(x \) is a YES-instance of \(A \) then \(f(x) \) is a YES-instance of \(B \).
2. If \(x \) is a NO-instance of \(A \) then \(f(x) \) is a NO-instance \(B \).
3. \(f \) can be computed in polynomial time.

Definition

Problem \(Q \) is \textbf{NP-hard} if \(Q' \leq_p Q \) for all problems \(Q' \) in \textbf{NP}. Problem \(Q \) is \textbf{NP-complete} if it is \textbf{NP-hard} and in \textbf{NP}.
Circuit-SAT

Definition

Circuit-SAT: Given a boolean circuit of AND, OR, and NOT gates, with a single output and no loops (some inputs might be hardwired), is there a way of setting the inputs so that the output of the circuit is 1?

Theorem

Circuit-SAT is **NP-complete**.
3-SAT

Boolean formula:
- Boolean variables x_1, \ldots, x_n
- Literal: variable x_i or negation \bar{x}_i
- AND: \land OR: \lor
- $x_1 \lor (\bar{x}_5 \land x_7) \land (\bar{x}_2 \lor (x_6 \land \bar{x}_3)) \ldots$

Conjunctive normal form (CNF): AND of ORs (clauses)
- $(x_1 \lor \bar{x}_2 \lor x_4) \land (x_2 \lor x_3) \land (x_1 \lor x_4 \lor \bar{x}_6) \ldots$
3-SAT

Boolean formula:
- Boolean variables x_1, \ldots, x_n
- Literal: variable x_i or negation \bar{x}_i
- AND: \land OR: \lor
- $x_1 \lor (\bar{x}_5 \land x_7) \land (\bar{x}_2 \lor (x_6 \land \bar{x}_3)) \ldots$

Conjunctive normal form (CNF): AND of ORs (clauses)
- $(x_1 \lor \bar{x}_2 \lor \bar{x}_4) \land (x_2 \lor x_3) \land (x_1 \lor x_4 \lor \bar{x}_6) \ldots$
3-SAT

Boolean formula:
- Boolean variables x_1, \ldots, x_n
- Literal: variable x_i or negation \bar{x}_i
- AND: \land OR: \lor
- $x_1 \lor (\bar{x}_5 \land x_7) \land (\bar{x}_2 \lor (x_6 \land \bar{x}_3)) \ldots$

Conjunctive normal form (CNF): AND of ORs (clauses)
- $(x_1 \lor \bar{x}_2 \lor \bar{x}_4) \land (x_2 \lor x_3) \land (x_1 \lor x_4 \lor \bar{x}_6) \ldots$

Definition

3-SAT: Instance is 3CNF formula ϕ (every clause has ≤ 3 literals). YES if there is assignment where ϕ evaluates to True (satisfying assignment), NO otherwise.
3-SAT

Theorem

3-SAT is \textbf{NP-complete}.
3-SAT

Theorem

3-SAT is **NP-complete**.

3-SAT in **NP**:

- A witness is an assignment.
- The verifier checks that the formula evaluates to True on the assignment.

3-SAT is **NP-hard**:

- Show Circuit-SAT \(\leq_p \) 3-SAT.
- Don't need to show that \(A \leq_p 3\text{-SAT} \) for arbitrary \(A \in \text{NP} \): already known that \(A \leq_p \text{Circuit-SAT} \! \).
- So start with circuit. Want to transform to 3-CNF formula.
3-SAT

Theorem

3-SAT is NP-complete.

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on assignment.
3-SAT

Theorem

3-SAT is \textbf{NP-complete}.

3-SAT in \textbf{NP}: witness is assignment, verifier checks that formula evaluates to True on assignment.

3-SAT is \textbf{NP-hard}:
3-SAT

Theorem
3-SAT is \textbf{NP}-complete.

3-SAT in \textbf{NP}: witness is assignment, verifier checks that formula evaluates to True on assignment.

3-SAT is \textbf{NP}-hard: Show Circuit-SAT ≤_p 3-SAT.
3-SAT

Theorem

3-SAT is \textbf{NP-complete}.

3-SAT in \textbf{NP}: witness is assignment, verifier checks that formula evaluates to True on assignment.

