Lecture 20: Linear Programming

Michael Dinitz

November 4, 2021
601.433/633 Introduction to Algorithms

Introduction

Today: What, why, and juste a taste of how

- Entire course on linear programming over in AMS. Super important topic!
- Fast algorithms in theory and in practice.

Introduction

Today: What, why, and juste a taste of how

- Entire course on linear programming over in AMS. Super important topic!
- Fast algorithms in theory and in practice.

Why: Even more general than max-flow, can still be solved in polynomial time!

- Max flow important in its own right, but also because it can be used to solve many other things (max bipartite matching)
- Linear programming: important in its own right, but also even more general than max-flow.
- Can model many, many problems!

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend:

- Studying (S)
- Partying (P)
- Everything else (E)

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend: Constraints:

- $\mathbf{E} \geq \mathbf{5 6}$ (at least 8 hours/day sleep,
- Studying (S)
- Partying (P) shower, etc.)
- $\mathbf{P}+\mathbf{E} \geq \mathbf{7 0}$ (need to stay sane)
- Everything else (E)
- $\mathrm{S} \geq \mathbf{6 0}$ (to pass your classes)
- $\mathbf{2 S}+\mathrm{E}-\mathbf{3 P} \geq 150$ (too much partying requires studying or sleep)

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend: Constraints:

- $\mathbf{E} \geq \mathbf{5 6}$ (at least 8 hours/day sleep,
- Studying (S)
- Partying (P) shower, etc.)
- $\mathbf{P}+\mathbf{E} \geq \mathbf{7 0}$ (need to stay sane)
- Everything else (E)
- $\mathrm{S} \geq \mathbf{6 0}$ (to pass your classes)
- $2 \mathrm{~S}+\mathrm{E}-\mathbf{3 P} \geq 150$ (too much partying requires studying or sleep)
Question: Is this possible? Is there a feasible solution?

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend: Constraints:

- $\mathbf{E} \geq \mathbf{5 6}$ (at least 8 hours/day sleep,
- Studying (S)
- Partying (P) shower, etc.)
- $\mathbf{P}+\mathbf{E} \geq \mathbf{7 0}$ (need to stay sane)
- Everything else (E)
- $\mathrm{S} \geq \mathbf{6 0}$ (to pass your classes)
- $2 \mathrm{~S}+\mathrm{E}-\mathbf{3 P} \geq 150$ (too much partying requires studying or sleep)
Question: Is this possible? Is there a feasible solution?
- Yes! $\mathbf{S}=\mathbf{8 0}, \mathbf{P}=\mathbf{2 0}, \mathbf{E}=\mathbf{6 8}$

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend: Constraints:

- $\mathbf{E} \geq \mathbf{5 6}$ (at least 8 hours/day sleep,
- Studying (S)
- Partying (P) shower, etc.)
- $\mathbf{P}+\mathbf{E} \geq \mathbf{7 0}$ (need to stay sane)
- Everything else (E)
- $\mathrm{S} \geq \mathbf{6 0}$ (to pass your classes)
- $2 \mathrm{~S}+\mathrm{E}-\mathbf{3 P} \geq 150$ (too much partying requires studying or sleep)
Question: Is this possible? Is there a feasible solution?
- Yes! $\mathbf{S}=\mathbf{8 0}, \mathbf{P}=\mathbf{2 0}, \mathbf{E}=\mathbf{6 8}$

Question: Suppose "happiness" is $\mathbf{2 P}+\mathbf{3 E}$. Can we find a feasible solution maximizing this?

Linear Programming

Input (a "linear program"):

- \mathbf{n} variables $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}$ (take values in \mathbb{R})
- \mathbf{m} non-strict linear inequalities in these variables (constraints)
- E.g.: $3 x_{1}+4 x_{2} \leq 6, \quad 0 \leq x_{1} \leq 3 \quad x_{2}-3 x_{3}+2 x_{7}=17$
- Not allowed (examples): $x_{2} x_{3} \geq 5, \quad x_{4}<2, \quad x_{5}+\log x_{2} \geq 4$
- Possibly a linear objective function
- $\max 2 x_{3}-4 x_{5}, \quad \min \frac{5}{2} x_{4}+x_{2}, \quad \ldots$

Goals:

- Feasibility: Find values for x's that satisfy all constraints
- Optimization: Find feasible solution maximizing/minimizing objective function Both achievable in polynomial time, reasonably fast!

Planning your week as an LP

Variables: P, E,S

Planning your week as an LP

Variables: P, E, S

$\max 2 P+E$

Planning your week as an LP

Variables: P, E,S

$$
\begin{aligned}
\max & 2 P+E \\
\text { subject to } & E \geq 56 \\
& S \geq 60 \\
& 2 S+E-3 P \geq 150 \\
& P+E \geq \mathbf{7 0}
\end{aligned}
$$

Planning your week as an LP

Variables: P, E, S

$$
\begin{aligned}
\max & 2 P+E \\
\text { subject to } & E \geq 56 \\
& S \geq 60 \\
& 2 S+E-3 P \geq 150 \\
& P+E \geq 70 \\
& P+S+E=168 \\
& P \geq 0 \\
& S \geq 0 \\
& E \geq 0
\end{aligned}
$$

Planning your week as an LP

Variables: P, E,S

$$
\begin{aligned}
\max & 2 P+E \\
\text { subject to } & E \geq 56 \\
& S \geq 60 \\
& 2 S+E-3 P \geq 150 \\
& P+E \geq 70 \\
& P+S+E=168 \\
& P \geq 0 \\
& S \geq 0 \\
& E \geq 0
\end{aligned}
$$

When using an LP to model your problem, need to be sure that all aspects of your problem included!

