Lecture 21: NP-Completeness I

Michael Dinitz

November 9, 2021
601.433/633 Introduction to Algorithms

Introduction

Last few weeks: slower and slower algorithms for harder and harder problems

- From $\mathbf{O}(\mathbf{m}+\mathbf{n})$ time algorithms for BFS/DFS/topological sort/SCCs, to $\mathbf{O}\left(\mathbf{m}^{\mathbf{2}} \mathbf{n}\right)$ for max flow
- Today: start of two lectures on NP-completeness: the (or at least one) line between tractability and intractability

Definition

An algorithm runs in polynomial time if its (worst-case) running time is $\mathbf{O}\left(\mathbf{n}^{\mathbf{c}}\right)$ for some constant $\mathbf{c} \geq \mathbf{0}$, where \mathbf{n} is the size of the input.

Think of polynomial time as "fast", super-polynomial time as "slow"
Question: When do polynomial-time algorithms exist?

Decision Problems

Definition

A decision problem is a computational problem in which the output is either YES or NO.
Examples:

- Max-Flow: Input is $\mathbf{G}=(\mathbf{V}, \mathbf{E}), \mathbf{c}: \mathbf{E} \rightarrow \mathbb{R}_{\geq 0}, \mathbf{s}, \mathbf{t} \in \mathbf{V}, \mathbf{k} \in \mathbb{R}^{+}$. Output YES if there is an (\mathbf{s}, \mathbf{t})-flow of value at least \mathbf{k}, otherwise output NO .
- Shortest s-t path: Input is $\mathbf{G}=(\mathbf{V}, \mathbf{E}), \ell: \mathbf{E} \rightarrow \mathbb{R}, \mathbf{s}, \mathbf{t} \in \mathbf{V}, \mathbf{k} \in \mathbb{R}$. Output YES if $\mathbf{d}(\mathbf{s}, \mathbf{t}) \leq \mathbf{k}$, otherwise output NO.

Some problems naturally decision, others naturally optimization, but can turn any optimization problem into a decision problem.

- If can solve decision, can almost always solve optimization.

Note: Can divide instances (inputs) of any decision problem into YES-instances and NO-instances

Definition

\mathbf{P} is the set of decision problems that can be solved in polynomial time.

Note: problems are in \mathbf{P}, not algorithms
Question: Are all problems in \mathbf{P} ?
Answer: No!

- By time hierarchy theorem there are problems that require super-polynomial time!
- Undecidability: there are problems which cannot be solved by any algorithm at all!

Verification

Different Setting: If in addition to the input we're given a purported solution, can we check that this solution is valid/feasible (in polynomial time)?

- Max-Flow: given $\mathbf{f}: \mathbf{E} \rightarrow \mathbb{R}_{\geq \mathbf{0}}$, check that value $\geq \mathbf{k}$, flow conservation at all nodes other than \mathbf{s}, \mathbf{t}, and capacity constraints obeyed

Definition (3-Coloring)

Input: Undirected graph G = (V, E)
Output: YES if \exists coloring $\mathbf{f}: \mathbf{V} \rightarrow\{\mathbf{R}, \mathbf{G}, \mathbf{B}\}$ such that $\mathbf{f}(\mathbf{u}) \neq \mathbf{f}(\mathbf{v})$ for all $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$. NO otherwise

Verification: Given \mathbf{f},

- Check that $\mathbf{f}(\mathbf{u}) \in\{\mathbf{R}, \mathbf{G}, \mathbf{B}\}$ for all $\mathbf{u} \in \mathbf{V}$, and
- Check each edge $\{\mathbf{u}, \mathbf{v}\}$ to make sure that $\mathbf{f}(\mathbf{u}) \neq \mathbf{f}(\mathbf{v})$

NP

NP: decision problems where solutions can be verified in polynomial time.

Definition

A decision problem \mathbf{Q} is in NP (nondeterministic polynomial time) if there exists a polynomial time algorithm $\mathbf{V}(\mathbf{I}, \mathbf{X})$ (called the verifier) such that

1. If \mathbf{I} is a YES -instance of \mathbf{Q}, then there is some \mathbf{X} (usually called the witness, proof, or solution) with size polynomial in $|\mathbf{I}|$ so that $\mathbf{V}(\mathbf{I}, \mathbf{X})=$ YES.
2. If \mathbf{I} is a NO-instance of \mathbf{Q}, then $\mathbf{V}(\mathbf{I}, \mathbf{X})=$ NO for all \mathbf{X}.

Examples:

- 3-coloring: Witness \mathbf{X} is a coloring $\mathbf{f}: \mathbf{V} \rightarrow\{\mathbf{R}, \mathbf{B}, \mathbf{G}\}$, verifier checks each edge $\{\mathbf{u}, \mathbf{v}\}$ to make sure $\mathbf{f}(\mathbf{u}) \neq \mathbf{f}(\mathbf{v})$
- If \mathbf{I} is a YES instance, then there is a coloring so verifier will return YES
- If \mathbf{I} is a NO instance, then no valid coloring exists. Whatever \mathbf{X} is, verifier returns NO. Max-Flow: Witness \mathbf{X} is a flow $\mathbf{f}: \mathbf{E} \rightarrow \mathbb{R}_{\geq \mathbf{0}}$, verifier checks that it's feasible of value $\geq \mathbf{k}$
- If \mathbf{I} is a YES instance, then there is a feasible flow of value at least \mathbf{k} so verifier (on this flow) will return YES

Theorem

$\mathbf{P} \subseteq \mathbf{N P}$

Proof.

Let $\mathbf{Q} \in \mathbf{P}$.
$\mathbf{V}(\mathbf{I}, \mathbf{X})$: Ignore \mathbf{X}, solve on instance \mathbf{I}.