3-SAT is \textbf{NP-hard}: Show Circuit-SAT \leq_p 3-SAT.

\begin{itemize}
 \item Don’t need to show that $A \leq_p$ 3-SAT for arbitrary $A \in \textbf{NP}$: already know that $A \leq_p$ Circuit-SAT!
\end{itemize}
3-SAT

Theorem

3-SAT is \textbf{NP}-complete.

3-SAT in \textbf{NP}: witness is assignment, verifier checks that formula evaluates to True on assignment.

3-SAT is \textbf{NP}-hard: Show Circuit-SAT \leq_p 3-SAT.

\rightarrow Don’t need to show that $A \leq_p$ 3-SAT for arbitrary $A \in \textbf{NP}$: already know that $A \leq_p$ Circuit-SAT!

So start with circuit. Want to transform to 3-CNF formula.
Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)

- AND/OR/NOT universal, but so is just NAND!

\[
\begin{align*}
&\text{AND} \quad \Rightarrow \quad \text{NAND} \\
&\text{OR} \quad \Rightarrow \quad \text{NAND} \\
&\text{NOT} \quad \Rightarrow \quad \text{NAND}
\end{align*}
\]
Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)

- AND/OR/NOT universal, but so is just NAND!

So given circuit C, first transform it into NAND-only circuit.

Input:

- n "input wires" x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m
 - $g_1 = \text{NAND}(x_1, x_3)$,
 - $g_2 = \text{NAND}(g_1, x_4)$, \ldots
 - WLOG, g_m is the “output gate”
Reduction to 3-SAT

So given as input a circuit C:

- n “input wires” x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m. Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula $f(C)$ such that $f(C)$ has a satisfying assignment if and only if C has an input where it outputs 1.
Reduction to 3-SAT

So given as input a circuit \(C \):

- \(n \) “input wires” \(x_1, x_2, \ldots, x_n \)
- \(m \) NAND gates: \(g_1, \ldots, g_m \). Output gate \(g_m \)

Need to construct many-one reduction \(f \) to 3-SAT: in polynomial time, construct 3-CNF formula \(f(C) \) such that \(f(C) \) has a satisfying assignment if and only if \(C \) has an input where it outputs 1.

Variables: \(y_1, y_2, \ldots, y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+m} \) (one for each wire)
Reduction to 3-SAT

So given as input a circuit C:

- n “input wires” x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m. Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula $f(C)$ such that $f(C)$ has a satisfying assignment if and only if C has an input where it outputs 1.

Variables: $y_1, y_2, \ldots, y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+m}$ (one for each wire)

Clauses: For every NAND gate $y_i = \text{NAND}(y_j, y_k)$, create clauses:

\[
\begin{align*}
\overline{y_i} &\lor y_j \lor \overline{y_k} & & \text{(if } y_j = 0 \text{ and } y_k = 0 \text{ then } y_i = 1) \\
\overline{y_i} &\lor \overline{y_j} \lor y_k & & \text{(if } y_j = 1 \text{ and } y_k = 0 \text{ then } y_i = 1) \\
\overline{y_i} &\lor y_j \lor \overline{y_k} & & \text{(if } y_j = 0 \text{ and } y_k = 1 \text{ then } y_i = 1) \\
\end{align*}
\]
Reduction to 3-SAT

So given as input a circuit C:

- n “input wires” x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m. Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula $f(C)$ such that $f(C)$ has a satisfying assignment if and only if C has an input where it outputs 1.

Variables: $y_1, y_2, \ldots, y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+m}$ (one for each wire)

Clauses: For every NAND gate $y_i = \text{NAND}(y_j, y_k)$, create clauses:

\[
\begin{align*}
&y_i \\
&\quad \lor y_j \\
&\quad \lor \bar{y}_k \\
&\quad \lor y_j \\
&\quad \lor \bar{y}_k \\
&\quad \lor y_i \\
&\quad \lor \bar{y}_j \\
&\quad \lor \bar{y}_k
\end{align*}
\]
Reduction to 3-SAT

So given as input a circuit \(C \):

- \(n \) “input wires” \(x_1, x_2, \ldots, x_n \)
- \(m \) NAND gates: \(g_1, \ldots, g_m \). Output gate \(g_m \)

Need to construct many-one reduction \(f \) to 3-SAT: in polynomial time, construct 3-CNF formula \(f(C) \) such that \(f(C) \) has a satisfying assignment if and only if \(C \) has an input where it outputs 1.