Operations Research-style Example

Four different manufacturing plants for making cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Operations Research-style Example

Four different manufacturing plants for making cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

- Need to produce at least 400 cars at plant 3 (labor agreement) $\quad x_{3} \geq 400$
- Have 3300 total hours of labor, 4000 units of material
- Environmental law: produce at most 12000 pollution
- Make as many cars as possible

OR example as an LP

Four different manufacturing plants for making cars:

Variables:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

OR example as an LP

Four different manufacturing plants for making cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Variables: $\mathbf{x}_{\mathbf{i}}=\#$ cars produced at plant \mathbf{i}, for $i \in\{1,2,3,4\}$

OR example as an LP

Four different manufacturing plants for making cars:

	labor	materials	pollution	$\mathbf{i} \in\{\mathbf{1 , 2 , 3}$ Objective:
Plant 1	2	3	15	
Plant 2	3	4	10	
Plant 3	4	5	9	
Plant 4	5	6	7	

OR example as an LP

Four different manufacturing plants for making cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Variables: $\mathbf{x}_{\mathbf{i}}=\#$ cars produced at plant \mathbf{i}, for $i \in\{1,2,3,4\}$
Objective: $\max x_{1}+x_{2}+x_{3}+x_{4}$

OR example as an LP

Four different manufacturing plants for making cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Variables: $\mathbf{x}_{\mathbf{i}}=\#$ cars produced at plant \mathbf{i}, for $i \in\{1,2,3,4\}$
Objective: $\max x_{1}+x_{2}+x_{3}+x_{4}$
Constraints:

OR example as an LP

Four different manufacturing plants for making cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Variables: $\mathbf{x}_{\mathbf{i}}=\#$ cars produced at plant \mathbf{i}, for $i \in\{1,2,3,4\}$
Objective: $\max x_{1}+x_{2}+x_{3}+x_{4}$
Constraints:

$$
x_{3} \geq 400
$$

OR example as an LP

Four different manufacturing plants for making cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Variables: $\mathbf{x}_{\mathbf{i}}=\#$ cars produced at plant \mathbf{i}, for $i \in\{1,2,3,4\}$
Objective: $\max x_{1}+x_{2}+x_{3}+x_{4}$
Constraints:

$$
\begin{aligned}
x_{3} & \geq 400 \\
2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} & \leq 3300
\end{aligned}
$$

OR example as an LP

Four different manufacturing plants for making cars:

				$\mathrm{i} \in\{1,2,3,4\}$
	labor	materials	pollution	Objective: $\max \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}$
Plant 1	2	3	15	Constraints:
Plant 2	3	4	10	$\mathrm{x}_{3} \geq 400$
				$2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \leq 3300$
Plant 3	4	5	9	$15 x_{1}+10 x_{2}+9 x_{3}+7 x_{4} \leq 12000$
Plant 4	5	6	7	

OR example as an LP

Four different manufacturing plants for making cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Variables: $\mathbf{x}_{\mathbf{i}}=\#$ cars produced at plant \mathbf{i}, for $i \in\{1,2,3,4\}$
Objective: $\max x_{1}+x_{2}+x_{3}+x_{4}$
Constraints:

$$
\begin{aligned}
x_{3} & \geq 400 \\
2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} & \leq 3300 \\
15 x_{1}+10 x_{2}+9 x_{3}+7 x_{4} & \leq 12000 \quad \\
x_{i} & \geq 0 \quad \forall i \in\{1,2,3,4\} \\
3 x_{1}+4 x_{2}+\int x_{3}+6 x_{4} & \leqslant 4000
\end{aligned}
$$

Max Flow as LP

Max Flow as LP

Variables:

Max Flow as LP

Variables: $\mathbf{f}(\mathbf{e})$ for all $\mathbf{e} \in \mathrm{E}$

Max Flow as LP

Variables: $f(e)$ for all $e \in E$ Objective:

Max Flow as LP

Variables: $f(e)$ for all $e \in E$
Objective: $\max \sum_{v}\left(f(s, v)-\sum_{v} f(v, s)\right)$

Max Flow as LP

Variables: $\mathbf{f}(\mathbf{e})$ for all $\mathbf{e} \in \mathrm{E}$
Objective: $\boldsymbol{\operatorname { m a x }} \sum_{\sqrt{ }\left(\mathbf{f}(\mathbf{s}, \mathbf{v})-\sum_{\mathbf{v}} \mathbf{f}(\mathbf{v}, \mathrm{s})\right)}$
Constraints:

Max Flow as LP

Variables: $\mathbf{f}(\mathbf{e})$ for all $\mathbf{e} \in E$ Objective: $\max \sum_{v} f(s, v)-\sum_{v} f(v, s)$

