Lecture 2: Asymptotic Analysis, Recurrences

Michael Dinitz

September 2, 2021
601.433/633 Introduction to Algorithms

Things I Forget on Tuesday

Level of Formality:

- Part of mathematical maturity is knowing when to be formal, when not necessary
- Rule of thumb: Be formal for important parts
- Problem 1 is about asymptotic notation. Be formal!
- Problem 2 is about recurrences. Can be a little less formal with asymptotic notation.
- Lectures:
- I tend to go fast, not be super formal. But I expect you to be formal in homeworks (unless stated otherwise)

Handwriting:

- I have bad handwriting. If something's not clear, ask!

Today

Should be review, some might be new.
See math background in CLRS
Asymptotics: $\mathbf{O}(\cdot), \boldsymbol{\Omega}(\cdot)$, and $\boldsymbol{\Theta}(\cdot)$ notation.

- Should know from Data Structures. We'll be a bit more formal.
- Intuitively: hide constants and lower order terms, since we only care what happen "at scale" (asymptotically)

Recurrences: How to solve recurrence relations.

- Should know from Discrete Math.

Asymptotic Notation

$\mathrm{O}(\cdot)$

Definition

$\mathbf{g}(\mathbf{n}) \in \mathbf{O}(\mathbf{f}(\mathbf{n}))$ if there exist constants $\mathbf{c}, \mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n}) \leq \mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

$\mathrm{O}(\cdot)$

Definition
 $\mathbf{g}(\mathbf{n}) \in \mathbf{O}(\mathbf{f}(\mathbf{n}))$ if there exist constants $\mathbf{c}, \mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n}) \leq \mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

Technically $\mathbf{O}(\mathbf{f}(\mathbf{n}))$ is a set.
Abuse notation: "g(n) is $\mathbf{O}(\mathbf{f}(\mathbf{n}))$ " or $\mathbf{g}(\mathbf{n})=\mathbf{O}(\mathbf{f}(\mathbf{n})) . \quad \mathrm{g}(n) \leq 0(f(n))$

$\mathrm{O}(\cdot)$

Definition

$\mathbf{g}(\mathbf{n}) \in \mathbf{O}(\mathbf{f}(\mathbf{n}))$ if there exist constants $\mathbf{c}, \mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n}) \leq \mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.
Technically $\mathbf{O}(\mathbf{f}(\mathbf{n}))$ is a set.
Abuse notation: " $\mathbf{g}(\mathbf{n})$ is $\mathbf{O}(\mathbf{f}(\mathbf{n}))$ " or $\mathbf{g}(\mathbf{n})=\mathbf{O}(\mathbf{f}(\mathbf{n}))$.
Examples:

- $2 \mathbf{n}^{2}+27=\mathbf{O}\left(\mathbf{n}^{2}\right)$: set $\mathbf{n}_{0}=6$ and $\mathbf{c}=\mathbf{3}$
- $2 n^{2}+27=\mathbf{O}\left(n^{3}\right)$: same values, or $n_{0}=4$ and $c=1$
- $n^{3}+\mathbf{2 0 0 0} n^{2}+\mathbf{2 0 0 0 n}=\mathbf{O}\left(n^{3}\right)$: set $n_{0}=10000$ and $\mathbf{c}=\mathbf{2}$

$\mathrm{O}(\cdot)$

Definition

$\mathbf{g}(\mathbf{n}) \in \mathbf{O}(\mathbf{f}(\mathbf{n}))$ if there exist constants $\mathbf{c}, \mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n}) \leq \mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.
Technically $\mathbf{O}(\mathbf{f}(\mathbf{n}))$ is a set.
Abuse notation: " $\mathbf{g}(\mathbf{n})$ is $\mathbf{O}(\mathbf{f}(\mathbf{n}))$ " or $\mathbf{g}(\mathbf{n})=\mathbf{O}(\mathbf{f}(\mathbf{n}))$.
Examples:

- $2 n^{2}+27=\mathbf{O}\left(n^{2}\right)$: set $n_{0}=6$ and $c=3$
- $2 n^{2}+27=\mathbf{O}\left(n^{3}\right)$: same values, or $n_{0}=4$ and $c=1$
- $n^{3}+2000 n^{2}+\mathbf{2 0 0 0} n=\mathbf{O}\left(n^{3}\right):$ set $n_{0}=10000$ and $c=2$

About functions not algorithms!
Expresses an upper bound

Example

Definition

$\mathbf{g}(\mathbf{n}) \in \mathbf{O}(\mathbf{f}(\mathbf{n}))$ if there exist constants $\mathbf{c}, \mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n}) \leq \mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

Theorem

$2 n^{2}+27=\mathbf{O}\left(n^{2}\right)$

Example

Definition

$\mathbf{g}(\mathbf{n}) \in \mathbf{O}(\mathbf{f}(\mathbf{n}))$ if there exist constants $\mathbf{c}, \mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n}) \leq \mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

Theorem

$2 n^{2}+27=O\left(n^{2}\right)$

Proof.

Set $\mathbf{c}=\mathbf{3}$. Suppose $\mathbf{2 n} \mathbf{~} \mathbf{+ 2 7} \mathbf{>} \mathbf{c n}^{2}=\mathbf{3 n}^{2}$

Example

Definition

$\mathbf{g}(\mathbf{n}) \in \mathbf{O}(\mathbf{f}(\mathbf{n}))$ if there exist constants $\mathbf{c}, \mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n}) \leq \mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

Theorem

$2 n^{2}+27=O\left(n^{2}\right)$

Proof.

