Lecture 22: NP-Completeness II

Michael Dinitz

November 11, 2021
601.433/633 Introduction to Algorithms

Introduction

Last time: Definition of $\mathbf{P}, \mathbf{N P}$, reductions, NP-completeness. Proof that Circuit-SAT is NP-complete.

Today: more NP-complete problems.

Definition

A decision problem \mathbf{Q} is in NP (nondeterministic polynomial time) if there exists a polynomial time algorithm $\mathbf{V}(\mathbf{I}, \mathbf{X})$ (called the verifier) such that

1. If \mathbf{I} is a $Y E S$-instance of \mathbf{Q}, then there is some \mathbf{X} (usually called the witness, proof, or solution) with size polynomial in $|\mathbf{I}|$ so that $\mathbf{V}(\mathbf{I}, \mathbf{X})=\mathrm{YES}$.
2. If \mathbf{I} is a NO-instance of \mathbf{Q}, then $\mathbf{V}(\mathbf{I}, \mathbf{X})=\mathbf{N O}$ for all \mathbf{X}.

Reductions

Definition

A Many-one or Karp reduction from \mathbf{A} to \mathbf{B} is a function \mathbf{f} which takes arbitrary instances of \mathbf{A} and transforms them into instances of \mathbf{B} so that

1. If \mathbf{x} is a YES-instance of \mathbf{A} then $\mathbf{f}(\mathbf{x})$ is a YES-instance of \mathbf{B}.
2. If \mathbf{x} is a NO-instance of \mathbf{A} then $\mathbf{f}(\mathbf{x})$ is a NO-instance \mathbf{B}.
3. \mathbf{f} can be computed in polynomial time.

Definition

Problem \mathbf{Q} is NP-hard if $\mathbf{Q}^{\prime} \leq_{\mathbf{p}} \mathbf{Q}$ for all problems \mathbf{Q}^{\prime} in $\mathbf{N P}$. Problem \mathbf{Q} is NP-complete if it is NP-hard and in NP.

Circuit-SAT

Definition

Circuit-SAT: Given a boolean circuit of AND, OR, and NOT gates, with a single output and no loops (some inputs might be hardwired), is there a way of setting the inputs so that the output of the circuit is $\mathbf{1}$?

Theorem

Circuit-SAT is NP-complete.

3-SAT

Boolean formula:

- Boolean variables x_{1}, \ldots, x_{n}
- Literal: variable $\mathbf{x}_{\mathbf{i}}$ or negation $\overline{\mathbf{x}_{\mathbf{i}}}$
- AND: \wedge OR: v
- $x_{1} \vee\left(\overline{x_{5}} \wedge x_{7}\right) \wedge\left(\overline{x_{2}} \vee\left(x_{6} \wedge \overline{x_{3}}\right)\right) \ldots$

Conjunctive normal form (CNF): AND of ORs (clauses)

- $\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{4} \vee \overline{x_{6}}\right) \ldots$

Definition

3-SAT: Instance is 3CNF formula ϕ (every clause has $\leq \mathbf{3}$ literals). YES if there is assignment where ϕ evaluates to True (satisfying assignment), NO otherwise.

3-SAT

Theorem
 3-SAT is NP-complete.

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on assignment.

3-SAT is NP-hard: Show Circuit-SAT $\leq_{p} 3$-SAT.

- Don't need to show that $\mathbf{A} \leq$ p 3 -SAT for arbitrary $\mathbf{A} \in \mathbf{N P}$: already know that $\mathbf{A} \leq$ p Circuit-SAT!
So start with circuit. Want to transform to 3-CNF formula.

Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)

- AND/OR/NOT universal, but so is just NAND!

So given circuit C, first transform it into NAND-only circuit.