Constraints:

$$
\sum_{v} f(v, u)-\sum_{v} f(u, v)=0 \quad \forall u \in V,\{s, t\}
$$

Max Flow as LP

Variables: $\mathbf{f}(\mathbf{e})$ for all $\mathbf{e} \in E$
Objective: $\max \sum_{v} f(s, v)-\sum_{v} f(v, s)$

Constraints:

$$
\begin{array}{rlr}
\sum_{v} f(v, u)-\sum_{v} f(u, v) & =0 & \forall u \in V \backslash\{s, t\} \\
f(e) \leq c(e) & \forall e \in E
\end{array}
$$

Max Flow as LP

Variables: $\mathbf{f}(\mathbf{e})$ for all $\mathbf{e} \in E$
Objective: $\max \sum_{v} f(s, v)-\sum_{v} f(v, s)$

Constraints:

$$
\begin{array}{rlr}
\sum_{v} f(v, u)-\sum_{v} f(\mathbf{u}, \mathbf{v}) & =\mathbf{0} & \forall \mathbf{u} \in \mathbf{V},\{\mathbf{s}, \mathbf{t}\} \\
\mathbf{f}(\mathbf{e}) \leq \mathbf{c}(\mathbf{e}) & \forall e \in E \\
\mathbf{f}(\mathbf{e}) \geq \mathbf{0} & \forall e \in E
\end{array}
$$

Max Flow as LP

Variables: $\mathbf{f}(\mathbf{e})$ for all $\mathbf{e} \in E$

Objective: $\max \sum_{v} f(s, v)-\sum_{v} f(v, s)$

Constraints:

$$
\begin{aligned}
\sum_{v} f(\mathbf{v}, \mathbf{u})-\sum_{\mathbf{v}} \mathbf{f}(\mathbf{u}, \mathbf{v}) & =\mathbf{0} & \forall \mathbf{u} \in \mathrm{V},\{\mathbf{s}, \mathbf{t}\} \\
\mathbf{f}(\mathbf{e}) & \leq \mathbf{c}(\mathbf{e}) & \forall e \in E \\
\mathbf{f}(\mathbf{e}) & \geq \mathbf{0} & \forall e \in E
\end{aligned}
$$

So can solve max-flow and min-cut (slower) by using generic LP solver

Multicommodity Flow

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Multicommodity Flow

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Setup:

- Directed graph $\mathbf{G}=\mathbf{(V , E)}$
- Capacities c:E $\rightarrow \mathbb{R}_{\geq 0}$
- \mathbf{k} source-sink pairs $\left\{\left(\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right)\right\}_{\mathbf{i} \in[\mathbf{k}]}$

Goal: send flow of commodity \mathbf{i} from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$, max total flow sent across all commodities

Multicommodity Flow

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Setup:

- Directed graph $\mathbf{G}=\mathbf{(V , E)}$
- Capacities c:E $\rightarrow \mathbb{R}_{\geq 0}$
- \mathbf{k} source-sink pairs $\left\{\left(\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right)\right\}_{\mathbf{i} \in[\mathbf{k}]}$

Goal: send flow of commodity \mathbf{i} from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$, max total flow sent across all commodities

Variables:

Multicommodity Flow

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Setup:

- Directed graph $\mathbf{G}=\mathbf{(V , E)}$
- Capacities c:E $\rightarrow \mathbb{R}_{\geq 0}$
- \mathbf{k} source-sink pairs $\left\{\left(\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right)\right\}_{\mathbf{i} \in[\mathbf{k}]}$

Goal: send flow of commodity \mathbf{i} from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$, max total flow sent across all commodities

Variables: $\mathbf{f}_{\mathbf{i}}(\mathbf{e})$ for all $\mathbf{e} \in \mathbf{E}$ and for all $\mathbf{i} \in[\mathbf{k}]$. Flow of commodity \mathbf{i} on edge \mathbf{e}

Multicommodity Flow

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Setup:

- Directed graph $\mathbf{G}=\mathbf{(V , E)}$
- Capacities c:E $\rightarrow \mathbb{R}_{\geq 0}$
- \mathbf{k} source-sink pairs $\left\{\left(\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right)\right\}_{\mathbf{i} \in[\mathbf{k}]}$

Goal: send flow of commodity \mathbf{i} from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$, max total flow sent across all commodities

Variables: $\mathbf{f}_{\mathbf{i}}(\mathbf{e})$ for all $\mathbf{e} \in \mathbf{E}$ and for all $\mathbf{i} \in[\mathbf{k}]$. Flow of commodity \mathbf{i} on edge \mathbf{e}

Objective:

Multicommodity Flow

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Setup:

- Directed graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Capacities c:E $\rightarrow \mathbb{R}_{\geq 0}$
- \mathbf{k} source-sink pairs $\left\{\left(\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right)\right\}_{\mathrm{i} \in[\mathbf{k}]}$

Goal: send flow of commodity \mathbf{i} from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$, max total flow sent across all commodities

Variables: $\mathbf{f}_{\mathbf{i}}(\mathbf{e})$ for all $\mathbf{e} \in \mathbf{E}$ and for all $\mathbf{i} \in[\mathbf{k}]$. Flow of commodity \mathbf{i} on edge \mathbf{e}

$$
\text { Objective: } \max \sum_{i=1}^{k}\left(\sum_{v}\left(f_{i}\left(s_{i}, v\right)-\sum_{v} f_{i}\left(v, s_{i}\right)\right)\right)
$$