Set $\mathbf{c}=3$. Suppose $\mathbf{2 n} \mathbf{n}^{2}+\mathbf{2 7}>\mathbf{c n}^{2}=3 \mathbf{n}^{2}$
$\Longrightarrow n^{2}<27$

Example

Definition

$\mathbf{g}(\mathbf{n}) \in \mathbf{O}(\mathbf{f}(\mathbf{n}))$ if there exist constants $\mathbf{c}, \mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n}) \leq \mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

Theorem

$2 n^{2}+27=O\left(n^{2}\right)$

Proof.

Set $\mathbf{c}=3$. Suppose $\mathbf{2 n} \mathbf{n}^{2}+\mathbf{2 7}>\mathbf{c n}^{2}=3 \mathbf{n}^{2}$
$\Longrightarrow \mathbf{n}^{2}<27 \Longrightarrow \mathbf{n}<6$

Example

Definition

$\mathbf{g}(\mathbf{n}) \in \mathbf{O}(\mathbf{f}(\mathbf{n}))$ if there exist constants $\mathbf{c}, \mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n}) \leq \mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

Theorem

$2 n^{2}+27=O\left(n^{2}\right)$

Proof.

Set $\mathbf{c}=3$. Suppose $\mathbf{2 n} \mathbf{n}^{2}+\mathbf{2 7}>\mathbf{c n}^{2}=3 \mathbf{n}^{2}$
$\Longrightarrow n^{2}<27 \Longrightarrow n<6$
$\Longrightarrow 2 n^{2}+27 \leq 3 n^{2}$ for all $n \geq 6$.

Example

Definition

$\mathbf{g}(\mathbf{n}) \in \mathbf{O}(\mathbf{f}(\mathbf{n}))$ if there exist constants $\mathbf{c}, \mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n}) \leq \mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

Theorem

$2 n^{2}+27=O\left(n^{2}\right)$

Proof.

Set $\mathbf{c}=3$. Suppose $\mathbf{2 n} \mathbf{n}^{2}+\mathbf{2 7}>\mathbf{c n}^{2}=3 \mathbf{n}^{2}$
$\Longrightarrow n^{2}<27 \Longrightarrow n<6$
$\Longrightarrow 2 n^{2}+27 \leq 3 n^{2}$ for all $n \geq 6$.
Set $\mathbf{n}_{\mathbf{0}}=\mathbf{6}$. Then $\mathbf{2 n} \mathbf{n}^{\mathbf{2}} \mathbf{2 7} \leq \mathbf{c n}^{\mathbf{2}}$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

Example

Definition

$\mathbf{g}(\mathbf{n}) \in \mathbf{O}(\mathbf{f}(\mathbf{n}))$ if there exist constants $\mathbf{c}, \mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n}) \leq \mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

Theorem

$2 n^{2}+27=O\left(n^{2}\right)$

Proof.

Set $\mathbf{c}=\mathbf{3}$. Suppose $2 \mathbf{n}^{2}+27>\mathbf{c n}^{2}=3 \mathbf{n}^{2}$
$\Longrightarrow n^{2}<27 \Longrightarrow n<6$
$\Longrightarrow 2 n^{2}+27 \leq 3 n^{2}$ for all $n \geq 6$.
Set $\mathbf{n}_{\mathbf{0}}=\mathbf{6}$. Then $\mathbf{2 n} \mathbf{n} \mathbf{2 7} \leq \mathbf{c n}^{\mathbf{2}}$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.
Many other ways to prove this!

$\Omega(\cdot)$

Counterpart to $\mathbf{O}(\cdot)$: lower bound rather than upper bound.

Definition

$\mathbf{g}(\mathbf{n}) \in \boldsymbol{\Omega}(\mathbf{f}(\mathbf{n}))$ if there exist constants $\mathbf{c}, \mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n}) \geq \mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

$\Omega(\cdot)$

Counterpart to $\mathbf{O}(\cdot)$: lower bound rather than upper bound.

Definition

$\mathbf{g}(\mathbf{n}) \in \boldsymbol{\Omega}(\mathbf{f}(\mathbf{n}))$ if there exist constants $\mathbf{c}, \mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n}) \geq \mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

Examples:

- $2 n^{2}+27=\Omega\left(n^{2}\right)$: set $n_{0}=1$ and $c=1$
- $2 n^{2}+27=\Omega(n)$: set $n_{0}=1$ and $c=1$
- $\frac{1}{100} n^{3}-1000 n^{2}=\Omega\left(n^{3}\right)$: set $n_{0}=1000000$ and $c=1 / 1000$

$\Theta(\cdot)$

Combination of $\mathbf{O}(\cdot)$ and $\Omega(\cdot)$.

Definition
 $\mathbf{g}(\mathbf{n}) \in \boldsymbol{\Theta}(\mathbf{f}(\mathbf{n}))$ if $\mathbf{g}(\mathbf{n}) \in \mathbf{O}(\mathbf{f}(\mathbf{n}))$ and $\mathbf{g}(\mathbf{n}) \in \boldsymbol{\Omega}(\mathbf{f}(\mathbf{n}))$.

Note: constants $\mathbf{n}_{\mathbf{0}}, \mathbf{c}$ can be different in the proofs for $\mathbf{O}(\mathbf{f}(\mathbf{n}))$ and $\Omega(\mathbf{f}(\mathbf{n}))$

$\Theta(\cdot)$

Combination of $\mathbf{O}(\cdot)$ and $\Omega(\cdot)$.

Definition
 $\mathbf{g}(\mathbf{n}) \in \boldsymbol{\Theta}(\mathbf{f}(\mathbf{n}))$ if $\mathbf{g}(\mathbf{n}) \in \mathbf{O}(\mathbf{f}(\mathbf{n}))$ and $\mathbf{g}(\mathbf{n}) \in \boldsymbol{\Omega}(\mathbf{f}(\mathbf{n}))$.