Input:

- \mathbf{n} "input wires" $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathrm{x}_{\mathbf{n}}$
- m NAND gates: $\mathbf{g}_{1}, \ldots, \mathbf{g}_{\mathbf{m}}$
- $\mathrm{g}_{1}=\operatorname{NAND}\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right)$, $\mathrm{g}_{2}=\operatorname{NAND}\left(\mathrm{g}_{1}, \mathrm{x}_{4}\right), \ldots$
- WLOG, $\mathbf{g}_{\mathbf{m}}$ is the "output gate"

Reduction to 3-SAT

So given as input a circuit C:

- \mathbf{n} "input wires" $\mathbf{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$
- m NAND gates: $\mathbf{g}_{\mathbf{1}}, \ldots, \mathbf{g}_{\mathbf{m}}$. Output gate $\mathbf{g}_{\mathbf{m}}$

Need to construct many-one reduction \mathbf{f} to 3-SAT: in polynomial time, construct 3-CNF formula $\mathbf{f}(\mathbf{C})$ such that $\mathbf{f}(\mathbf{C})$ has a satisfying assignment if and only if \mathbf{C} has an input where it outputs 1.

Variables: $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+\mathbf{1}}, \mathrm{y}_{\mathrm{n}+2}, \ldots, \mathbf{y}_{\mathrm{n}+\mathrm{m}}$ (one for each wire)
Clauses: For every NAND gate $\mathbf{y}_{\mathbf{i}}=\operatorname{NAND}\left(\mathbf{y}_{\mathbf{j}}, \mathbf{y}_{\mathbf{k}}\right)$, create clauses:

- $\mathbf{y}_{\mathbf{i}} \vee \mathbf{y}_{\mathbf{j}} \vee \mathbf{y}_{\mathbf{k}}$ (if $\mathbf{y}_{\mathrm{j}}=0$ and $\mathrm{y}_{\mathrm{k}}=0$ then $\mathrm{y}_{\mathrm{i}}=1$)
- $\mathbf{y}_{\mathbf{i}} \vee \overline{\mathbf{y}}_{\mathbf{j}} \vee \mathbf{y}_{\mathbf{k}}$ (if $\mathbf{y}_{\mathrm{j}}=\mathbf{1}$ and $\mathbf{y}_{\mathrm{k}}=0$ then $\mathrm{y}_{\mathrm{i}}=1$)
- $\mathbf{y}_{\mathbf{i}} \vee \mathbf{y}_{\mathbf{j}} \vee \overline{\mathbf{y}}_{\mathbf{k}}$ (if $\mathbf{y}_{\mathbf{j}}=\mathbf{0}$ and $\mathbf{y}_{\mathbf{k}}=1$ then $\mathbf{y}_{\mathrm{i}}=1$)
- $\overline{\mathbf{y}}_{\mathbf{i}} \vee \overline{\mathbf{y}}_{\mathbf{j}} \vee \overline{\mathbf{y}}_{\mathbf{k}}$ (if $\mathbf{y}_{\mathrm{j}}=1$ and $\mathbf{y}_{\mathrm{k}}=1$ then $\mathbf{y}_{\mathrm{i}}=0$)

Also add clause $\left(\mathbf{y}_{\mathbf{m}+\mathbf{n}}\right)$ (want output gate to be $\mathbf{1}$)

Analysis

Theorem

This is a many-one reduction from Circuit-SAT to 3-SAT.
Polytime: \checkmark

Suppose C YES of Circuit-SAT

$\Longrightarrow \exists$ setting \mathbf{x} of input wires so $\mathbf{g}_{\mathbf{m}}=\mathbf{1}$ \exists assignment of $\mathbf{y}_{1}, \ldots \mathbf{y}_{\mathbf{m}+\mathbf{n}}$ so that all clauses are satisfied:

- $y_{i}=x_{i}$ if $i \leq n$
- $y_{i}=g_{i-n}$ if $\mathbf{i}>n$
$\Longrightarrow f(C)$ YES of 3-SAT

Suppose $\mathbf{f}(\mathbf{C})$ YES of 3-SAT

$\Longrightarrow \exists$ assignment y to variables so that all clauses satisfied
$\Longrightarrow \exists$ setting \mathbf{x} of input wires so $\mathbf{g}_{\mathbf{m}}=\mathbf{1}$:

- $x_{i}=y_{i}$
- Output of gate $\mathbf{g}_{\mathbf{i}}=\mathbf{y}_{\mathbf{i + n}}$ (by construction)
- So $\mathbf{g}_{\mathbf{m}}=\mathbf{1}$ (since $\left(\mathbf{y}_{\mathrm{m}+\mathrm{n}}\right)$ is a clause)
$\Longrightarrow C$ a YES instance of Circuit-SAT

General Methodology to Prove Q NP-Complete

1. Show \mathbf{Q} is in $\mathbf{N P}$

- Can verify witness for YES
- Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some NP-hard problem \mathbf{A}. Reduce from \mathbf{A} to \mathbf{Q} :

- Given instance \mathbf{I} of \mathbf{A}, turn into $\mathbf{f}(\mathbf{I})$ of \mathbf{Q} (in time polynomial in $|\mathbf{I}|$)
- I YES of \mathbf{A} if and only if $\mathbf{f}(\mathbf{I})$ YES of \mathbf{Q}

Notes:

- Careful about direction of reduction!!!!
- Need to handle arbitrary instances of \mathbf{A}, but can turn into very structured instances of \mathbf{Q}
- Often easiest to prove NO direction via contrapositive, to turn into statement about YES:
- I YES of $\mathbf{A} \Longrightarrow \mathbf{f}(\mathbf{I})$ YES of \mathbf{Q}
- $\mathbf{f}(\mathbf{I})$ YES of $\mathbf{Q} \Longrightarrow \mathbf{I}$ YES of \mathbf{A}
- So proving "both directions", but reduction only in one direction.

Clique

Definition: A clique in an undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ is a set $\mathbf{S} \subseteq \mathbf{V}$ such that $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{S}$

Definition (Clique)

Instance is a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}. YES if \mathbf{G} contains a clique of size at least \mathbf{k}, NO otherwise.

Theorem

Clique is NP-complete.

In NP:

- Witness: S \subseteq V
- Verifier: Checks if \mathbf{S} is a clique and $|\mathbf{S}| \geq \mathbf{k}$
- If (\mathbf{G}, \mathbf{k}) a YES instance: there is a clique \mathbf{S} of size $\geq \mathbf{k}$ on which verifier returns YES
- If (\mathbf{G}, \mathbf{k}) a NO instance: \mathbf{S} cannot be clique of size $\geq \mathbf{k}$, so verifier always returns NO

Clique is NP-hard

Prove by reducing 3-SAT to Clique

- For arbitrary $\mathbf{A} \in \mathbf{N P}$, would have $\mathbf{A} \leq_{p}$ Circuit-SAT $\leq_{p} 3-S A T \leq_{p}$ Clique

Given 3-SAT formula \mathbf{F} (with \mathbf{n} variables and \mathbf{m} clauses), set $\mathbf{k}=\mathbf{m}$ and create graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$:

- For every clause of \mathbf{F}, for every satisfying assignment to the clause, create vertex
- Add an edge between consistent assignments

Example: $\mathbf{F}=\left(\mathrm{x}_{1} \vee \mathrm{x}_{2} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{3} \vee \mathrm{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3}\right)$

3-SAT to CLIQUE reduction analysis

Polytime: \checkmark
If \mathbf{F} YES of 3-SAT:

- There is some satisfying assignment \mathbf{x}
- For every clause, choose vertex corresponding to \mathbf{x}. Let \mathbf{S} be chosen vertices
- $|\mathbf{S}|=\mathbf{m}=\mathbf{k}$, and clique since all consistent (since all from \mathbf{x})
$\Longrightarrow(\mathbf{G}, \mathbf{k})$ YES of Clique
If (\mathbf{G}, \mathbf{k}) YES of Clique:
- There is some clique \mathbf{S} of size $\mathbf{k}=\mathbf{m}$
- Must contain exactly one vertex from each clause (since clique of size m)
- Since clique, all assignments consistent \Longrightarrow there is an assignment that satisfies all clauses
\Longrightarrow F YES of 3-SAT

Independent Set

Definition: $\mathbf{S} \subseteq \mathbf{V}$ is an independent set in $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ if $\{\mathbf{u}, \mathbf{v}\} \notin \mathbf{E}$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{S}$

Definition (Independent Set)

Instance is graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and integer \mathbf{k}. YES if \mathbf{G} has an independent set of size $\geq \mathbf{k}$, NO otherwise.