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Setup:

- Directed graph $\mathbf{G}=\mathbf{(V , E)}$
- Capacities c:E $\rightarrow \mathbb{R}_{\geq 0}$
- \mathbf{k} source-sink pairs $\left\{\left(\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right)\right\}_{\mathbf{i} \in[\mathbf{k}]}$

Goal: send flow of commodity \mathbf{i} from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$, max total flow sent across all commodities

Multicommodity Flow

Variables: $\mathbf{f}_{\mathbf{i}}(\mathbf{e})$ for all $\mathbf{e} \in \mathbf{E}$ and for all $\mathbf{i} \in[\mathbf{k}]$. Flow of commodity \mathbf{i} on edge \mathbf{e}

Objective: $\max \sum_{i=1}^{k}\left(\sum_{v} f_{i}\left(s_{i}, v\right)-\sum_{v} f_{i}\left(v, s_{i}\right)\right)$

Constraints:

Multicommodity Flow

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Setup:

- Directed graph $\mathbf{G}=\mathbf{(V , E)}$
- Capacities c:E $\rightarrow \mathbb{R}_{\geq 0}$
- \mathbf{k} source-sink pairs $\left\{\left(\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right)\right\}_{\mathbf{i} \in[\mathbf{k}]}$

Goal: send flow of commodity \mathbf{i} from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$, max total flow sent across all commodities

Variables: $\mathbf{f}_{\mathbf{i}}(\mathbf{e})$ for all $\mathbf{e} \in \mathbf{E}$ and for all $\mathbf{i} \in[\mathbf{k}]$. Flow of commodity \mathbf{i} on edge \mathbf{e}

Objective: $\max \sum_{i=1}^{k}\left(\sum_{v} f_{i}\left(s_{i}, v\right)-\sum_{v} f_{i}\left(v, s_{i}\right)\right)$

Constraints:

$$
\sum_{\mathbf{v}} \mathbf{f}_{\mathbf{i}}(\mathbf{v}, \mathbf{u})-\sum_{\mathbf{v}} \mathbf{f}_{\mathbf{i}}(\mathbf{u}, \mathbf{v})=\mathbf{0} \quad \forall \mathbf{i} \in[\mathbf{k}], \forall \mathbf{u} \in \mathbf{V} \backslash\left\{\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right\}
$$

Multicommodity Flow

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Setup:

- Directed graph $\mathbf{G}=\mathbf{(V , E)}$
- Capacities c:E $\rightarrow \mathbb{R}_{\geq 0}$
- \mathbf{k} source-sink pairs $\left\{\left(\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right)\right\}_{\mathbf{i} \in[\mathbf{k}]}$

Goal: send flow of commodity \mathbf{i} from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$, max total flow sent across all commodities

Variables: $\mathbf{f}_{\mathbf{i}}(\mathbf{e})$ for all $\mathbf{e} \in \mathbf{E}$ and for all $\mathbf{i} \in[\mathbf{k}]$. Flow of commodity \mathbf{i} on edge \mathbf{e}

Objective: $\max \sum_{i=1}^{k}\left(\sum_{v} f_{i}\left(s_{i}, v\right)-\sum_{v} f_{i}\left(v, s_{i}\right)\right)$

Constraints:

$$
\begin{aligned}
& \sum_{\mathbf{v}} \mathbf{f}_{\mathbf{i}}(\mathbf{v}, \mathbf{u})-\sum_{\mathbf{v}} \mathbf{f}_{\mathbf{i}}(\mathbf{u}, \mathbf{v})=\mathbf{0} \quad \forall \mathbf{i} \in[\mathbf{k}], \forall \mathbf{u} \in \mathbf{V} \backslash\left\{\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right\} \\
& \sum_{i=1}^{k} f_{i}(e) \leq c(e) \\
& \forall \mathbf{e} \in E
\end{aligned}
$$

Multicommodity Flow

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Setup:

- Directed graph $\mathbf{G}=\mathbf{(V , E)}$
- Capacities c:E $\rightarrow \mathbb{R}_{\geq 0}$
- \mathbf{k} source-sink pairs $\left\{\left(\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right)\right\}_{\mathbf{i} \in[\mathbf{k}]}$

Goal: send flow of commodity \mathbf{i} from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$, max total flow sent across all commodities

Variables: $\mathbf{f}_{\mathbf{i}}(\mathbf{e})$ for all $\mathbf{e} \in \mathbf{E}$ and for all $\mathbf{i} \in[\mathbf{k}]$. Flow of commodity \mathbf{i} on edge \mathbf{e}

Objective: $\max \sum_{i=1}^{k}\left(\sum_{v} f_{i}\left(s_{i}, v\right)-\sum_{v} f_{i}\left(v, s_{i}\right)\right)$