Note: constants $\mathbf{n}_{\mathbf{0}}, \mathbf{c}$ can be different in the proofs for $\mathbf{O}(\mathbf{f}(\mathbf{n}))$ and $\Omega(\mathbf{f}(\mathbf{n}))$
Equivalent:

```
Definition
g(n)\in\Theta(f(n)) if there are constants \mp@subsup{c}{1}{\prime},\mp@subsup{\mathbf{c}}{2}{},\mp@subsup{\mathbf{n}}{\mathbf{0}}{}>\mathbf{0}\mathrm{ such that }\mp@subsup{\mathbf{c}}{\mathbf{1}}{\mathbf{f}}\mathbf{f}(\mathbf{n})\leq\mathbf{g}(\mathbf{n})\leq\mp@subsup{\mathbf{c}}{\mathbf{2}}{\mathbf{f}}\mathbf{f}(\mathbf{n})\mathrm{ for all} \(\mathbf{n}>\mathbf{n}_{\mathbf{0}}\).
```

Both lower bound and upper bound, so asymptotic equality.

Little notation

Strict versions of \mathbf{O} and $\boldsymbol{\Omega}$:

Definition

$\mathbf{g}(\mathbf{n}) \in \mathbf{o}(\mathbf{f}(\mathbf{n}))$ if for every constant $\mathbf{c}>\mathbf{0}$ there exists a constant $\mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n})<\mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

Definition

$\mathbf{g}(\mathbf{n}) \in \boldsymbol{\omega}(\mathbf{f}(\mathbf{n}))$ if for every constant $\mathbf{c}>\mathbf{0}$ there exists a constant $\mathbf{n}_{\mathbf{0}}>\mathbf{0}$ such that $\mathbf{g}(\mathbf{n})>\mathbf{c} \cdot \mathbf{f}(\mathbf{n})$ for all $\mathbf{n}>\mathbf{n}_{\mathbf{0}}$.

Examples:

- $2 n^{2}+27=0\left(n^{2} \log n\right)$
- $2 n^{2}+27=\omega(n)$

Recurrence Relations

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- Selection Sort

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- Selection Sort
- Find smallest unsorted element, put it just after sorted elements. Repeat.

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- Selection Sort
- Find smallest unsorted element, put it just after sorted elements. Repeat.
- Running time: Takes $\mathbf{O}(\mathbf{n})$ time to find smallest unsorted element, decreases remaining unsorted by 1 .
$\Longrightarrow T(n)=T(n-1)+c n$

$$
\begin{aligned}
& i \\
& \text { deft of } T
\end{aligned}
$$

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- Selection Sort
- Find smallest unsorted element, put it just after sorted elements. Repeat.
- Running time: Takes $\mathbf{O}(\mathbf{n})$ time to find smallest unsorted element, decreases remaining unsorted by 1 .
$\Longrightarrow T(n)=T(n-1)+c n$
- Mergesort

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- Selection Sort
- Find smallest unsorted element, put it just after sorted elements. Repeat.
- Running time: Takes $\mathbf{O}(\mathbf{n})$ time to find smallest unsorted element, decreases remaining unsorted by 1 .
$\Longrightarrow T(n)=T(n-1)+c n$
- Mergesort
- Split array into left and right halves. Recursively sort each half, then merge.

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- Selection Sort
- Find smallest unsorted element, put it just after sorted elements. Repeat.
- Running time: Takes $\mathbf{O}(\mathbf{n})$ time to find smallest unsorted element, decreases remaining unsorted by 1 .

$$
\Longrightarrow T(n)=T(n-1)+c n
$$

- Mergesort
- Split array into left and right halves. Recursively sort each half, then merge.
- Running time: Merging takes $\mathbf{O}(\mathbf{n})$ time. Two recursive calls on half the size.

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- Selection Sort
- Find smallest unsorted element, put it just after sorted elements. Repeat.
- Running time: Takes $\mathbf{O}(\mathbf{n})$ time to find smallest unsorted element, decreases remaining unsorted by 1 .

$$
\Longrightarrow T(n)=T(n-1)+c n
$$

- Mergesort
- Split array into left and right halves. Recursively sort each half, then merge.
- Running time: Merging takes $\mathbf{O}(\mathbf{n})$ time. Two recursive calls on half the size.

$$
\Longrightarrow T(n)=2 T(n / 2)+c n
$$

Also need base case. For algorithms, constant size input takes constant time.
$\Longrightarrow \mathbf{T}(\mathbf{n}) \leq \mathbf{c}$ for all $\mathbf{n} \leq \mathbf{n}_{\mathbf{0}}$, for some constants $\mathbf{n}_{\mathbf{0}}, \mathbf{c}>\mathbf{0}$.

Guess and Check

$$
T(n)=3 T(n / 3)+n \quad T(1)=1
$$

Guess and Check

$$
T(n)=3 T(n / 3)+n \quad T(1)=1
$$

Guess: $\mathbf{T}(\mathbf{n}) \leq \mathbf{c n}$.

Guess and Check

$$
T(n)=3 T(n / 3)+n \quad T(1)=1
$$

Guess: $\mathbf{T}(\mathbf{n}) \leq \mathbf{c n}$.

Check: assume true for $\mathbf{n}^{\prime}<\mathbf{n}$, prove true for \mathbf{n} (induction).

