
Lecture 2: Asymptotic Analysis, Recurrences

Michael Dinitz

September 2, 2021

601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 1 / 18

Things I Forget on Tuesday

Level of Formality:

� Part of mathematical maturity is knowing when to be formal, when not necessary

� Rule of thumb: Be formal for important parts

� Problem 1 is about asymptotic notation. Be formal!

� Problem 2 is about recurrences. Can be a little less formal with asymptotic notation.

� Lectures:

� I tend to go fast, not be super formal. But I expect you to be formal in homeworks (unless

stated otherwise)

Handwriting:

� I have bad handwriting. If something’s not clear, ask!

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 2 / 18

Today

Should be review, some might be new.

See math background in CLRS

Asymptotics: O(⋅), ⌦(⋅), and ⇥(⋅) notation.
� Should know from Data Structures. We’ll be a bit more formal.

� Intuitively: hide constants and lower order terms, since we only care what happen “at

scale” (asymptotically)

Recurrences: How to solve recurrence relations.

� Should know from Discrete Math.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 3 / 18

Asymptotic Notation

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 4 / 18

O(⋅)
Definition

g(n) ∈ O(f(n)) if there exist constants c,n0 > 0 such that g(n) ≤ c ⋅ f(n) for all n > n0.

Technically O(f(n)) is a set.

Abuse notation: “g(n) is O(f(n))” or g(n) = O(f(n)).
Examples:

� 2n
2 + 27 = O(n2): set n0 = 6 and c = 3

� 2n
2 + 27 = O(n3): same values, or n0 = 4 and c = 1

� n
3 + 2000n2 + 2000n = O(n3): set n0 = 10000 and c = 2

About functions not algorithms!

Expresses an upper bound

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 5 / 18

EEE

O(⋅)
Definition

g(n) ∈ O(f(n)) if there exist constants c,n0 > 0 such that g(n) ≤ c ⋅ f(n) for all n > n0.
Technically O(f(n)) is a set.

Abuse notation: “g(n) is O(f(n))” or g(n) = O(f(n)).

Examples:

� 2n
2 + 27 = O(n2): set n0 = 6 and c = 3

� 2n
2 + 27 = O(n3): same values, or n0 = 4 and c = 1

� n
3 + 2000n2 + 2000n = O(n3): set n0 = 10000 and c = 2

About functions not algorithms!

Expresses an upper bound

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 5 / 18

gul Loc feal

O(⋅)
Definition

g(n) ∈ O(f(n)) if there exist constants c,n0 > 0 such that g(n) ≤ c ⋅ f(n) for all n > n0.
Technically O(f(n)) is a set.

Abuse notation: “g(n) is O(f(n))” or g(n) = O(f(n)).
Examples:

� 2n
2 + 27 = O(n2): set n0 = 6 and c = 3

� 2n
2 + 27 = O(n3): same values, or n0 = 4 and c = 1

� n
3 + 2000n2 + 2000n = O(n3): set n0 = 10000 and c = 2

About functions not algorithms!

Expresses an upper bound

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 5 / 18

O(⋅)
Definition

g(n) ∈ O(f(n)) if there exist constants c,n0 > 0 such that g(n) ≤ c ⋅ f(n) for all n > n0.
Technically O(f(n)) is a set.

Abuse notation: “g(n) is O(f(n))” or g(n) = O(f(n)).
Examples:

� 2n
2 + 27 = O(n2): set n0 = 6 and c = 3

� 2n
2 + 27 = O(n3): same values, or n0 = 4 and c = 1

� n
3 + 2000n2 + 2000n = O(n3): set n0 = 10000 and c = 2

About functions not algorithms!

Expresses an upper bound

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 5 / 18

Example

Definition

g(n) ∈ O(f(n)) if there exist constants c,n0 > 0 such that g(n) ≤ c ⋅ f(n) for all n > n0.
Theorem

2n
2 + 27 = O(n2)

Proof.

Set c = 3. Suppose 2n
2 + 27 > cn2 = 3n2�⇒ n

2 < 27 �⇒ n < 6�⇒ 2n
2 + 27 ≤ 3n2 for all n ≥ 6.

Set n0 = 6. Then 2n
2 + 27 ≤ cn2 for all n > n0.

Many other ways to prove this!

