Lecture 22: NP-Completeness II

Michael Dinitz

November 11, 2021
601.433/633 Introduction to Algorithms
Introduction

Last time: Definition of \mathbf{P}, \mathbf{NP}, reductions, \mathbf{NP}-completeness. Proof that Circuit-SAT is \mathbf{NP}-complete.

Today: more \mathbf{NP}-complete problems.

Definition

A decision problem Q is in \mathbf{NP} (nondeterministic polynomial time) if there exists a polynomial time algorithm $V(I, X)$ (called the verifier) such that

1. If I is a YES-instance of Q, then there is some X (usually called the witness, proof, or solution) with size polynomial in $|I|$ so that $V(I, X) = \text{YES}$.
2. If I is a NO-instance of Q, then $V(I, X) = \text{NO}$ for all X.

Michael Dinitz
Lecture 22: NP-Completeness II
November 11, 2021
Reductions

Definition

A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of A and transforms them into instances of B so that

1. If x is a YES-instance of A then $f(x)$ is a YES-instance of B.
2. If x is a NO-instance of A then $f(x)$ is a NO-instance of B.
3. f can be computed in polynomial time.

Definition

Problem Q is **NP-hard** if $Q' \leq_p Q$ for all problems Q' in NP. Problem Q is **NP-complete** if it is NP-hard and in NP.
Circuit-SAT

Definition

Circuit-SAT: Given a boolean circuit of AND, OR, and NOT gates, with a single output and no loops (some inputs might be hardwired), is there a way of setting the inputs so that the output of the circuit is 1?

Theorem

Circuit-SAT is **NP-complete**.
3-SAT

Boolean formula:
- Boolean variables x_1, \ldots, x_n
- Literal: variable x_i or negation \bar{x}_i
- AND: \land OR: \lor
- $x_1 \lor (\bar{x}_5 \land x_7) \land (\bar{x}_2 \lor (x_6 \land \bar{x}_3)) \ldots$

Conjunctive normal form (CNF): AND of ORs (clauses)
- $(x_1 \lor \bar{x}_2 \lor \bar{x}_4) \land (x_2 \lor x_3) \land (x_1 \lor x_4 \lor \bar{x}_6) \ldots$

Definition

3-SAT: Instance is 3CNF formula ϕ (every clause has ≤ 3 literals). YES if there is assignment where ϕ evaluates to True (satisfying assignment), NO otherwise.
Theorem

3-SAT is \textbf{NP}-complete.

3-SAT in \textbf{NP}: witness is assignment, verifier checks that formula evaluates to True on assignment.

3-SAT is \textbf{NP}-hard: Show Circuit-SAT \leq_p 3-SAT.

- Don’t need to show that \textbf{A} \leq_p 3-SAT for arbitrary \textbf{A} \in \textbf{NP}: already know that \textbf{A} \leq_p Circuit-SAT!

So start with circuit. Want to transform to 3-CNF formula.
Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)

- AND/OR/NOT universal, but so is just NAND!

So given circuit C, first transform it into NAND-only circuit.

Input:

- n “input wires” x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m
 - $g_1 = \text{NAND}(x_1, x_3)$,
 - $g_2 = \text{NAND}(g_1, x_4)$, \ldots
- WLOG, g_m is the “output gate”
Reduction to 3-SAT

So given as input a circuit C:

- n “input wires” x_1, x_2, \ldots, x_n
- m NAND gates: g_1, \ldots, g_m. Output gate g_m

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF formula $f(C)$ such that $f(C)$ has a satisfying assignment if and only if C has an input where it outputs 1.

Variables: $y_1, y_2, \ldots, y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+m}$ (one for each wire)

Clauses: For every NAND gate $y_i = \text{NAND}(y_j, y_k)$, create clauses:

- $y_i \lor y_j \lor y_k$ (if $y_j = 0$ and $y_k = 0$ then $y_i = 1$)
- $y_i \lor \overline{y}_j \lor y_k$ (if $y_j = 1$ and $y_k = 0$ then $y_i = 1$)
- $y_i \lor y_j \lor \overline{y}_k$ (if $y_j = 0$ and $y_k = 1$ then $y_i = 1$)
- $\overline{y}_i \lor \overline{y}_j \lor \overline{y}_k$ (if $y_j = 1$ and $y_k = 1$ then $y_i = 0$)

Also add clause (y_{m+n}) (want output gate to be 1)
Analysis

Theorem

This is a many-one reduction from Circuit-SAT to 3-SAT.

Polytime: ✓

Suppose \(\mathbf{C} \) YES of Circuit-SAT

\[\implies \exists \text{ setting } \mathbf{x} \text{ of input wires so } g_m = 1 \]

\[\implies \exists \text{ assignment of } y_1, \ldots, y_{m+n} \text{ so that all clauses are satisfied:} \]

\[y_i = x_i \text{ if } i \leq n \]

\[y_i = g_{i-n} \text{ if } i > n \]

\[\implies \mathbf{f}(\mathbf{C}) \text{ YES of 3-SAT} \]

Suppose \(\mathbf{f}(\mathbf{C}) \) YES of 3-SAT

\[\implies \exists \text{ assignment } \mathbf{y} \text{ to variables so that all clauses satisfied} \]

\[\implies \exists \text{ setting } \mathbf{x} \text{ of input wires so } g_m = 1: \]

\[x_i = y_i \]

\[\text{Output of gate } g_i = y_{i+n} \text{ (by construction)} \]

\[\text{So } g_m = 1 \text{ (since } (y_{m+n}) \text{ is a clause)} \]

\[\implies \mathbf{C} \text{ a YES instance of Circuit-SAT} \]
General Methodology to Prove Q NP-Complete