Guess and Check

$$
T(n)=3 T(n / 3)+n \quad T(1)=1
$$

Guess: $\mathbf{T}(\mathbf{n}) \leq \mathbf{c n}$.
Check: assume true for $\mathbf{n}^{\prime}<\mathbf{n}$, prove true for \mathbf{n} (induction).

$$
\begin{array}{lcl}
\mathbf{T}(\mathbf{n})=\mathbf{~} \mathbf{~} \mathbf{T}(\mathbf{n} / 3)+\mathbf{n} \leq 3 \mathbf{c n} / 3+\mathbf{n}=(\mathbf{c}+\mathbf{1}) \mathbf{n} \\
\text { def } & \text { induction algebra }
\end{array} \quad \text { inunction: } T(\% / 3) \leq C \cdot \frac{n}{3}
$$

Guess and Check

$$
T(n)=3 T(n / 3)+n \quad T(1)=1
$$

Guess: $\mathbf{T}(\mathbf{n}) \leq \mathbf{c n}$.
Check: assume true for $\mathbf{n}^{\prime}<\mathbf{n}$, prove true for \mathbf{n} (induction).

$$
T(n)=3 T(n / 3)+n \leq 3 c n / 3+n=(c+1) n
$$

Failure! Wanted $\mathbf{T}(\mathbf{n}) \leq \mathbf{c n}$, got $\mathbf{T}(\mathbf{n}) \leq(\mathbf{c}+\mathbf{1}) \mathbf{n}$. Guess was wrong.

Guess and Check

$$
T(n)=3 T(n / 3)+n \quad T(1)=1
$$

Guess: $\mathbf{T}(\mathbf{n}) \leq \mathbf{c n}$.
Check: assume true for $\mathbf{n}^{\prime}<\mathbf{n}$, prove true for \mathbf{n} (induction).

$$
T(n)=3 T(n / 3)+n \leq 3 c n / 3+n=(c+1) n
$$

Failure! Wanted $\mathbf{T}(\mathbf{n}) \leq \mathbf{c n}$, got $\mathbf{T}(\mathbf{n}) \leq(\mathbf{c}+\mathbf{1}) \mathbf{n}$. Guess was wrong.
Better guess? What goes up by $\mathbf{1}$ when \mathbf{n} goes up by a factor of $\mathbf{3}$?

Guess and Check

$$
T(n)=3 T(n / 3)+n \quad T(1)=1
$$

Guess: $\mathbf{T}(\mathbf{n}) \leq \mathbf{c n}$.
Check: assume true for $\mathbf{n}^{\prime}<\mathbf{n}$, prove true for \mathbf{n} (induction).

$$
T(n)=3 T(n / 3)+n \leq 3 c n / 3+n=(c+1) n
$$

Failure! Wanted $\mathbf{T}(\mathbf{n}) \leq \mathbf{c n}$, got $\mathbf{T}(\mathbf{n}) \leq(\mathbf{c}+\mathbf{1}) \mathbf{n}$. Guess was wrong.
Better guess? What goes up by $\mathbf{1}$ when \mathbf{n} goes up by a factor of $\mathbf{3}$? $\log _{\mathbf{3}} \mathbf{n}$

Guess and Check

$$
T(n)=3 T(n / 3)+n
$$

Guess: $\mathbf{T}(\mathbf{n}) \leq \mathbf{c n}$.

Check: assume true for $\mathbf{n}^{\prime}<\mathbf{n}$, prove true for \mathbf{n} (induction).

$$
T(n)=3 T(n / 3)+n \leq 3 c n / 3+n=(c+1) n
$$

Failure! Wanted $\mathbf{T}(\mathbf{n}) \leq \mathbf{c n}$, got $\mathbf{T}(\mathbf{n}) \leq(\mathbf{c}+\mathbf{1}) \mathbf{n}$. Guess was wrong.
Better guess? What goes up by $\mathbf{1}$ when \mathbf{n} goes up by a factor of $\mathbf{3}$? $\log _{\mathbf{3}} \mathbf{n}$ Guess: $\mathbf{T}(\mathbf{n}) \leq \mathbf{n} \log _{3}$ (3n)
Check: assume true for $\mathbf{n}^{\prime}<\mathbf{n}$, prove true for \mathbf{n} (induction).

$$
\begin{aligned}
T(n) & =3 T(n / 3)+n \leq 3(n / 3) \log _{3}(n)+n=n \log _{3}(n)+n \\
& =n\left(\log _{3}(n)+\log _{3} 3\right)=n \log _{3}(3 n) .
\end{aligned}
$$

Unrolling

Example: selection sort. $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n}-\mathbf{1})+\mathbf{c n}$

Idea: "unroll" the recurrence.

Unrolling

Example: selection sort. $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n}-\mathbf{1})+\mathbf{c n}$

Idea: "unroll" the recurrence.

$$
T(n)=c n+T(n-1)
$$

Unrolling

Example: selection sort. $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n - 1})+\mathbf{c n}$
Idea: "unroll" the recurrence.

$$
\begin{aligned}
& T(n)=\mathbf{c n}+T(n-1) \\
& d o t \in t(n-l)
\end{aligned}
$$

Unrolling

Example: selection sort. $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n}-\mathbf{1})+\mathbf{c n}$
Idea: "unroll" the recurrence.

$$
\begin{aligned}
T(n) & =c n+T(n-1) \\
& =c n+c(n-1)+T(n-2) \\
& =c n+c(n-1)+c(n-2)+T(n-3)
\end{aligned}
$$

Unrolling

Example: selection sort. $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n} \mathbf{- 1})+\mathbf{c n}$
Idea: "unroll" the recurrence.

$$
\begin{aligned}
T(n) & =c n+T(n-1) \\
& =c n+c(n-1)+T(n-2) \\
& =c n+c(n-1)+c(n-2)+T(n-3)
\end{aligned}
$$

Unrolling

Example: selection sort. $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n} \mathbf{- 1})+\mathbf{c n}$
Idea: "unroll" the recurrence.

$$
\begin{aligned}
T(n) & =c n+T(n-1) \\
& =c n+c(n-1)+T(n-2) \\
& =c n+c(n-1)+c(n-2)+T(n-3) \\
& \\
& =c n+c(n-1)+c(n-2)+\cdots+c
\end{aligned}
$$

Unrolling

Example: selection sort. $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n} \mathbf{- 1})+\mathbf{c n}$ Idea: "unroll" the recurrence.