Constraints:

$$
\begin{array}{rr}
\sum_{\mathbf{v}} \mathbf{f}_{\mathbf{i}}(\mathbf{v}, \mathbf{u})-\sum_{\mathbf{v}} \mathbf{f}_{\mathbf{i}}(\mathbf{u}, \mathbf{v})=\mathbf{0} & \forall \mathbf{i} \in[\mathbf{k}], \quad \forall \mathbf{u} \in \mathbf{V} \backslash\left\{\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right\} \\
\sum_{\mathbf{i}=1}^{\mathrm{k}} \mathbf{f}_{\mathbf{i}}(\mathbf{e}) \leq \mathbf{c}(\mathbf{e}) & \forall \mathbf{e} \in \mathbf{E} \\
\mathbf{f}_{\mathbf{i}}(\mathbf{e}) \geq \mathbf{0} & \forall e \in \mathrm{E}, \forall \mathbf{i} \in[\mathbf{k}]
\end{array}
$$

Concurrent Flow

Multicommodity flow, but:

- Also given demands $\mathrm{d}:[\mathrm{k}] \rightarrow \mathbb{R}_{\geq 0}$
- Question: Is there a multicommodity flow that sends at least $\mathbf{d}(\mathbf{i})$ commodity-i flow from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$ for all $\mathbf{i} \in[\mathbf{k}]$?

Concurrent Flow

Variables: $\mathbf{f}_{\mathbf{i}}(\mathbf{e})$ for all $\mathbf{e} \in \mathbf{E}$ and for all $\mathbf{i} \in[\mathbf{k}]$.

Multicommodity flow, but:

- Also given demands $\mathbf{d}:[k] \rightarrow \mathbb{R}_{\geq 0}$
- Question: Is there a multicommodity flow that sends at least $\mathbf{d}(\mathbf{i})$ commodity-i flow from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$ for all $\mathbf{i} \in[\mathbf{k}]$?

Concurrent Flow

Variables: $\mathbf{f}_{\mathbf{i}}(\mathbf{e})$ for all $\mathbf{e} \in \mathbf{E}$ and for all $\mathbf{i} \in[\mathbf{k}]$.
Multicommodity flow, but:

- Also given demands $d:[k] \rightarrow \mathbb{R}_{\geq 0}$
- Question: Is there a multicommodity flow that sends at least $\mathbf{d}(\mathbf{i})$ commodity-i flow from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$ for all $\mathbf{i} \in[\mathbf{k}]$?

Constraints:

Concurrent Flow

Variables: $\mathbf{f}_{\mathbf{i}}(\mathbf{e})$ for all $\mathbf{e} \in \mathbf{E}$ and for all $\mathbf{i} \in[\mathbf{k}]$.

Multicommodity flow, but:

- Also given demands $\mathrm{d}:[\mathrm{k}] \rightarrow \mathbb{R}_{\geq 0}$
- Question: Is there a multicommodity flow that sends at least $\mathbf{d}(\mathbf{i})$ commodity-i flow from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$ for all $\mathbf{i} \in[\mathbf{k}]$?

Constraints:

$$
\begin{array}{rr}
\sum_{v} f_{i}(v, u)-\sum_{v} f_{i}(\mathbf{u}, \mathbf{v})=0 & \forall i \in[k], \forall \mathbf{u} \in \mathbf{V} \backslash\left\{\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right\} \\
\sum_{i=1}^{k} f_{i}(e) \leq \mathbf{c}(e) & \forall e \in E \\
\mathbf{f}_{\mathbf{i}}(\mathbf{e}) \geq \mathbf{0} & \forall e \in E, \forall i \in[k]
\end{array}
$$

Concurrent Flow

Variables: $\mathbf{f}_{\mathbf{i}}(\mathbf{e})$ for all $\mathbf{e} \in \mathbf{E}$ and for all $\mathbf{i} \in[\mathbf{k}]$.

Multicommodity flow, but:

- Also given demands $\mathrm{d}:[\mathrm{k}] \rightarrow \mathbb{R}_{\geq 0}$
- Question: Is there a multicommodity flow that sends at least $\mathbf{d}(\mathbf{i})$ commodity-i flow from $\mathbf{s}_{\mathbf{i}}$ to $\mathbf{t}_{\mathbf{i}}$ for all $\mathbf{i} \in[\mathbf{k}]$?

Constraints:

$$
\begin{aligned}
& \sum_{\mathbf{v}} \mathbf{f}_{\mathbf{i}}(\mathbf{v}, \mathbf{u})-\sum_{\mathbf{v}} \mathrm{f}_{\mathbf{i}}(\mathbf{u}, \mathbf{v})=\mathbf{0} \quad \forall \mathbf{i} \in[\mathbf{k}], \forall \mathbf{u} \in \mathbf{V} \backslash\left\{\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}\right\} \\
& \sum_{i=1}^{k} f_{i}(e) \leq c(e) \\
& \forall \mathbf{e} \in \mathrm{E} \\
& f_{i}(e) \geq 0 \\
& \sum_{v}\left(f_{i}\left(s_{i}, v\right)-\sum_{v} f_{i}\left(v, s_{i}\right) \geq d(i)\right. \\
& \forall \mathbf{e} \in \mathrm{E}, \forall \mathbf{i} \in[\mathbf{k}] \\
& \forall i \in[k]
\end{aligned}
$$

Maximum Concurrent Flow

If answer is no: how much do we need to scale down demands so that there is a multicommodity flow?