1. Show Q is in NP
 - Can verify witness for YES
 - Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some NP-hard problem A. Reduce from A to Q:
 - Given instance I of A, turn into $f(I)$ of Q (in time polynomial in $|I|$)
 - I YES of A if and only if $f(I)$ YES of Q

Notes:

- Careful about direction of reduction!!!!
- Need to handle arbitrary instances of A, but can turn into very structured instances of Q
- Often easiest to prove NO direction via contrapositive, to turn into statement about YES:
 - I YES of A \implies $f(I)$ YES of Q
 - $f(I)$ YES of Q \implies I YES of A
 - So proving “both directions”, but reduction only in one direction.
CLIQUE

Definition: A *clique* in an undirected graph \(G = (V, E) \) is a set \(S \subseteq V \) such that \(\{u, v\} \in E \) for all \(u, v \in S \)

Definition (CLIQUE):
Instance is a graph \(G = (V, E) \) and an integer \(k \). YES if \(G \) contains a clique of size at least \(k \), NO otherwise.

Theorem
CLIQUE is **NP-complete**.

In **NP**:
- **Witness:** \(S \subseteq V \)
- **Verifier:** Checks if \(S \) is a clique and \(|S| \geq k \)
 - If \((G, k)\) a YES instance: there is a clique \(S \) of size \(\geq k \) on which verifier returns YES
 - If \((G, k)\) a NO instance: \(S \) cannot be clique of size \(\geq k \), so verifier always returns NO
Clique is NP-hard

Prove by reducing 3-SAT to Clique

- For arbitrary $A \in \text{NP}$, would have $A \leq_p \text{Circuit-SAT} \leq_p 3\text{-SAT} \leq_p \text{Clique}$

Given 3-SAT formula F (with n variables and m clauses), set $k = m$ and create graph $G = (V, E)$:

- For every clause of F, for every satisfying assignment to the clause, create vertex
- Add an edge between consistent assignments

Example: $F = (x_1 \lor x_2 \lor \overline{x}_4) \land (\overline{x}_3 \lor x_4) \land (\overline{x}_2 \lor \overline{x}_3)$
3-SAT to \textit{Clique} reduction analysis

Polytime: ✓

If \textbf{F} YES of 3-SAT:
- There is some satisfying assignment \(x \)
- For every clause, choose vertex corresponding to \(x \). Let \(S \) be chosen vertices
- \(|S| = m = k\), and clique since all consistent (since all from \(x \))

\[\implies (G, k) \text{ YES of } Clique\]

If \((G, k)\) YES of \textit{Clique}:
- There is some clique \(S \) of size \(k = m \)
- Must contain exactly one vertex from each clause (since clique of size \(m \))
- Since clique, all assignments consistent \(\implies\) there is an assignment that satisfies all clauses

\[\implies \textbf{F} \text{ YES of 3-SAT}\]
Independent Set

Definition: $S \subseteq V$ is an independent set in $G = (V, E)$ if $\{u, v\} \notin E$ for all $u, v \in S$

Definition (Independent Set)

Instance is graph $G = (V, E)$ and integer k. YES if G has an independent set of size $\geq k$, NO otherwise.

Theorem

Independent Set is NP-complete.

In NP:

- Witness is $S \subseteq V$. Verifier checks that $|S| \geq k$ and no edges in S
- If (G, k) a YES instance then such an S exists \implies verifier returns YES on it.
- If (G, k) a NO then verifier will return NO on every S.
Independent Set is **NP-hard**

Reduce from: **Clique**

- Given instance \((G, k)\) of **Clique**, create “complement graph” \(H\): same vertex set, with \(\{u, v\} \in E(H)\) if and only if \(\{u, v\} \notin E(G)\)
- Instance \((H, k)\) of **Independent Set**

If \((G, k)\) **YES** of **Clique**:

\[\rightarrow \quad \text{Clique } S \subseteq V \text{ of } G \text{ with } |S| \geq k\]
\[\rightarrow \quad S \text{ an independent set in } H\]

If \((H, k)\) **YES** of **Independent Set**:

\[\rightarrow \quad \text{Independent set } S \subseteq V \text{ in } H \text{ with } |S| \geq k\]
\[\rightarrow \quad S \text{ a clique in } G\]
Vertex Cover

Definition: \(S \subseteq V \) is a vertex cover of \(G = (V, E) \) if \(S \cap e \neq \emptyset \) for all \(e \in E \)

Definition (Vertex Cover)

Instance is graph \(G = (V, E) \), integer \(k \). YES if \(G \) has a vertex cover of size \(\leq k \), NO otherwise.

Theorem

Vertex Cover is \textit{NP}-complete

In NP:

- Witness is \(S \subseteq V \). Verifier checks that \(|S| \leq k \) and every edge has at least one endpoint in \(S \)
- If \((G, k)\) a YES instance then such an \(S \) exists \(\implies \) verifier returns YES on it.
- If \((G, k)\) a NO then verifier will return NO on every \(S \).
Vertex Cover is NP-hard

Reduce from **Independent Set**

- Given instance \((G = (V, E), k)\) of **Independent Set**, create instance \((G, n - k)\) of **Vertex Cover** (where \(n = |V|\))

If \((G, k)\) a YES instance of **Independent Set**:
\[\implies G \text{ has an independent set } S \text{ with } |S| \geq k\]
\[\implies V \setminus S \text{ a vertex cover of } G \text{ of size } \leq n - k\]
\[\implies (G, n - k) \text{ a YES instance of **Vertex Cover**}\]

If \((G, n - k)\) a YES instance of **Vertex Cover**:
\[\implies G \text{ has a vertex cover } S \text{ of size at most } n - k\]
\[\implies V \setminus S \text{ an independent set of } G \text{ of size at least } k\]
\[\implies (G, k) \text{ a YES instance of **Independent Set**}\]