$$
\begin{aligned}
T(n) & =c n+T(n-1) \\
& =c n+c(n-1)+T(n-2) \\
& =c n+c(n-1)+c(n-2)+T(n-3) \\
& \\
& =c n+c(n-1)+c(n-2)+\cdots+c
\end{aligned}
$$

\mathbf{n} terms, each of which at most $\mathbf{c n} \Longrightarrow \mathbf{T}(\mathbf{n}) \leq \mathbf{c n}^{2}=\mathbf{O}\left(\mathbf{n}^{2}\right)$

Unrolling

Example: selection sort. $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n} \mathbf{- 1})+\mathbf{c n}$
Idea: "unroll" the recurrence.

$$
\begin{aligned}
T(n) & =c n+T(n-1) \\
& =c n+c(n-1)+T(n-2) \\
& =c n+c(n-1)+c(n-2)+T(n-3) \\
& \\
& =c n+c(n-1)+c(n-2)+\cdots+c
\end{aligned}
$$

\mathbf{n} terms, each of which at most $\mathbf{c n} \Longrightarrow \mathbf{T}(\mathbf{n}) \leq \mathbf{c n}^{2}=\mathbf{O}\left(\mathbf{n}^{2}\right)$
At least $\mathbf{n} / \mathbf{2}$ terms which are at least $\mathbf{c n} / \mathbf{2} \mathbf{T}(\mathbf{n}) \geq \mathbf{c} \frac{\mathbf{n}^{2}}{4}=\Omega\left(\mathbf{n}^{2}\right)$

Unrolling

Example: selection sort. $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n} \mathbf{- 1})+\mathbf{c n}$
Idea: "unroll" the recurrence.

$$
\begin{aligned}
T(n) & =c n+T(n-1) \\
& =c n+c(n-1)+T(n-2) \\
& =c n+c(n-1)+c(n-2)+T(n-3)
\end{aligned}
$$

$$
\begin{gathered}
\vdots \\
=\mathbf{c n}+\mathbf{c}(\mathbf{n}-1)+\mathbf{c}(\mathbf{n}-2)+\cdots+\mathbf{c} \quad \operatorname{cnt}(n-1)+c(n-2)+\cdots
\end{gathered}
$$

$$
=c n+c(n-1)+c(n-2)+\cdots+c
$$

\mathbf{n} terms, each of which at most $\mathbf{c n} \Longrightarrow \mathbf{T}(\mathbf{n}) \leq \mathbf{c n}^{2}=\mathbf{O}\left(\mathbf{n}^{2}\right)$
At least $\mathbf{n} / \mathbf{2}$ terms which are at least $\mathbf{c n} / \mathbf{2} \mathbf{T}(\mathbf{n}) \geq \mathbf{c} \frac{\mathbf{n}^{2}}{4}=\Omega\left(\mathbf{n}^{2}\right)$

$$
\Longrightarrow T(n)=\Theta\left(n^{2}\right) .
$$

Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of "recursive calls".
Mergesort: $\mathbf{T}(\mathbf{n})=\mathbf{2 T}(\mathbf{n} / 2)+\mathbf{c n}$.

Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of "recursive calls".
Mergesort: $\mathbf{T}(\mathbf{n})=\mathbf{2 T}(\mathbf{n} / 2)+\mathbf{c n}$.

Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of "recursive calls".
Mergesort: $\mathbf{T}(\mathbf{n})=\mathbf{2 T}(\mathbf{n} / 2)+\mathbf{c n}$.

\# levels:

Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of "recursive calls".
Mergesort: $\mathbf{T}(\mathbf{n})=\mathbf{2 T}(\mathbf{n} / 2)+\mathbf{c n}$.

\# levels: $\log _{2} \mathbf{n}$

Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of "recursive calls".
Mergesort: $\mathbf{T}(\mathbf{n})=\mathbf{2 T}(\mathbf{n} / 2)+\mathbf{c n}$.

\# levels: $\log _{\mathbf{2}} \mathbf{n}$
Contribution of level \mathbf{i} :

Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of "recursive calls".
Mergesort: $\mathbf{T}(\mathbf{n})=\mathbf{2 T}(\mathbf{n} / 2)+\mathbf{c n}$.

\# levels: $\log _{2} \mathbf{n}$
Contribution of level i: $\mathbf{2}^{\mathbf{i - 1}} \mathbf{c n} / \mathbf{2}^{\mathbf{i - 1}}=\mathbf{c n}$

Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of "recursive calls".
Mergesort: $\mathbf{T}(\mathbf{n})=\mathbf{2 T}(\mathbf{n} / 2)+\mathbf{c n}$.

\# levels: $\log _{\mathbf{2}} \mathbf{n}$
Contribution of level i: $\mathbf{2}^{\mathbf{i - 1}} \mathbf{c n} / \mathbf{2}^{\mathbf{i - 1}}=\mathbf{c n}$
$\Longrightarrow T(n)=\Theta(n \log n)$

Recursion Tree: Strassen

$$
T(n)=7 T(n / 2)+c n^{2}
$$

Recursion Tree: Strassen

$$
T(n)=7 T(n / 2)+c n^{2}
$$

Recursion Tree: Strassen

$$
T(n)=7 T(n / 2)+c n^{2}
$$

Level i: $\mathbf{7}^{\mathbf{i}-1} \mathbf{c}\left(\mathbf{n} / \mathbf{2}^{\mathbf{i - 1}}\right)^{\mathbf{2}}=(7 / 4)^{\mathrm{i}-1} \mathbf{c n}^{\mathbf{2}}$

Recursion Tree: Strassen

$$
T(n)=7 T(n / 2)+c n^{2}
$$

\vdots
Level i: $\mathbf{7}^{\mathbf{i - 1}} \mathbf{c}\left(\mathbf{n} / 2^{i-1}\right)^{\mathbf{2}}=(7 / 4)^{\mathrm{i}-1} \mathbf{c n}^{2}$