Maximum Concurrent Flow

Variables:

- $\mathbf{f}_{\mathbf{i}}(\mathbf{e})$ for all $\mathbf{e} \in E$ and for all $\mathbf{i} \in[\mathbf{k}]$.
- λ

Objective: $\max \lambda$

If answer is no: how much do we need to scale down demands so that there is a multicommodity flow?

Constraints:

$$
\begin{array}{cr}
\sum_{v} f_{i}(v, u)-\sum_{v} f_{i}(\mathbf{u}, \mathbf{v})=0 & \forall i \in[k], \forall \mathbf{u} \in V \backslash\left\{s_{i}, \mathbf{t}_{\mathbf{i}}\right\} \\
\sum_{i=1}^{k} f_{i}(e) \leq \mathbf{c}(e) & \forall e \in E \\
\mathbf{f}_{\mathbf{i}}(\mathbf{e}) \geq \mathbf{0} & \forall e \in E, \quad \forall i \in[k] \\
\sum_{v} f_{i}\left(s_{i}, v\right)-\sum_{v} f_{i}\left(v, s_{i}\right) \geq \lambda d(i) & \forall i \in[k]
\end{array}
$$

Shortest s-t path

Very surprising LP!

Variables: $\mathbf{d}_{\mathbf{v}}$ for all $\mathbf{v} \in \mathbf{V}$: shortest-path distance from \mathbf{s} to \mathbf{v}

$$
\begin{array}{rll}
\max & \mathbf{d}_{\mathbf{t}} & \\
\text { subject to } & \mathbf{d}_{\mathbf{s}}=\mathbf{0} & \\
& \mathbf{d}_{\mathbf{v}} \leq \mathbf{d}_{\mathbf{u}}+\ell(\mathbf{u}, \mathbf{v}) & \forall(\mathbf{u}, \mathbf{v}) \in \mathrm{E}
\end{array}
$$

Shortest s-t path

Very surprising LP!
Variables: $\mathbf{d}_{\mathbf{v}}$ for all $\mathbf{v} \in \mathbf{V}$: shortest-path distance from \mathbf{s} to \mathbf{v}

$$
\begin{array}{rll}
\max & \mathbf{d}_{\mathbf{t}} & \\
\text { subject to } & \mathbf{d}_{\mathbf{s}}=\mathbf{0} & \\
& \mathbf{d}_{\mathbf{v}} \leq \mathbf{d}_{\mathbf{u}}+\ell(\mathbf{u}, \mathbf{v}) & \forall(\mathbf{u}, \mathbf{v}) \in \mathbf{E}
\end{array}
$$

Correctness Theorem: Let $\overrightarrow{\mathbf{d}^{*}}$ denote the optimal LP solution. Then $\mathbf{d}_{\mathbf{t}}^{*}=\mathbf{d}(\mathbf{s}, \mathbf{t})$

Shortest s-t path

Very surprising LP!
Variables: $\mathbf{d}_{\mathbf{v}}$ for all $\mathbf{v} \in \mathbf{V}$: shortest-path distance from \mathbf{s} to \mathbf{v}

$$
\begin{array}{rll}
\max & \mathbf{d}_{\mathbf{t}} & \\
\text { subject to } & \mathbf{d}_{\mathbf{s}}=\mathbf{0} & \\
& \mathbf{d}_{\mathbf{v}} \leq \mathbf{d}_{\mathbf{u}}+\ell(\mathbf{u}, \mathbf{v}) & \forall(\mathbf{u}, \mathbf{v}) \in \mathrm{E}
\end{array}
$$

Correctness Theorem: Let $\overrightarrow{\mathbf{d}^{*}}$ denote the optimal LP solution. Then $\mathbf{d}_{\mathbf{t}}^{*}=\mathbf{d}(\mathbf{s}, \mathbf{t})$ Proof Sketch: \geq : Let $\mathbf{d}_{\mathbf{v}}=\mathbf{d}(\mathbf{s}, \mathbf{v})$ for all $\mathbf{v} \in \mathbf{V}$. Feasible $\Longrightarrow \mathbf{d}_{\mathbf{t}}^{*} \geq \mathbf{d}_{\mathbf{t}}=\mathbf{d}(\mathbf{s}, \mathbf{t})$.

Shortest s-t path

Very surprising LP!
Variables: $\mathbf{d}_{\mathbf{v}}$ for all $\mathbf{v} \in \mathbf{V}$: shortest-path distance from \mathbf{s} to \mathbf{v}

$$
\begin{array}{rll}
\max & \mathbf{d}_{\mathbf{t}} & \\
\text { subject to } & \mathbf{d}_{\mathbf{s}}=\mathbf{0} & \\
& \mathbf{d}_{\mathbf{v}} \leq \mathbf{d}_{\mathbf{u}}+\ell(\mathbf{u}, \mathbf{v}) & \forall(\mathbf{u}, \mathbf{v}) \in \mathbf{E}
\end{array}
$$

