
Lecture 21: NP-Completeness I

Michael Dinitz

November 9, 2021
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 1 / 14



Introduction

Last few weeks: slower and slower algorithms for harder and harder problems

▸ From O(m + n) time algorithms for BFS/DFS/topological sort/SCCs, to O(m2n) for
max flow

▸ Today: start of two lectures on NP-completeness: the (or at least one) line between
tractability and intractability

Definition

An algorithm runs in polynomial time if its (worst-case) running time is O(nc) for some
constant c ≥ 0, where n is the size of the input.

Think of polynomial time as “fast”, super-polynomial time as “slow”

Question: When do polynomial-time algorithms exist?

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 2 / 14



Decision Problems

Definition

A decision problem is a computational problem in which the output is either YES or NO.

Examples:

▸ Max-Flow: Input is G = (V,E), c ∶ E→ R≥0, s, t ∈ V,k ∈ R+. Output YES if there is an
(s, t)-flow of value at least k, otherwise output NO.

▸ Shortest s − t path: Input is G = (V,E), ` ∶ E→ R, s, t ∈ V,k ∈ R. Output YES if
d(s, t) ≤ k, otherwise output NO.

Some problems naturally decision, others naturally optimization, but can turn any optimization
problem into a decision problem.

▸ If can solve decision, can almost always solve optimization.

Note: Can divide instances (inputs) of any decision problem into YES-instances and
NO-instances

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 3 / 14



P

Definition

P is the set of decision problems that can be solved in polynomial time.

Note: problems are in P, not algorithms

Question: Are all problems in P?
Answer: No!

▸ By time hierarchy theorem there are problems that require super-polynomial time!

▸ Undecidability: there are problems which cannot be solved by any algorithm at all!

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 4 / 14



Verification

Different Setting: If in addition to the input we’re given a purported solution, can we check
that this solution is valid/feasible (in polynomial time)?

▸ Max-Flow: given f ∶ E→ R≥0, check that value ≥ k, flow conservation at all nodes other
than s, t, and capacity constraints obeyed

Definition (3-Coloring)

Input: Undirected graph G = (V,E)
Output: YES if ∃ coloring f ∶ V → {R,G,B} such that f(u) ≠ f(v) for all {u,v} ∈ E. NO
otherwise

Verification: Given f,

▸ Check that f(u) ∈ {R,G,B} for all u ∈ V, and

▸ Check each edge {u,v} to make sure that f(u) ≠ f(v)

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 5 / 14



NP

NP: decision problems where solutions can be verified in polynomial time.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V(I,X) (called the verifier) such that

1. If I is a YES-instance of Q, then there is some X (usually called the witness, proof, or
solution) with size polynomial in ∣I∣ so that V(I,X) = YES.

2. If I is a NO-instance of Q, then V(I,X) = NO for all X.

Examples:
▸ 3-coloring: Witness X is a coloring f ∶ V → {R,B,G}, verifier checks each edge {u,v} to

make sure f(u) ≠ f(v)
▸ If I is a YES instance, then there is a coloring so verifier will return YES
▸ If I is a NO instance, then no valid coloring exists. Whatever X is, verifier returns NO.

Max-Flow: Witness X is a flow f ∶ E→ R≥0, verifier checks that it’s feasible of value ≥ k
▸ If I is a YES instance, then there is a feasible flow of value at least k so verifier (on this flow)

will return YES
▸ If I a NO instance, then no feasible flow of value ≥ k. Whatever X is, verifier returns NO.

Factoring: Instance is pair of integers M,k. YES if M has as factor in {2, . . . ,k}, NO
otherwise.

▸ Witness: integer f in {2,3, . . . ,k}. Verifier: returns YES if M/f is an integer and
f ∈ {2, . . . ,k}, NO otherwise.

▸ If YES instance, then an f does exist so verifier returns YES on that f. If NO, then no such f
exists so verifier always returns NO.

Traveling Salesman: Instance is weighted graph G an integer k. YES iff G has a tour
(walk that touches very vertex at least once) of length ≤ k.

▸ Witness: tour P. Verifier checks that it is a tour, has length at most k
▸ If YES instance, then such a tour exists Ô⇒ verifier returns YES on that tour.
▸ If NO, no such tour exists Ô⇒ verifier always returns NO.

Important asymmetry: need a witness for YES, not a witness for NO.

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 6 / 14



P vs NP

Theorem

P ⊆ NP

Proof.

Let Q ∈ P.
V(I,X): Ignore X, solve on instance I.

Question: Does P = NP, i.e., is NP ⊆ P?