Total:

$$
T(n)=\sum_{i=1}^{\log n+1}\left(\frac{7}{4}\right)^{i-1} \mathrm{cn}^{2}=\mathrm{cn}^{2} \sum_{i=1}^{\log n+1}\left(\frac{7}{4}\right)^{i-1}
$$

Recursion Tree: Strassen

$$
T(n)=7 T(n / 2)+c n^{2}
$$

:
Level i: $7^{i-1} \mathbf{c}\left(n / 2^{i-1}\right)^{2}=(7 / 4)^{i-1} \mathbf{c n}^{2}$

Total:

$$
T(n)=\sum_{i=1}^{\log n+1}\left(\frac{7}{4}\right)^{i-1} \mathrm{cn}^{2}=\mathrm{cn}^{2} \sum_{i=1}^{\log n+1}\left(\frac{7}{4}\right)^{i-1}
$$

$$
\begin{aligned}
\Longrightarrow T(n) & =\mathbf{O}\left(n^{2}(7 / 4)^{\log n}\right)=\mathbf{O}\left(n^{2} n^{\log (7 / 4)}\right)=\mathbf{O}\left(n^{2} n^{\log 7-2}\right) \\
& =\mathbf{O}\left(n^{\log 7}\right)
\end{aligned}
$$

Master Theorem

$$
\begin{gathered}
\mathbf{T}(\mathbf{n})=\mathbf{a T}(\mathbf{n} / \mathbf{b})+\mathrm{cn}^{k} \quad \mathbf{T}(\mathbf{1})=\mathbf{c} \\
\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{k} \text { constants with } \mathbf{a} \geq \mathbf{1}, \mathrm{b}>\mathbf{1}, \mathrm{c}>\mathbf{0} \text {, and } k \geq \mathbf{0}
\end{gathered}
$$

Master Theorem

$$
T(n)=a T(n / b)+c n^{k} \quad T(1)=c
$$

$\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{k}$ constants with $\mathbf{a} \geq \mathbf{1}, \mathbf{b}>\mathbf{1}, \mathbf{c}>\mathbf{0}$, and $\mathbf{k} \geq \mathbf{0}$

Master Theorem

$$
T(n)=a T(n / b)+c n^{k} \quad T(1)=c
$$

$\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{k}$ constants with $\mathbf{a} \geq \mathbf{1}, \mathbf{b}>\mathbf{1}, \mathbf{c}>\mathbf{0}$, and $\mathbf{k} \geq \mathbf{0}$

\# levels: $\log _{\mathbf{b}} \mathbf{n + 1}$

Master Theorem

$$
T(n)=a T(n / b)+c n^{k} \quad T(1)=c
$$

$\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{k}$ constants with $\mathbf{a} \geq \mathbf{1}, \mathbf{b}>\mathbf{1}, \mathbf{c}>\mathbf{0}$, and $\mathbf{k} \geq \mathbf{0}$

\# levels: $\log _{\mathbf{b}} \mathbf{n + 1}$
Level i: $\mathbf{a}^{\mathbf{i}-\mathbf{1}} \mathbf{c}\left(\mathbf{n} / \mathbf{b}^{\mathbf{i}-\mathbf{1}}\right)^{\mathbf{k}}=\mathbf{c} \mathbf{n}^{\mathbf{k}}\left(\mathbf{a} / \mathbf{b}^{\mathbf{k}}\right)^{\mathbf{i}-\mathbf{1}}$

```
Master Theorem II
Let \(\alpha=\left(\mathbf{a} / \mathbf{b}^{\mathbf{k}}\right)\)
\(\Longrightarrow T(n)=\mathbf{c n}^{k} \sum_{i=1}^{\log _{b} n+1}\left(a / b^{k}\right)^{i-1}=c^{k} \sum_{i=1}^{\log _{b} n+1} \alpha^{i-1}\)
```

```
Master Theorem II
Let \(\boldsymbol{\alpha}=\left(\mathbf{a} / \mathbf{b}^{\mathbf{k}}\right)\)
\(\Longrightarrow T(n)=\mathbf{c n}^{k} \sum_{i=1}^{\log _{b} n+1}\left(a / b^{k}\right)^{i-1}=c^{k} \sum_{i=1}^{\log _{b} n+1} \alpha^{i-1}\)
```

- Case 1: $\alpha=1$. All levels the same. $\mathbf{T}(\mathbf{n})=\mathbf{c n}^{\mathrm{k}} \sum_{\mathrm{i}=1}^{\log _{b} n+1} \mathbf{1}=\boldsymbol{\Theta}\left(\mathbf{n}^{\mathrm{k}} \log \mathrm{n}\right)$

```
Master Theorem II
Let \(\boldsymbol{\alpha}=\left(\mathbf{a} / \mathbf{b}^{\mathbf{k}}\right)\)
\(\Longrightarrow T(n)=\mathbf{c n}^{k} \sum_{i=1}^{\log _{b} n+1}\left(a / b^{k}\right)^{i-1}=c^{k} \sum_{i=1}^{\log _{b} n+1} \alpha^{i-1}\)
```

- Case 1: $\alpha=1$. All levels the same. $\mathbf{T}(\mathbf{n})=\mathbf{c} n^{k} \sum_{i=1}^{\log _{b} n+1} \mathbf{1}=\boldsymbol{\Theta}\left(\mathbf{n}^{\mathrm{k}} \log \mathrm{n}\right)$
- Case 2: $\boldsymbol{\alpha}<\mathbf{1}$. Dominated by top level.