Variables: \(y_1, y_2, \ldots, y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+m} \) (one for each wire)

Clauses: For every NAND gate \(y_i = \text{NAND}(y_j, y_k) \), create clauses:

\[
\begin{align*}
y_i &\lor y_j \lor y_k \quad \text{if } y_j = 0 \text{ and } y_k = 0 \text{ then } y_i = 1 \\
y_{n+i} &\lor y_{n+j} \lor y_{n+k} \quad \text{if } y_j = 1 \text{ and } y_k = 1 \text{ then } y_i = 0
\end{align*}
\]
Reduction to 3-SAT

So given as input a circuit C:

- n “input wires” x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m. Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula $f(C)$ such that $f(C)$ has a satisfying assignment if and only if C has an input where it outputs 1.

Variables: $y_1, y_2, \ldots, y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+m}$ (one for each wire)

Clauses: For every NAND gate $y_i = \text{NAND}(y_j, y_k)$, create clauses:

- $y_i \lor y_j \lor y_k$ (if $y_j = 0$ and $y_k = 0$ then $y_i = 1$)
- $y_i \lor \bar{y}_j \lor y_k$
- $\bar{y}_i \lor \bar{y}_j \lor \bar{y}_k$ (if $y_j = 1$ and $y_k = 1$ then $y_i = 0$)
Reduction to 3-SAT

So given as input a circuit C:

- n “input wires” x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m. Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula $f(C)$ such that $f(C)$ has a satisfying assignment if and only if C has an input where it outputs 1.

Variables: $y_1, y_2, \ldots, y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+m}$ (one for each wire)

Clauses: For every NAND gate $y_i = \text{NAND}(y_j, y_k)$, create clauses:

\[
\begin{align*}
&y_i \lor y_j \lor y_k \quad \text{(if $y_j = 0$ and $y_k = 0$ then $y_i = 1$)} \\
&y_i \lor \overline{y}_j \lor y_k \quad \text{(if $y_j = 1$ and $y_k = 0$ then $y_i = 1$)}
\end{align*}
\]
Reduction to 3-SAT

So given as input a circuit C:

- n “input wires” x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m. Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula $f(C)$ such that $f(C)$ has a satisfying assignment if and only if C has an input where it outputs 1.

Variables: $y_1, y_2, \ldots, y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+m}$ (one for each wire)

Clauses: For every NAND gate $y_i = \text{NAND}(y_j, y_k)$, create clauses:

- $y_i \lor y_j \lor y_k$ (if $y_j = 0$ and $y_k = 0$ then $y_i = 1$)
- $y_i \lor \neg y_j \lor y_k$ (if $y_j = 1$ and $y_k = 0$ then $y_i = 1$)
- $y_i \lor y_j \lor \neg y_k$
Reduction to 3-SAT

So given as input a circuit C:

- n “input wires” x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m. Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula $f(C)$ such that $f(C)$ has a satisfying assignment if and only if C has an input where it outputs 1.

Variables: $y_1, y_2, \ldots, y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+m}$ (one for each wire)

Clauses: For every NAND gate $y_i = \text{NAND}(y_j, y_k)$, create clauses:

- $y_i \lor y_j \lor y_k$ (if $y_j = 0$ and $y_k = 0$ then $y_i = 1$)
- $y_i \lor \bar{y}_j \lor y_k$ (if $y_j = 1$ and $y_k = 0$ then $y_i = 1$)
- $y_i \lor y_j \lor \bar{y}_k$ (if $y_j = 0$ and $y_k = 1$ then $y_i = 1$)
Reduction to 3-SAT

So given as input a circuit C:

- n “input wires” x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m. Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula $f(C)$ such that $f(C)$ has a satisfying assignment if and only if C has an input where it outputs 1.