Question: Does $\mathbf{P}=\mathbf{N P}$, i.e., is $\mathbf{N P} \subseteq \mathbf{P}$?

- Almost everyone thinks no, but we don't know for sure!
- Not even particularly close to a proof.
- Think about what $\mathbf{P}=$ NP would mean...

Reductions

Question: How could we prove that $\mathbf{P}=\mathbf{N P}$ or $\mathbf{P} \neq \mathbf{N P}$?

- $\mathbf{P}=\mathbf{N P}$: Need to show that every problem in NP is also in \mathbf{P} !
- $\mathbf{P} \neq \mathbf{N P}$: Need to prove that some problem in NP not in \mathbf{P}. What is the "hardest" problem in NP?

Definition

Problem \mathbf{A} is polytime reducible to problem $\mathbf{B}\left(\right.$ written $\left.\mathbf{A} \leq_{p} \mathbf{B}\right)$ if, given a polynomial-time algorithm for \mathbf{B}, we can use it to produce a polynomial-time algorithm for \mathbf{A}.

Means that \mathbf{B} is "at least as hard " as \mathbf{A} : if \mathbf{B} is in \mathbf{P}, then so is \mathbf{A}.

- So "hardest" problems in NP are problems that many other problems reduce to.

Many-One (Karp) Reductions

Almost always (and always in this course), use a special type of reduction.

Definition

A Many-one or Karp reduction from \mathbf{A} to \mathbf{B} is a function \mathbf{f} which takes arbitrary instances of \mathbf{A} and transforms them into instances of \mathbf{B} so that

1. If \mathbf{x} is a YES-instance of \mathbf{A} then $\mathbf{f}(\mathbf{x})$ is a YES-instance of \mathbf{B}.
2. If \mathbf{x} is a NO-instance of \mathbf{A} then $\mathbf{f}(\mathbf{x})$ is a NO-instance \mathbf{B}.
3. \mathbf{f} can be computed in polynomial time.

So given instance \mathbf{x} of \mathbf{A}, compute $\mathbf{f}(\mathbf{x})$ and use polytime algorithm for \mathbf{B} on $\mathbf{f}(\mathbf{x})$

- Polytime, since \mathbf{f} in polytime and algorithm for \mathbf{B} in polytime
- Correct by first two properties of many-one reduction.

NP-Completeness

So what is "hardest problem" in NP?

Definition

Problem \mathbf{Q} is $\mathbf{N P}$-hard if $\mathbf{Q}^{\prime} \leq_{\mathbf{p}} \mathbf{Q}$ for all problems \mathbf{Q}^{\prime} in $\mathbf{N P}$.

Definition

Problem Q is NP-complete if it is NP-hard and in NP.

So suppose \mathbf{Q} is NP-complete.

- To prove $\mathbf{P} \neq \mathbf{N P}$: Hardest problem in NP! If anything in NP is not in \mathbf{P}, then \mathbf{Q} is not in \mathbf{P}
- To prove $\mathbf{P}=\mathbf{N P}$: Just need to prove that $\mathbf{Q} \in \mathbf{P}$.

Is anything NP-complete?

Circuit-SAT
Definition
Circuit-SAT: Given a boolean circuit with a single output and no loops (some inputs might be hardwired), is there a way of setting the inputs so that the output of the circuit is $\mathbf{1}$?

$$
\begin{aligned}
\text { Gates: AND } & =- \\
\text { NOT } & =-
\end{aligned}
$$

Arbitrary fan-ont

Circuit-SAT

Theorem

Circuit-SAT is NP-complete.
Sketch of proof here. See book for details.

Lemma

Circuit-SAT is in NP.

Proof.

Witness is a T/F (or $1 / 0$) assignment to inputs. Verifier simulates circuit on assignment, checks that it outputs $\mathbf{1}$.

- If input is a YES instance then there is some assignment so circuit outputs $\mathbf{1}$. When verifier run on that assignment, returns YES.
- In input is a NO instance then in every assignment circuit outputs $\mathbf{0}$. So verifier returns NO on every witness.

Circuit-SAT is NP-hard

Let $\mathbf{A} \in \mathbf{N P}$. Want to show $\mathbf{A} \leq_{\text {p }}$ Circuit-SAT (construct a many-one reduction).
Where to start? What do we know about A?

- In NP, so has verifier algorithm V
- V algorithm runs on a computer (or Turing machine)!

Computer: memory + circuit for modifying memory!

Not a boolean circuit in Circuit-SAT sense: loops (feedback)

Fix: "Unroll" circuit using fact that \mathbf{V} runs in polynomial time

Reduction

Reduction: given instance \mathbf{I} of \mathbf{A}, construct this circuit for \mathbf{V}, hardwire I. Combined circuit $\mathbf{f}(\mathbf{I})$

- Polytime since \mathbf{V} runs in polytime
- If I YES of \mathbf{A} : there is some \mathbf{X} so that $\mathbf{V}(\mathbf{I}, \mathbf{X})=$ YES
rumithy time of \Longrightarrow some \mathbf{X} so that when \mathbf{X} input to $\mathbf{f}(\mathbf{I})$, outputs 1
$\Longrightarrow \mathbf{f}(\mathbf{I})$ YES instance of Circuit-SAT.
- If I NO of \mathbf{A} : For every \mathbf{X}, know that $\mathbf{V}(\mathbf{I}, \mathbf{X})=$ NO
\Longrightarrow for every \mathbf{X}, when \mathbf{X} input to $\mathbf{f}(\mathbf{I})$, outputs 0
$\Longrightarrow \mathbf{f}(\mathbf{I}) \mathrm{NO}$ instance of Circuit-SAT