Master Theorem II

Let $\boldsymbol{\alpha}=\left(\mathbf{a} / \mathbf{b}^{\mathbf{k}}\right)$
$\Longrightarrow \mathrm{T}(\mathrm{n})=\mathbf{c n}^{\mathrm{k}} \sum_{\mathrm{i}=1}^{\log _{\mathrm{b}} \mathrm{n}+1}\left(\mathrm{a} / \mathbf{b}^{\mathrm{k}}\right)^{\mathrm{i}-1}=\mathbf{c n}^{\mathrm{k}} \sum_{\mathrm{i}=1}^{\log _{b} \mathrm{n}+1} \alpha^{\mathrm{i}-1}$

- Case 1: $\alpha=1$. All levels the same. $\mathbf{T}(\mathbf{n})=\mathbf{c} n^{k} \sum_{i=1}^{\log _{b} n+1} \mathbf{1}=\boldsymbol{\Theta}\left(\mathbf{n}^{k} \log n\right)$
- Case 2: $\alpha<1$. Dominated by top level.
$\Longrightarrow \sum_{i=1}^{\log _{b} n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\frac{1}{1-\alpha}$.
$\Longrightarrow T(n)=\mathbf{O}\left(n^{k}\right)$

Master Theorem II

Let $\boldsymbol{\alpha}=\left(\mathbf{a} / \mathbf{b}^{\mathbf{k}}\right)$
$\Longrightarrow \mathrm{T}(\mathrm{n})=\mathbf{c n}^{\mathrm{k}} \sum_{\mathrm{i}=1}^{\log _{b} \mathrm{n}+1}\left(\mathrm{a} / \mathbf{b}^{\mathrm{k}}\right)^{\mathrm{i}-1}=\mathbf{c n}^{\mathrm{k}} \sum_{\mathrm{i}=1}^{\log _{b} \mathrm{n}+1} \alpha^{\mathrm{i}-1}$

- Case 1: $\alpha=1$. All levels the same. $\mathbf{T}(\mathbf{n})=\mathbf{c} n^{k} \sum_{i=1}^{\log _{b} n+1} \mathbf{1}=\boldsymbol{\Theta}\left(\mathbf{n}^{k} \log n\right)$
- Case 2: $\boldsymbol{\alpha}<\mathbf{1}$. Dominated by top level.
$\Longrightarrow \sum_{\mathrm{i}=1}^{\log _{b} \mathrm{n}+1} \alpha^{\mathrm{i}-1} \leq \sum_{\mathrm{i}=1}^{\infty} \alpha^{\mathrm{i}-1}=\frac{1}{1-\alpha}$.
$\Longrightarrow \mathrm{T}(\mathrm{n})=\mathbf{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
$T(n) \geq \mathbf{c n}^{\mathbf{k}} \Longrightarrow T(n)=\Omega\left(n^{k}\right)$

Master Theorem II

Let $\boldsymbol{\alpha}=\left(\mathbf{a} / \mathbf{b}^{\mathbf{k}}\right)$
$\Longrightarrow \mathrm{T}(\mathrm{n})=\mathbf{c n}^{\mathrm{k}} \sum_{\mathrm{i}=1}^{\log _{b} \mathrm{n}+1}\left(\mathrm{a} / \mathrm{b}^{\mathrm{k}}\right)^{\mathrm{i}-1}=\mathbf{c n}^{\mathrm{k}} \sum_{\mathrm{i}=1}^{\log _{b} \mathrm{n}+1} \alpha^{\mathrm{i}-1}$

- Case 1: $\alpha=1$. All levels the same. $\mathbf{T}(\mathbf{n})=\mathbf{c} n^{k} \sum_{i=1}^{\log _{b} n+1} \mathbf{1}=\boldsymbol{\Theta}\left(\mathbf{n}^{\mathrm{k}} \log \mathrm{n}\right)$
- Case 2: $\boldsymbol{\alpha}<\mathbf{1}$. Dominated by top level.
$\Longrightarrow \sum_{\mathrm{i}=1}^{\log _{b} \mathrm{n}+1} \alpha^{\mathrm{i}-1} \leq \sum_{\mathrm{i}=1}^{\infty} \alpha^{\mathrm{i}-1}=\frac{1}{1-\alpha}$.
$\Longrightarrow \mathbf{T}(n)=\mathbf{O}\left(n^{k}\right)$
$T(n) \geq \mathbf{c n}^{\mathbf{k}} \Longrightarrow T(n)=\Omega\left(n^{k}\right) \Longrightarrow T(n)=\Theta\left(n^{k}\right)$

Master Theorem II

Let $\boldsymbol{\alpha}=\left(\mathbf{a} / \mathbf{b}^{\mathbf{k}}\right)$
$\Longrightarrow \mathrm{T}(\mathrm{n})=\mathbf{c n}^{\mathrm{k}} \sum_{\mathrm{i}=1}^{\log _{b} \mathrm{n}+1}\left(\mathrm{a} / \mathrm{b}^{\mathrm{k}}\right)^{\mathrm{i}-1}=\mathbf{c n}^{\mathrm{k}} \sum_{\mathrm{i}=1}^{\log _{b} \mathrm{n}+1} \alpha^{\mathrm{i}-1}$

- Case 1: $\alpha=1$. All levels the same. $\mathbf{T}(\mathbf{n})=\mathbf{c} n^{k} \sum_{i=1}^{\log _{b} n+1} \mathbf{1}=\boldsymbol{\Theta}\left(\mathbf{n}^{\mathrm{k}} \log \mathrm{n}\right)$
- Case 2: $\boldsymbol{\alpha}<\mathbf{1}$. Dominated by top level.
$\Longrightarrow \sum_{\mathrm{i}=1}^{\log _{b} \mathrm{n}+1} \alpha^{\mathrm{i}-1} \leq \sum_{\mathrm{i}=1}^{\infty} \alpha^{\mathrm{i}-1}=\frac{1}{1-\alpha}$.
$\Longrightarrow \mathbf{T}(n)=\mathbf{O}\left(n^{k}\right)$
$T(n) \geq \mathbf{c n}^{\mathbf{k}} \Longrightarrow \mathrm{T}(\mathrm{n})=\Omega\left(\mathrm{n}^{\mathbf{k}}\right) \Longrightarrow \mathrm{T}(\mathrm{n})=\boldsymbol{\Theta}\left(\mathrm{n}^{\mathrm{k}}\right)$
- Case 3: $\alpha>$ 1. Dominated by bottom level