▸ Almost everyone thinks no, but we don’t know for sure!

▸ Not even particularly close to a proof.

▸ Think about what P = NP would mean. . .

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 7 / 14



Reductions

Question: How could we prove that P = NP or P ≠ NP?

▸ P = NP: Need to show that every problem in NP is also in P!

▸ P ≠ NP: Need to prove that some problem in NP not in P. What is the “hardest”
problem in NP?

Definition

Problem A is polytime reducible to problem B (written A ≤p B) if, given a polynomial-time
algorithm for B, we can use it to produce a polynomial-time algorithm for A.

Means that B is “at least as hard“ as A: if B is in P, then so is A.

▸ So “hardest” problems in NP are problems that many other problems reduce to.

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 8 / 14



Many-One (Karp) Reductions

Almost always (and always in this course), use a special type of reduction.

Definition

A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of
A and transforms them into instances of B so that

1. If x is a YES-instance of A then f(x) is a YES-instance of B.

2. If x is a NO-instance of A then f(x) is a NO-instance B.

3. f can be computed in polynomial time.

So given instance x of A, compute f(x) and use polytime algorithm for B on f(x)

▸ Polytime, since f in polytime and algorithm for B in polytime

▸ Correct by first two properties of many-one reduction.

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 9 / 14



NP-Completeness

So what is “hardest problem” in NP?

Definition

Problem Q is NP-hard if Q′ ≤p Q for all problems Q′ in NP.

Definition

Problem Q is NP-complete if it is NP-hard and in NP.

So suppose Q is NP-complete.

▸ To prove P ≠ NP: Hardest problem in NP! If anything in NP is not in P, then Q is not
in P

▸ To prove P = NP: Just need to prove that Q ∈ P.

Is anything NP-complete?

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 10 / 14



Circuit-SAT

Definition

Circuit-SAT: Given a boolean circuit with a single output and no loops (some inputs might be
hardwired), is there a way of setting the inputs so that the output of the circuit is 1?

00.0
Circuit

Given boolean circuit with 1 output no

Korskycles is there a way of setting inputs
go output is 1

Gates AND D
or D
Not Do

Arbitrary fan ont

Do D
Do

00.0
Circuit

Given boolean circuit with 1 output no

Korskycles is there a way of setting inputs
go output is 1

Gates AND D
or D
Not Do

Arbitrary fan ont

Do D
Do

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 11 / 14



Circuit-SAT

Theorem

Circuit-SAT is NP-complete.

Sketch of proof here. See book for details.

Lemma

Circuit-SAT is in NP.

Proof.

Witness is a T/F (or 1/0) assignment to inputs. Verifier simulates circuit on assignment,
checks that it outputs 1.

▸ If input is a YES instance then there is some assignment so circuit outputs 1. When
verifier run on that assignment, returns YES.

▸ In input is a NO instance then in every assignment circuit outputs 0. So verifier returns
NO on every witness.

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 12 / 14



Circuit-SAT is NP-hard
Let A ∈ NP. Want to show A ≤p Circuit-SAT (construct a many-one reduction).

Where to start? What do we know about A?

▸ In NP, so has verifier algorithm V
▸ V algorithm runs on a computer (or Turing machine)!

Computer: memory + circuit for modifying memory!

if I

Not a boolean circuit in Circuit-SAT
sense: loops (feedback)

Fix: “Unroll” circuit using fact that
V runs in polynomial time

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 13 / 14



Reduction
I l l l l l l l l

Circuit C

linen.fm I l l l

l l l l l l l l l

il iii i tint
Circuit C

linen.fm I l l l

l l l l l l l l l

Circuit C

linen.fm I l l l

l
ve't

final reduction given in t I of A

construct circuit for V hardmire I

If I YES 3 X Et UCI x YES

circuit outputs 1
YES af circuit SAT

If circuit YES of Circuit SAT
7 X et circuit outputs 1
Vc 4 7 YES YES of A

Reduction: given instance I of A, construct this circuit
for V, hardwire I. Combined circuit f(I)

▸ Polytime since V runs in polytime

▸ If I YES of A: there is some X so that V(I,X) =
YES
Ô⇒ some X so that when X input to f(I),

outputs 1
Ô⇒ f(I) YES instance of Circuit-SAT.

▸ If I NO of A: For every X, know that V(I,X) =
NO
Ô⇒ for every X, when X input to f(I), outputs
0
Ô⇒ f(I) NO instance of Circuit-SAT

Michael Dinitz Lecture 21: NP-Completeness I November 9, 2021 14 / 14