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 6 / 18

Example

Definition

g(n) ∈ O(f(n)) if there exist constants c,n0 > 0 such that g(n) ≤ c ⋅ f(n) for all n > n0.
Theorem

2n
2 + 27 = O(n2)

Proof.

Set c = 3. Suppose 2n
2 + 27 > cn2 = 3n2

�⇒ n
2 < 27 �⇒ n < 6�⇒ 2n
2 + 27 ≤ 3n2 for all n ≥ 6.

Set n0 = 6. Then 2n
2 + 27 ≤ cn2 for all n > n0.

Many other ways to prove this!

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 6 / 18

Example

Definition

g(n) ∈ O(f(n)) if there exist constants c,n0 > 0 such that g(n) ≤ c ⋅ f(n) for all n > n0.
Theorem

2n
2 + 27 = O(n2)

Proof.

Set c = 3. Suppose 2n
2 + 27 > cn2 = 3n2�⇒ n

2 < 27

�⇒ n < 6�⇒ 2n
2 + 27 ≤ 3n2 for all n ≥ 6.

Set n0 = 6. Then 2n
2 + 27 ≤ cn2 for all n > n0.

Many other ways to prove this!

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 6 / 18

Example

Definition

g(n) ∈ O(f(n)) if there exist constants c,n0 > 0 such that g(n) ≤ c ⋅ f(n) for all n > n0.
Theorem

2n
2 + 27 = O(n2)

Proof.

Set c = 3. Suppose 2n
2 + 27 > cn2 = 3n2�⇒ n

2 < 27 �⇒ n < 6

�⇒ 2n
2 + 27 ≤ 3n2 for all n ≥ 6.

Set n0 = 6. Then 2n
2 + 27 ≤ cn2 for all n > n0.

Many other ways to prove this!

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 6 / 18

Example

Definition

g(n) ∈ O(f(n)) if there exist constants c,n0 > 0 such that g(n) ≤ c ⋅ f(n) for all n > n0.
Theorem

2n
2 + 27 = O(n2)

Proof.

Set c = 3. Suppose 2n
2 + 27 > cn2 = 3n2�⇒ n

2 < 27 �⇒ n < 6�⇒ 2n
2 + 27 ≤ 3n2 for all n ≥ 6.

Set n0 = 6. Then 2n
2 + 27 ≤ cn2 for all n > n0.

Many other ways to prove this!

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 6 / 18

Example

Definition

g(n) ∈ O(f(n)) if there exist constants c,n0 > 0 such that g(n) ≤ c ⋅ f(n) for all n > n0.
Theorem

2n
2 + 27 = O(n2)

Proof.

Set c = 3. Suppose 2n
2 + 27 > cn2 = 3n2�⇒ n

2 < 27 �⇒ n < 6�⇒ 2n
2 + 27 ≤ 3n2 for all n ≥ 6.

Set n0 = 6. Then 2n
2 + 27 ≤ cn2 for all n > n0.

Many other ways to prove this!

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 6 / 18

Example

Definition

g(n) ∈ O(f(n)) if there exist constants c,n0 > 0 such that g(n) ≤ c ⋅ f(n) for all n > n0.
Theorem

2n
2 + 27 = O(n2)

Proof.

Set c = 3. Suppose 2n
2 + 27 > cn2 = 3n2�⇒ n

2 < 27 �⇒ n < 6�⇒ 2n
2 + 27 ≤ 3n2 for all n ≥ 6.

Set n0 = 6. Then 2n
2 + 27 ≤ cn2 for all n > n0.

Many other ways to prove this!

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 6 / 18

⌦(⋅)
Counterpart to O(⋅): lower bound rather than upper bound.

Definition

g(n) ∈ ⌦(f(n)) if there exist constants c,n0 > 0 such that g(n) ≥ c ⋅ f(n) for all n > n0.

Examples:

� 2n
2 + 27 = ⌦(n2): set n0 = 1 and c = 1

� 2n
2 + 27 = ⌦(n): set n0 = 1 and c = 1

� 1

100
n
3 − 1000n2 = ⌦(n3): set n0 = 1000000 and c = 1�1000

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 7 / 18

t

⌦(⋅)
Counterpart to O(⋅): lower bound rather than upper bound.