Master Theorem II

Let $\boldsymbol{\alpha}=\left(\mathbf{a} / \mathbf{b}^{\mathbf{k}}\right)$
$\Longrightarrow T(n)=\mathbf{c n}^{k} \sum_{i=1}^{\log _{b} n+1}\left(a / b^{k}\right)^{i-1}=c^{k} \sum_{i=1}^{\log _{b} n+1} \alpha^{i-1}$

- Case 1: $\alpha=1$. All levels the same. $\mathbf{T}(\mathbf{n})=\mathbf{c} n^{k} \sum_{i=1}^{\log _{b} n+1} \mathbf{1}=\boldsymbol{\Theta}\left(\mathbf{n}^{\mathrm{k}} \log \mathrm{n}\right)$
- Case 2: $\alpha<1$. Dominated by top level.
$\Longrightarrow \sum_{i=1}^{\log _{b} n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\frac{1}{1-\alpha}$.
$\Longrightarrow \mathbf{T}(n)=\mathbf{O}\left(n^{k}\right)$
$\mathbf{T}(\mathrm{n}) \geq \mathbf{c n}^{\mathbf{k}} \Longrightarrow \mathrm{T}(\mathrm{n})=\boldsymbol{\Omega}\left(\mathrm{n}^{\mathrm{k}}\right) \Longrightarrow \mathrm{T}(\mathrm{n})=\boldsymbol{\Theta}\left(\mathrm{n}^{\mathrm{k}}\right)$
- Case 3: $\alpha>1$. Dominated by bottom level

$$
\begin{aligned}
& \Longrightarrow \sum_{i=1}^{\log _{b} n+1} \alpha^{i-1}=\alpha^{\log _{b} n} \sum_{i=1}^{\log _{b} n+1}\left(\frac{1}{\alpha}\right)^{i-1} \leq \alpha^{\log _{b} n} \frac{1}{1-(1 / \alpha)} \\
& \quad=0\left(\alpha^{\log _{b} n}\right)
\end{aligned}
$$

Master Theorem II

Let $\boldsymbol{\alpha}=\left(\mathbf{a} / \mathbf{b}^{\mathbf{k}}\right)$
$\Longrightarrow \mathrm{T}(\mathrm{n})=\mathbf{c n} \sum^{\mathrm{k}} \sum_{\mathrm{i}=1}^{\log _{\mathrm{b}} \mathrm{n}+1}\left(\mathrm{a} / \mathrm{b}^{\mathrm{k}}\right)^{\mathrm{i}-1}=\mathbf{c n}^{\mathrm{k}} \sum_{\mathrm{i}=1}^{\log _{b} \mathrm{n}+1} \alpha^{\mathrm{i}-1}$

- Case 1: $\alpha=1$. All levels the same. $T(n)=\mathbf{c n}^{k} \sum_{i=1}^{\log _{b} n+1} 1=\Theta\left(n^{k} \log n\right)$
- Case 2: $\alpha<1$. Dominated by top level.

$$
\begin{aligned}
& \Longrightarrow \sum_{i=1}^{\log _{b} n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\frac{1}{1-\alpha} . \\
& \Longrightarrow T(n)=O\left(n^{k}\right) \\
& T(n) \geq \mathbf{c n}^{k} \Longrightarrow T(n)=\Omega\left(n^{k}\right) \Longrightarrow T(n)=\Theta\left(n^{k}\right)
\end{aligned}
$$

- Case 3: $\alpha>1$. Dominated by bottom level

$$
\begin{gathered}
\Longrightarrow \sum_{i=1}^{\log _{b} n+1} \alpha^{i-1}=\alpha^{\log _{b} n} \sum_{i=1}^{\log _{b} n+1}\left(\frac{1}{\alpha}\right)^{i-1} \leq \alpha^{\log _{b} n} \frac{1}{1-(1 / \alpha)} \\
=O\left(\alpha^{\log _{b} n}\right) \\
\Longrightarrow T(n)=\Theta\left(n^{k} \alpha^{\log _{b} n}\right)=\Theta\left(n^{k}\left(a / b^{k}\right)^{\log _{b} n}\right)=\Theta\left(a^{\log _{b} n}\right) \\
=\Theta\left(n^{\log _{b} a}\right)
\end{gathered}
$$

Master Theorem III

Theorem ("Master Theorem")

The recurrence

$$
T(n)=a T(n / b)+c^{k} \quad T(1)=c
$$

where $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{k} are constants with $\mathbf{a} \geq \mathbf{1}, \mathbf{b}>\mathbf{1}, \mathbf{c}>\mathbf{0}$, and $\mathbf{k} \geq \mathbf{0}$, is equal to

$$
\begin{aligned}
& \mathbf{T}(\mathbf{n})=\boldsymbol{\Theta}\left(\mathbf{n}^{\mathbf{k}}\right) \text { if } \mathbf{a}<\mathbf{b}^{\mathbf{k}} \\
& \mathbf{T}(\mathbf{n})=\boldsymbol{\Theta}\left(\mathbf{n}^{\mathbf{k}} \log \mathbf{n}\right) \text { if } \mathbf{a}=\mathbf{b}^{k}, \\
& \mathbf{T}(\mathbf{n})=\boldsymbol{\Theta}\left(\mathbf{n}^{\log _{\mathrm{b}} \mathbf{a}}\right) \text { if } \mathbf{a}>\mathbf{b}^{\mathbf{k}}
\end{aligned}
$$