Variables: $y_1, y_2, \ldots, y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+m}$ (one for each wire)

Clauses: For every NAND gate $y_i = \text{NAND}(y_j, y_k)$, create clauses:

- $y_i \lor y_j \lor y_k$ (if $y_j = 0$ and $y_k = 0$ then $y_i = 1$)
- $y_i \lor \bar{y}_j \lor y_k$ (if $y_j = 1$ and $y_k = 0$ then $y_i = 1$)
- $y_i \lor y_j \lor \bar{y}_k$ (if $y_j = 0$ and $y_k = 1$ then $y_i = 1$)
- $\bar{y}_i \lor \bar{y}_j \lor \bar{y}_k$
Reduction to 3-SAT

So given as input a circuit C:

- n “input wires” x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m. Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula $f(C)$ such that $f(C)$ has a satisfying assignment if and only if C has an input where it outputs 1.

Variables: $y_1, y_2, \ldots, y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+m}$ (one for each wire)

Clauses: For every NAND gate $y_i = \text{NAND}(y_j, y_k)$, create clauses:

- $y_i \lor y_j \lor y_k$ (if $y_j = 0$ and $y_k = 0$ then $y_i = 1$)
- $y_i \lor \bar{y}_j \lor y_k$ (if $y_j = 1$ and $y_k = 0$ then $y_i = 1$)
- $y_i \lor y_j \lor \bar{y}_k$ (if $y_j = 0$ and $y_k = 1$ then $y_i = 1$)
- $\bar{y}_i \lor \bar{y}_j \lor \bar{y}_k$ (if $y_j = 1$ and $y_k = 1$ then $y_i = 0$)
Reduction to 3-SAT

So given as input a circuit C:

- n “input wires” x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m. Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula $f(C)$ such that $f(C)$ has a satisfying assignment if and only if C has an input where it outputs 1.

Variables: $y_1, y_2, \ldots, y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+m}$ (one for each wire)

Clauses: For every NAND gate $y_i = \text{NAND}(y_j, y_k)$, create clauses:

- $y_i \lor y_j \lor y_k$ (if $y_j = 0$ and $y_k = 0$ then $y_i = 1$)
- $y_i \lor \overline{y_j} \lor y_k$ (if $y_j = 1$ and $y_k = 0$ then $y_i = 1$)
- $y_i \lor y_j \lor \overline{y_k}$ (if $y_j = 0$ and $y_k = 1$ then $y_i = 1$)
- $\overline{y_i} \lor \overline{y_j} \lor \overline{y_k}$ (if $y_j = 1$ and $y_k = 1$ then $y_i = 0$)

Also add clause (y_{m+n}) (want output gate to be 1)
Analysis

Theorem

This is a many-one reduction from Circuit-SAT to 3-SAT.
Analysis

Theorem

This is a many-one reduction from Circuit-SAT to 3-SAT.

Polytime: ✓
Analysis

Theorem

This is a many-one reduction from Circuit-SAT to 3-SAT.

Polytime: ✓

Suppose C YES of Circuit-SAT

\implies There exists a setting x of input wires so $g_m = 1$

\implies There exists an assignment of y_1, \ldots, y_{m+n} so that all clauses are satisfied:

\cdot $y_i = x_i$ if $i \leq n$

\cdot $y_i = g_{i-n}$ if $i > n$

\implies $f(C)$ YES of 3-SAT
Analysis

Theorem

This is a many-one reduction from Circuit-SAT to 3-SAT.

Polytime: ✓

Suppose \(C \) YES of Circuit-SAT

\[\implies \exists \text{ setting } x \text{ of input wires so } g_m = 1\]

\[\implies \exists \text{ assignment of } y_1, \ldots, y_{m+n} \text{ so that all clauses are satisfied:}\]

\[y_i = x_i \text{ if } i \leq n\]

\[y_i = g_{i-n} \text{ if } i > n\]

\[\implies f(C) \text{ YES of 3-SAT}\]

Suppose \(f(C) \) YES of 3-SAT

\[\implies \exists \text{ assignment } y \text{ to variables so that all clauses satisfied}\]

\[\implies \exists \text{ setting } x \text{ of input wires so } g_m = 1:\]

\[x_i = y_i\]

\[\text{Output of gate } g_i = y_{i+n} \text{ (by construction)}\]

\[\text{So } g_m = 1 \text{ (since } (y_{m+n}) \text{ is a clause)}\]

\[\implies C \text{ a YES instance of Circuit-SAT}\]
General Methodology to Prove \textbf{Q NP}-Complete