Definition

g(n) ∈ ⌦(f(n)) if there exist constants c,n0 > 0 such that g(n) ≥ c ⋅ f(n) for all n > n0.
Examples:

� 2n
2 + 27 = ⌦(n2): set n0 = 1 and c = 1

� 2n
2 + 27 = ⌦(n): set n0 = 1 and c = 1

� 1

100
n
3 − 1000n2 = ⌦(n3): set n0 = 1000000 and c = 1�1000

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 7 / 18

⇥(⋅)
Combination of O(⋅) and ⌦(⋅).
Definition

g(n) ∈⇥(f(n)) if g(n) ∈ O(f(n)) and g(n) ∈ ⌦(f(n)).
Note: constants n0, c can be di↵erent in the proofs for O(f(n)) and ⌦(f(n))

Equivalent:

Definition

g(n) ∈⇥(f(n)) if there are constants c1, c2,n0 > 0 such that c1f(n) ≤ g(n) ≤ c2f(n) for all
n > n0.
Both lower bound and upper bound, so asymptotic equality.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 8 / 18

⇥(⋅)
Combination of O(⋅) and ⌦(⋅).
Definition

g(n) ∈⇥(f(n)) if g(n) ∈ O(f(n)) and g(n) ∈ ⌦(f(n)).
Note: constants n0, c can be di↵erent in the proofs for O(f(n)) and ⌦(f(n))
Equivalent:

Definition

g(n) ∈⇥(f(n)) if there are constants c1, c2,n0 > 0 such that c1f(n) ≤ g(n) ≤ c2f(n) for all
n > n0.
Both lower bound and upper bound, so asymptotic equality.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 8 / 18

Little notation

Strict versions of O and ⌦:

Definition

g(n) ∈ o(f(n)) if for every constant c > 0 there exists a constant n0 > 0 such that

g(n) < c ⋅ f(n) for all n > n0.
Definition

g(n) ∈ !(f(n)) if for every constant c > 0 there exists a constant n0 > 0 such that

g(n) > c ⋅ f(n) for all n > n0.
Examples:

� 2n
2 + 27 = o(n2 log n)

� 2n
2 + 27 = !(n)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 9 / 18

2n ocu 2127 O a'legal

Recurrence Relations

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 10 / 18

Sorting
Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,

Strassen).

Sorting:

� Selection Sort

� Find smallest unsorted element, put it just after sorted elements. Repeat.

� Running time: Takes O(n) time to find smallest unsorted element, decreases remaining

unsorted by 1.�⇒ T(n) = T(n − 1) + cn
� Mergesort

� Split array into left and right halves. Recursively sort each half, then merge.

� Running time: Merging takes O(n) time. Two recursive calls on half the size.�⇒ T(n) = 2T(n�2) + cn
Also need base case. For algorithms, constant size input takes constant time.�⇒ T(n) ≤ c for all n ≤ n0, for some constants n0, c > 0.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 11 / 18

Sorting
Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,

Strassen).

Sorting:

� Selection Sort

� Find smallest unsorted element, put it just after sorted elements. Repeat.

� Running time: Takes O(n) time to find smallest unsorted element, decreases remaining

unsorted by 1.�⇒ T(n) = T(n − 1) + cn
� Mergesort

� Split array into left and right halves. Recursively sort each half, then merge.

� Running time: Merging takes O(n) time. Two recursive calls on half the size.�⇒ T(n) = 2T(n�2) + cn
Also need base case. For algorithms, constant size input takes constant time.�⇒ T(n) ≤ c for all n ≤ n0, for some constants n0, c > 0.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 11 / 18

Sorting
Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,

Strassen).

Sorting:

� Selection Sort

� Find smallest unsorted element, put it just after sorted elements. Repeat.

� Running time: Takes O(n) time to find smallest unsorted element, decreases remaining

unsorted by 1.�⇒ T(n) = T(n − 1) + cn
� Mergesort

� Split array into left and right halves. Recursively sort each half, then merge.

� Running time: Merging takes O(n) time. Two recursive calls on half the size.�⇒ T(n) = 2T(n�2) + cn
Also need base case. For algorithms, constant size input takes constant time.�⇒ T(n) ≤ c for all n ≤ n0, for some constants n0, c > 0.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 11 / 18

Sorting
Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,

Strassen).