Correctness Theorem: Let $\overrightarrow{\mathbf{d}^{*}}$ denote the optimal LP solution. Then $\mathbf{d}_{\mathbf{t}}^{*}=\mathbf{d}(\mathbf{s}, \mathbf{t})$ Proof Sketch: \geq : Let $\mathbf{d}_{\mathbf{v}}=\mathbf{d}(\mathbf{s}, \mathbf{v})$ for all $\mathbf{v} \in V$. Feasible $\Longrightarrow \mathbf{d}_{\mathbf{t}}^{*} \geq \mathbf{d}_{\mathbf{t}}=\mathbf{d}(\mathbf{s}, \mathbf{t})$. \leq : Let $\mathbf{P}=\left(\mathbf{s}=\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}=\mathbf{t}\right)$ be shortest $\mathbf{s} \rightarrow \mathbf{t}$ path. Prove by induction: $\mathbf{d}_{\mathbf{v}_{\mathbf{i}}}^{*} \leq \mathbf{d}\left(\mathbf{s}, \mathbf{v}_{\mathbf{i}}\right)$ for all \mathbf{i}

Shortest s-t path

Very surprising LP!
Variables: $\mathbf{d}_{\mathbf{v}}$ for all $\mathbf{v} \in \mathbf{V}$: shortest-path distance from \mathbf{s} to \mathbf{v}

$$
\begin{array}{rll}
\max & \mathbf{d}_{\mathbf{t}} & \\
\text { subject to } & \mathbf{d}_{\mathbf{s}}=\mathbf{0} & \\
& \mathbf{d}_{\mathbf{v}} \leq \mathbf{d}_{\mathbf{u}}+\ell(\mathbf{u}, \mathbf{v}) & \forall(\mathbf{u}, \mathbf{v}) \in \mathbf{E}
\end{array}
$$

Correctness Theorem: Let $\overrightarrow{\mathbf{d}^{*}}$ denote the optimal LP solution. Then $\mathbf{d}_{\mathbf{t}}^{*}=\mathbf{d}(\mathbf{s}, \mathbf{t})$ Proof Sketch: \geq : Let $\mathbf{d}_{\mathbf{v}}=\mathbf{d}(\mathbf{s}, \mathbf{v})$ for all $\mathbf{v} \in V$. Feasible $\Longrightarrow \mathbf{d}_{\mathbf{t}}^{*} \geq \mathbf{d}_{\mathbf{t}}=\mathbf{d}(\mathbf{s}, \mathbf{t})$.
\leq : Let $\mathbf{P}=\left(\mathbf{s}=\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}=\mathbf{t}\right)$ be shortest $\mathbf{s} \rightarrow \mathbf{t}$ path.
Prove by induction: $\mathbf{d}_{\mathbf{v}_{\mathbf{i}}}^{*} \leq \mathbf{d}\left(\mathbf{s}, \mathbf{v}_{\mathbf{i}}\right)$ for all \mathbf{i}
Base case: i=0

Shortest s-t path

Very surprising LP!
Variables: $\mathbf{d}_{\mathbf{v}}$ for all $\mathbf{v} \in \mathbf{V}$: shortest-path distance from \mathbf{s} to \mathbf{v}

$$
\begin{aligned}
\max & \mathbf{d}_{\mathbf{t}} \\
\text { subject to } & \mathbf{d}_{\mathbf{s}}=\mathbf{0} \\
& \mathbf{d}_{\mathbf{v}} \leq \mathbf{d}_{\mathbf{u}}+\ell(\mathbf{u}, \mathbf{v})
\end{aligned} \quad \forall(\mathbf{u}, \mathbf{v}) \in \mathbf{E}
$$

Correctness Theorem: Let $\overrightarrow{\mathbf{d}^{*}}$ denote the optimal LP solution. Then $\mathbf{d}_{\mathbf{t}}^{*}=\mathbf{d}(\mathbf{s}, \mathbf{t})$ Proof Sketch: \geq : Let $\mathbf{d}_{\mathbf{v}}=\mathbf{d}(\mathbf{s}, \mathbf{v})$ for all $\mathbf{v} \in V$. Feasible $\Longrightarrow \mathbf{d}_{\mathbf{t}}^{*} \geq \mathbf{d}_{\mathbf{t}}=\mathbf{d}(\mathbf{s}, \mathbf{t})$.
\leq : Let $\mathbf{P}=\left(\mathbf{s}=\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}=\mathbf{t}\right)$ be shortest $\mathbf{s} \rightarrow \mathbf{t}$ path.
Prove by induction: $\mathbf{d}_{\mathbf{v}_{\mathbf{i}}}^{*} \leq \mathbf{d}\left(\mathbf{s}, \mathbf{v}_{\mathbf{i}}\right)$ for all \mathbf{i} Base case: i=0
Inductive step: $\mathbf{d}_{\mathbf{v}_{\mathbf{i}}}^{*} \leq \mathbf{d}_{\mathbf{v}_{\mathbf{i}-1}}^{*}+\ell\left(\mathbf{v}_{\mathbf{i}-\mathbf{1}}, \mathbf{v}_{\mathbf{i}}\right) \leq \mathbf{d}\left(\mathbf{s}, \mathbf{v}_{\mathbf{i}-\mathbf{1}}\right)+\ell\left(\mathbf{v}_{\mathbf{i}-\mathbf{1}}, \mathbf{v}_{\mathbf{i}}\right)=\mathbf{d}\left(\mathbf{s}, \mathbf{v}_{\mathbf{i}}\right)$
coitriit inderaine shertent poth