1. Show \textbf{Q} is in \textbf{NP}
 - Can verify witness for YES
 - Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some \textbf{NP}-hard problem \textbf{A}. Reduce \textit{from} \textbf{A} \textit{to} \textbf{Q}:
 - Given instance \textbf{I} of \textbf{A}, turn into \textbf{f}(\textbf{I}) of \textbf{Q} (in time polynomial in $|\textbf{I}|$)
 - \textbf{I} YES of \textbf{A} if and only if \textbf{f}(\textbf{I}) YES of \textbf{Q}
General Methodology to Prove \(Q \) NP-Complete

1. Show \(Q \) is in \(\text{NP} \)
 - Can verify witness for YES
 - Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some \(\text{NP} \)-hard problem \(A \). Reduce \textit{from} \(A \) \textit{to} \(Q \):
 - Given instance \(I \) of \(A \), turn into \(f(I) \) of \(Q \) (in time polynomial in \(|I| \))
 - \(I \) YES of \(A \) if and only if \(f(I) \) YES of \(Q \)

Notes:
 - Careful about direction of reduction!!!!
 - Need to handle \textit{arbitrary} instances of \(A \), but can turn into very structured instances of \(Q \)
 - Often easiest to prove NO direction via contrapositive, to turn into statement about YES:
 - \(I \) YES of \(A \) \implies \(f(I) \) YES of \(Q \)
 - \(f(I) \) YES of \(Q \) \implies \(I \) YES of \(A \)
 - So proving “both directions”, but reduction only in one direction.
Clique

Definition: A *clique* in an undirected graph $G = (V, E)$ is a set $S \subseteq V$ such that $\{u, v\} \in E$ for all $u, v \in S$.

Definition (Clique)

Instance is a graph $G = (V, E)$ and an integer k. YES if G contains a clique of size at least k, NO otherwise.
Definition: A *clique* in an undirected graph $G = (V, E)$ is a set $S \subseteq V$ such that $\{u, v\} \in E$ for all $u, v \in S$.

Definition (CLIQUE)

Instance is a graph $G = (V, E)$ and an integer k. YES if G contains a clique of size at least k, NO otherwise.

Theorem

CLIQUE is NP-complete.
Clique

Definition: A *clique* in an undirected graph $G = (V, E)$ is a set $S \subseteq V$ such that $\{u, v\} \in E$ for all $u, v \in S$.

Definition (Clique)

Instance is a graph $G = (V, E)$ and an integer k. YES if G contains a clique of size at least k, NO otherwise.

Theorem

Clique is **NP-complete**.

In **NP**:
Clique

Definition: A *clique* in an undirected graph $G = (V, E)$ is a set $S \subseteq V$ such that $\{u, v\} \in E$ for all $u, v \in S$.

Definition (Clique)

Instance is a graph $G = (V, E)$ and an integer k. YES if G contains a clique of size at least k, NO otherwise.

Theorem

Clique is **NP-complete**.

In NP:

- **Witness:** $S \subseteq V$
- **Verifier:** Checks if S is a clique and $|S| \geq k$
 - If (G, k) a YES instance: there is a clique S of size $\geq k$ on which verifier returns YES
 - If (G, k) a NO instance: S cannot be clique of size $\geq k$, so verifier always returns NO
Clique is **NP-hard**

Prove by reducing 3-SAT to **Clique**

- For arbitrary $A \in \textbf{NP}$, would have $A \leq_p \text{Circuit-SAT} \leq_p \text{3-SAT} \leq_p \text{Clique}$
Clique is NP-hard

Prove by reducing 3-SAT to Clique

- For arbitrary \(A \in \text{NP} \), would have \(A \leq_p \text{Circuit-SAT} \leq_p 3\text{-SAT} \leq_p \text{Clique} \)

Given 3-SAT formula \(F \) (with \(n \) variables and \(m \) clauses), set \(k = m \) and create graph \(G = (V, E) \):

- For every clause of \(F \), for every satisfying assignment to the clause, create vertex
- Add an edge between consistent assignments
Clique is **NP**-hard

Prove by reducing 3-SAT to Clique

- For arbitrary \(A \in \text{NP} \), would have \(A \leq_p \text{Circuit-SAT} \leq_p 3\text{-SAT} \leq_p \text{Clique} \)

Given 3-SAT formula \(F \) (with \(n \) variables and \(m \) clauses), set \(k = m \) and create graph \(G = (V, E) \):