Sorting:

� Selection Sort

� Find smallest unsorted element, put it just after sorted elements. Repeat.

� Running time: Takes O(n) time to find smallest unsorted element, decreases remaining

unsorted by 1.�⇒ T(n) = T(n − 1) + cn

� Mergesort

� Split array into left and right halves. Recursively sort each half, then merge.

� Running time: Merging takes O(n) time. Two recursive calls on half the size.�⇒ T(n) = 2T(n�2) + cn
Also need base case. For algorithms, constant size input takes constant time.�⇒ T(n) ≤ c for all n ≤ n0, for some constants n0, c > 0.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 11 / 18

9
def of T

Sorting
Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,

Strassen).

Sorting:

� Selection Sort

� Find smallest unsorted element, put it just after sorted elements. Repeat.

� Running time: Takes O(n) time to find smallest unsorted element, decreases remaining

unsorted by 1.�⇒ T(n) = T(n − 1) + cn
� Mergesort

� Split array into left and right halves. Recursively sort each half, then merge.

� Running time: Merging takes O(n) time. Two recursive calls on half the size.�⇒ T(n) = 2T(n�2) + cn
Also need base case. For algorithms, constant size input takes constant time.�⇒ T(n) ≤ c for all n ≤ n0, for some constants n0, c > 0.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 11 / 18

Sorting
Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,

Strassen).

Sorting:

� Selection Sort

� Find smallest unsorted element, put it just after sorted elements. Repeat.

� Running time: Takes O(n) time to find smallest unsorted element, decreases remaining

unsorted by 1.�⇒ T(n) = T(n − 1) + cn
� Mergesort

� Split array into left and right halves. Recursively sort each half, then merge.

� Running time: Merging takes O(n) time. Two recursive calls on half the size.�⇒ T(n) = 2T(n�2) + cn
Also need base case. For algorithms, constant size input takes constant time.�⇒ T(n) ≤ c for all n ≤ n0, for some constants n0, c > 0.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 11 / 18

MIR A

ten

Sorting
Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,

Strassen).

Sorting:

� Selection Sort

� Find smallest unsorted element, put it just after sorted elements. Repeat.

� Running time: Takes O(n) time to find smallest unsorted element, decreases remaining

unsorted by 1.�⇒ T(n) = T(n − 1) + cn
� Mergesort

� Split array into left and right halves. Recursively sort each half, then merge.

� Running time: Merging takes O(n) time. Two recursive calls on half the size.�⇒ T(n) = 2T(n�2) + cn

Also need base case. For algorithms, constant size input takes constant time.�⇒ T(n) ≤ c for all n ≤ n0, for some constants n0, c > 0.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 11 / 18

Then sing
call

Sorting
Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,

Strassen).

Sorting:

� Selection Sort

� Find smallest unsorted element, put it just after sorted elements. Repeat.

� Running time: Takes O(n) time to find smallest unsorted element, decreases remaining

unsorted by 1.�⇒ T(n) = T(n − 1) + cn
� Mergesort

� Split array into left and right halves. Recursively sort each half, then merge.

� Running time: Merging takes O(n) time. Two recursive calls on half the size.�⇒ T(n) = 2T(n�2) + cn
Also need base case. For algorithms, constant size input takes constant time.�⇒ T(n) ≤ c for all n ≤ n0, for some constants n0, c > 0.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 11 / 18

Guess and Check

T(n) = 3T(n�3) + n T(1) = 1

Guess: T(n) ≤ cn.
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3cn�3 + n = (c + 1)n
Failure! Wanted T(n) ≤ cn, got T(n) ≤ (c + 1)n. Guess was wrong.
Better guess? What goes up by 1 when n goes up by a factor of 3? log3 n

Guess: T(n) ≤ n log3(3n)
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3(n�3) log3(n) + n = n log3(n) + n= n(log3(n) + log3 3) = n log3(3n).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 12 / 18

Guess and Check

T(n) = 3T(n�3) + n T(1) = 1
Guess: T(n) ≤ cn.