Algorithms for LPs

Geometry

To get intuition: think of LPs geometrically

- Space: $\mathbb{R}^{\mathbf{n}}$ (one dimension per variable
- Linear constraint: halfspace (one side of a hyperplane)
- Feasible region: intersection of halfspaces. Convex Polytope (usually just called a polytope)

Geometry

To get intuition: think of LPs geometrically

- Space: $\mathbb{R}^{\mathbf{n}}$ (one dimension per variable
- Linear constraint: halfspace (one side of a hyperplane)
- Feasible region: intersection of halfspaces. Convex Polytope (usually just called a polytope)

Example: planning your week

- 3 variables $\mathbf{S}, \mathbf{P}, \mathbf{E}$ so \mathbb{R}^{3}
- But $\mathbf{S}+\mathrm{P}+\mathbf{E}=168 \Longrightarrow$ S = 168-P $-\mathbf{E}$
- Make this substitution, get \mathbb{R}^{2}

Geometry (cont'd)

Objective: feasible solution "furthest" along specified direction

- max P: $(56,26)$
- max 2P + E: $(88.5,19.5)$

Geometry (cont'd)

Objective: feasible solution "furthest" along specified direction

- $\max \mathrm{P}:(56,26)$
- max 2P + E: $(88.5,19.5)$

Main theorem: optimal solution is always at a "corner" (also called a "vertex")

Simplex Algorithm [Dantzig 1940's]

Initialize $\overrightarrow{\mathrm{x}}$ to an arbitrary corner

```
while(a neighboring corner \vec{x}}\mp@subsup{\vec{x}}{}{\prime}\mathrm{ of 齐 has better objective value) {
```

 \(\overrightarrow{\mathrm{x}} \leftarrow \overrightarrow{\mathbf{x}}^{\prime}\)
 \}
return $\overrightarrow{\mathbf{x}}$

Simplex Analysis

Theorem: Simplex returns the optimal solution.

Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- Objective linear \Longrightarrow optimal solution at a corner
- Feasible set convex + linear objective \Longrightarrow any local opt is global opt \Longrightarrow Once simplex terminates, at global opt

Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- Objective linear \Longrightarrow optimal solution at a corner
- Feasible set convex + linear objective \Longrightarrow any local opt is global opt \Longrightarrow Once simplex terminates, at global opt

Problem: Exponential number of corners!

Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- Objective linear \Longrightarrow optimal solution at a corner
- Feasible set convex + linear objective \Longrightarrow any local opt is global opt
\longrightarrow Once simplex terminates, at global opt
Problem: Exponential number of corners!
- Slow in theory

Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- Objective linear \Longrightarrow optimal solution at a corner
- Feasible set convex + linear objective \Longrightarrow any local opt is global opt
\Rightarrow Once simplex terminates, at global opt

Problem: Exponential number of corners!

- Slow in theory
- Fast in practice!
- Much of AMS LP course really about simplex: traditionally favorite algorithm of people who want to actually solve LPs

Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- Objective linear \Longrightarrow optimal solution at a corner
- Feasible set convex + linear objective \Longrightarrow any local opt is global opt
\rightarrow Once simplex terminates, at global opt
Problem: Exponential number of corners!
- Slow in theory
- Fast in practice!
- Much of AMS LP course really about simplex: traditionally favorite algorithm of people who want to actually solve LPs
- Some theory to explain discrepancy ("smoothed analysis")

Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question \Longrightarrow can also solve optimization

Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question \Longrightarrow can also solve-optimization

- Start with ellipsoid E containing feasible region \mathbf{P} (if it exists)
- Let \mathbf{x} be center of \mathbf{E}
- While(x not feasible)
- Find a hyperplane \mathbf{H} through \mathbf{x} such that all of \mathbf{P} on one side
- Let \mathbf{E}^{\prime} be the half-ellipsoid of \mathbf{E} defihed by H
- Find a new ellipsoid $\hat{\mathbf{E}}$ containing \mathbf{E} that $\operatorname{vol}(\hat{\mathbf{E}}) \leq\left(\mathbf{1}-\frac{1}{n}\right) \operatorname{vol}(E)$
- Let $\mathbf{E}=\hat{\mathbf{E}}$ and let \mathbf{x} be center of $\hat{\mathbf{E}}$

Analysis

Extremely complicated!
Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most ($\mathbf{1 - 1 / n)}$ of the volume of the original

- Using inequality from last time: after n iterations, volume drops by $\left(1-\frac{1}{n}\right)^{n} \leq 1 / e$ factor
- Crucial fact: if volume "too small", \mathbf{P} must be empty
\Longrightarrow Polynomial time!

Analysis

Extremely complicated!
Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most ($\mathbf{1 - 1 / n)}$ of the volume of the original

- Using inequality from last time: after n iterations, volume drops by $\left(1-\frac{1}{n}\right)^{n} \leq 1 / e$ factor
- Crucial fact: if volume "too small", \mathbf{P} must be empty
\Longrightarrow Polynomial time!
In practice: horrible.

Interior Point Methods (Karkmarkar's Algorithm)

Fast in both theory and practice!