Theorem

Independent Set is NP-complete.

In NP:

- Witness is $\mathbf{S} \subseteq \mathbf{V}$. Verifier checks that $|\mathbf{S}| \geq \mathbf{k}$ and no edges in \mathbf{S}
- If (\mathbf{G}, \mathbf{k}) a YES instance then such an \mathbf{S} exists \Longrightarrow verifier returns YES on it.
- If (\mathbf{G}, \mathbf{k}) a NO then verifier will return NO on every \mathbf{S}.

Independent Set is NP-hard

Reduce from: Clique

- Given instance (\mathbf{G}, \mathbf{k}) of Clique, create "complement graph" \mathbf{H} : same vertex set, with $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}(\mathbf{H})$ if and only if $\{\mathbf{u}, \mathbf{v}\} \notin \mathbf{E}(\mathbf{G})$
- Instance (\mathbf{H}, \mathbf{k}) of Independent Set

If (\mathbf{G}, \mathbf{k}) YES of Clique:
\Longrightarrow Clique $\mathbf{S} \subseteq \mathbf{V}$ of \mathbf{G} with $|\mathbf{S}| \geq \mathbf{k}$
$\Longrightarrow \mathbf{S}$ an independent set in \mathbf{H}

If (\mathbf{H}, \mathbf{k}) YES of Independent Set:
\Longrightarrow Independent set $\mathbf{S} \subseteq \mathbf{V}$ in \mathbf{H} with $|\mathbf{S}| \geq \mathbf{k}$
$\Longrightarrow \mathbf{S}$ a clique in \mathbf{G}

Vertex Cover

Definition: $\mathbf{S} \subseteq \mathbf{V}$ is a vertex cover of $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ if $\mathbf{S} \cap \mathbf{e} \neq \varnothing$ for all $\mathbf{e} \in \mathbf{E}$

Definition (Vertex Cover)

Instance is graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, integer \mathbf{k}. YES if \mathbf{G} has a vertex cover of size $\leq \mathbf{k}$, NO otherwise.

Theorem

Vertex Cover is NP-complete
In NP:

- Witness is $\mathbf{S} \subseteq \mathbf{V}$. Verifier checks that $|\mathbf{S}| \leq \mathbf{k}$ and every edge has at least one endpoint in S
- If (\mathbf{G}, \mathbf{k}) a YES instance then such an \mathbf{S} exists \Longrightarrow verifier returns YES on it.
- If (\mathbf{G}, \mathbf{k}) a NO then verifier will return NO on every \mathbf{S}.

Vertex Cover is NP-hard

Reduce from Independent Set

- Given instance $(\mathbf{G}=\mathbf{(V , E}), \mathbf{k})$ of Independent Set, create instance $\mathbf{(G , \mathbf { n } - \mathbf { k }) \text { of }}$ Vertex Cover (where $\mathbf{n}=|\mathbf{V}|$)

If (\mathbf{G}, \mathbf{k}) a YES instance of Independent Set:
$\Longrightarrow \mathbf{G}$ has an independent set \mathbf{S} with $|\mathbf{S}| \geq \mathbf{k}$
$\Longrightarrow \mathbf{V} \backslash \mathbf{S}$ a vertex cover of \mathbf{G} of size $\leq \mathbf{n}-\mathbf{k}$
$\Longrightarrow(\mathbf{G}, \mathbf{n}-\mathbf{k})$ a YES instance of Vertex Cover

If ($\mathbf{G}, \mathbf{n} \mathbf{- k}$) a YES instance of Vertex Cover:
$\Longrightarrow \mathbf{G}$ has a vertex cover \mathbf{S} of size at most $\mathbf{n}-\mathbf{k}$
$\Longrightarrow \mathbf{V}, \mathbf{S}$ an independent set of \mathbf{G} of size at least \mathbf{k}
$\Longrightarrow(\mathbf{G}, \mathbf{k})$ a YES instance of Independent Set