- For every clause of \(F \), for every satisfying assignment to the clause, create vertex
- Add an edge between consistent assignments

Example: \(F = (x_1 \lor x_2 \lor x_4) \land (\bar{x}_3 \lor x_4) \land (\bar{x}_2 \lor \bar{x}_3) \)
3-SAT to \textsc{Clique} reduction analysis

Polytime: ✓
3-SAT to Clique reduction analysis

Polytime: ✓

If F YES of 3-SAT:
 ▶ There is some satisfying assignment x
 ▶ For every clause, choose vertex corresponding to x. Let S be chosen vertices
 ▶ $|S| = m = k$, and clique since all consistent (since all from x)
 $\implies (G, k)$ YES of Clique
3-SAT to Clique reduction analysis

Polytime: ✓

If F YES of 3-SAT:
 ▶ There is some satisfying assignment x
 ▶ For every clause, choose vertex corresponding to x. Let S be chosen vertices
 ▶ |S| = m = k, and clique since all consistent (since all from x)

⇒ (G, k) YES of Clique

If (G, k) YES of Clique:
 ▶ There is some clique S of size k = m
 ▶ Must contain exactly one vertex from each clause (since clique of size m)
 ▶ Since clique, all assignments consistent ⇒ there is an assignment that satisfies all clauses

⇒ F YES of 3-SAT
Independent Set

Definition: $S \subseteq V$ is an *independent set* in $G = (V, E)$ if $\{u, v\} \notin E$ for all $u, v \in S$.

Definition (Independent Set)

Instance is graph $G = (V, E)$ and integer k. YES if G has an independent set of size $\geq k$, NO otherwise.
Independent Set

Definition: $S \subseteq V$ is an *independent set* in $G = (V, E)$ if $\{u, v\} \notin E$ for all $u, v \in S$

<table>
<thead>
<tr>
<th>Definition (INDEPENDENT SET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance is graph $G = (V, E)$ and integer k. YES if G has an independent set of size $\geq k$, NO otherwise.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEPENDENT SET is NP-complete.</td>
</tr>
</tbody>
</table>
Independent Set

Definition: $S \subseteq V$ is an *independent set* in $G = (V, E)$ if $\{u, v\} \notin E$ for all $u, v \in S$

Definition (Independent Set)

Instance is graph $G = (V, E)$ and integer k. YES if G has an independent set of size $\geq k$, NO otherwise.

Theorem

Independent Set is NP-complete.

In NP:
Independent Set

Definition: $S \subseteq V$ is an *independent set* in $G = (V, E)$ if $\{u, v\} \notin E$ for all $u, v \in S$

Definition (Independent Set)

Instance is graph $G = (V, E)$ and integer k. YES if G has an independent set of size $\geq k$, NO otherwise.

Theorem

Independent Set is **NP-complete**.

In NP:

- Witness is $S \subseteq V$. Verifier checks that $|S| \geq k$ and no edges in S
- If (G, k) a YES instance then such an S exists \Longrightarrow verifier returns YES on it.
- If (G, k) a NO then verifier will return NO on every S.
Independent Set is NP-hard

Reduce from:

Given instance \((G, k)\) of Clique, create "complement graph" \(H\): a set of vertices, with \(\{u, v\} \in E(H)\) if and only if \(\{u, v\} \notin E(G)\).
Independent Set is **NP-hard**

Reduce from: **Clique**
Independent Set is NP-hard

Reduce from: Clique

- Given instance \((G, k)\) of Clique, create “complement graph” \(H\): same vertex set, with \(\{u, v\} \in E(H)\) if and only if \(\{u, v\} \notin E(G)\)
- Instance \((H, k)\) of Independent Set
Independent Set is NP-hard

Reduce from: Clique

- Given instance \((G, k)\) of Clique, create “complement graph” \(H\): same vertex set, with \(\{u, v\} \in E(H)\) if and only if \(\{u, v\} \notin E(G)\)
- Instance \((H, k)\) of Independent Set

If \((G, k)\) YES of Clique:

\[\implies\] Clique \(S \subseteq V\) of \(G\) with \(|S| \geq k\)

\[\implies\] \(S\) an independent set in \(H\)
Independent Set is NP-hard

Reduce from: **Clique**

- Given instance \((G, k)\) of **Clique**, create “complement graph” \(H\): same vertex set, with \(\{u, v\} \in E(H)\) if and only if \(\{u, v\} \notin E(G)\)
- Instance \((H, k)\) of **Independent Set**

If \((G, k)\) YES of **Clique**:

\[\begin{align*}
\implies & \text{Clique } S \subseteq V \text{ of } G \text{ with } |S| \geq k \\
\implies & S \text{ an independent set in } H
\end{align*}\]

If \((H, k)\) YES of **Independent Set**:

\[\begin{align*}
\implies & \text{Independent set } S \subseteq V \text{ in } H \text{ with } |S| \geq k \\
\implies & S \text{ a clique in } G
\end{align*}\]
Vertex Cover

Definition: $S \subseteq V$ is a *vertex cover* of $G = (V, E)$ if $S \cap e \neq \emptyset$ for all $e \in E$.

Definition (Vertex Cover)

Instance is graph $G = (V, E)$, integer k. YES if G has a vertex cover of size $\leq k$, NO otherwise.
Vertex Cover

Definition: $S \subseteq V$ is a *vertex cover* of $G = (V, E)$ if $S \cap e \neq \emptyset$ for all $e \in E$.

Definition (Vertex Cover)

Instance is graph $G = (V, E)$, integer k. YES if G has a vertex cover of size $\leq k$, NO otherwise.

Theorem

Vertex Cover is **NP-complete**
Vertex Cover

Definition: $S \subseteq V$ is a *vertex cover* of $G = (V, E)$ if $S \cap e \neq \emptyset$ for all $e \in E$.

Definition (Vertex Cover)

Instance is graph $G = (V, E)$, integer k. YES if G has a vertex cover of size $\leq k$, NO otherwise.

Theorem

Vertex Cover is **NP-complete**

In **NP**:
Vertex Cover

Definition: \(S \subseteq V \) is a *vertex cover* of \(G = (V, E) \) if \(S \cap e \neq \emptyset \) for all \(e \in E \)

Definition (Vertex Cover)

Instance is graph \(G = (V, E) \), integer \(k \). YES if \(G \) has a vertex cover of size \(\leq k \), NO otherwise.

Theorem

Vertex Cover is NP-complete

In NP:

- Witness is \(S \subseteq V \). Verifier checks that \(|S| \leq k \) and every edge has at least one endpoint in \(S \).
- If \((G, k)\) a YES instance then such an \(S \) exists \(\iff \) verifier returns YES on it.
- If \((G, k)\) a NO then verifier will return NO on every \(S \).
Vertex Cover is NP-hard

Reduce from **Independent Set**

- Given instance \((G = (V, E), k)\) of **Independent Set**, create instance \((G, n - k)\) of **Vertex Cover** (where \(n = |V|\))
Vertex Cover is **NP**-hard

Reduce from **Independent Set**

- Given instance \((G = (V, E), k)\) of **Independent Set**, create instance \((G, n - k)\) of **Vertex Cover** (where \(n = |V|\))

If \((G, k)\) a YES instance of **Independent Set**:

\(\implies\) \(G\) has an independent set \(S\) with \(|S| \geq k\)

\(\implies\) \(V \setminus S\) a vertex cover of \(G\) of size \(\leq n - k\)

\(\implies\) \((G, n - k)\) a YES instance of **Vertex Cover**
Vertex Cover is NP-hard

Reduce from **Independent Set**

- Given instance \((G = (V, E), k)\) of **Independent Set**, create instance \((G, n - k)\) of **Vertex Cover** (where \(n = |V|\))

If \((G, k)\) a YES instance of **Independent Set**:

\[\implies G \text{ has an independent set } S \text{ with } |S| \geq k \]

\[\implies V \setminus S \text{ a vertex cover of } G \text{ of size } \leq n - k \]

\[\implies (G, n - k) \text{ a YES instance of } \textbf{Vertex Cover} \]

If \((G, n - k)\) a YES instance of **Vertex Cover**:

\[\implies G \text{ has a vertex cover } S \text{ of size at most } n - k \]

\[\implies V \setminus S \text{ an independent set of } G \text{ of size at least } k \]

\[\implies (G, k) \text{ a YES instance of } \textbf{Independent Set} \]