Check: assume true for n
′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3cn�3 + n = (c + 1)n
Failure! Wanted T(n) ≤ cn, got T(n) ≤ (c + 1)n. Guess was wrong.
Better guess? What goes up by 1 when n goes up by a factor of 3? log3 n

Guess: T(n) ≤ n log3(3n)
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3(n�3) log3(n) + n = n log3(n) + n= n(log3(n) + log3 3) = n log3(3n).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 12 / 18

Guess and Check

T(n) = 3T(n�3) + n T(1) = 1
Guess: T(n) ≤ cn.
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3cn�3 + n = (c + 1)n
Failure! Wanted T(n) ≤ cn, got T(n) ≤ (c + 1)n. Guess was wrong.
Better guess? What goes up by 1 when n goes up by a factor of 3? log3 n

Guess: T(n) ≤ n log3(3n)
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3(n�3) log3(n) + n = n log3(n) + n= n(log3(n) + log3 3) = n log3(3n).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 12 / 18

Guess and Check

T(n) = 3T(n�3) + n T(1) = 1
Guess: T(n) ≤ cn.
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3cn�3 + n = (c + 1)n

Failure! Wanted T(n) ≤ cn, got T(n) ≤ (c + 1)n. Guess was wrong.
Better guess? What goes up by 1 when n goes up by a factor of 3? log3 n

Guess: T(n) ≤ n log3(3n)
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3(n�3) log3(n) + n = n log3(n) + n= n(log3(n) + log3 3) = n log3(3n).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 12 / 18

T
def algebra

indiction TC's Ec
induction

Guess and Check

T(n) = 3T(n�3) + n T(1) = 1
Guess: T(n) ≤ cn.
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3cn�3 + n = (c + 1)n
Failure! Wanted T(n) ≤ cn, got T(n) ≤ (c + 1)n. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3? log3 n

Guess: T(n) ≤ n log3(3n)
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3(n�3) log3(n) + n = n log3(n) + n= n(log3(n) + log3 3) = n log3(3n).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 12 / 18

Guess and Check

T(n) = 3T(n�3) + n T(1) = 1
Guess: T(n) ≤ cn.
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3cn�3 + n = (c + 1)n
Failure! Wanted T(n) ≤ cn, got T(n) ≤ (c + 1)n. Guess was wrong.
Better guess? What goes up by 1 when n goes up by a factor of 3?

log3 n

Guess: T(n) ≤ n log3(3n)
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3(n�3) log3(n) + n = n log3(n) + n= n(log3(n) + log3 3) = n log3(3n).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 12 / 18

Guess and Check

T(n) = 3T(n�3) + n T(1) = 1
Guess: T(n) ≤ cn.
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3cn�3 + n = (c + 1)n
Failure! Wanted T(n) ≤ cn, got T(n) ≤ (c + 1)n. Guess was wrong.
Better guess? What goes up by 1 when n goes up by a factor of 3? log3 n

Guess: T(n) ≤ n log3(3n)
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3(n�3) log3(n) + n = n log3(n) + n= n(log3(n) + log3 3) = n log3(3n).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 12 / 18

Guess and Check

T(n) = 3T(n�3) + n T(1) = 1
Guess: T(n) ≤ cn.
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3cn�3 + n = (c + 1)n
Failure! Wanted T(n) ≤ cn, got T(n) ≤ (c + 1)n. Guess was wrong.
Better guess? What goes up by 1 when n goes up by a factor of 3? log3 n

Guess: T(n) ≤ n log3(3n)
Check: assume true for n

′ < n, prove true for n (induction).

T(n) = 3T(n�3) + n ≤ 3(n�3) log3(n) + n = n log3(n) + n= n(log3(n) + log3 3) = n log3(3n).
Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 12 / 18

def IH 3 T

Unrolling

Example: selection sort. T(n) = T(n − 1) + cn
Idea: “unroll” the recurrence.

T(n) = cn +T(n − 1)
= cn + c(n − 1) +T(n − 2)
= cn + c(n − 1) + c(n − 2) +T(n − 3)

⋮
= cn + c(n − 1) + c(n − 2) + ⋅ ⋅ ⋅ + c

n terms, each of which at most cn �⇒ T(n) ≤ cn2 = O(n2)
At least n�2 terms which are at least cn�2 �⇒ T(n) ≥ cn

2

4
= ⌦(n2)

�⇒ T(n) =⇥(n2).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 13 / 18

Unrolling

Example: selection sort. T(n) = T(n − 1) + cn
Idea: “unroll” the recurrence.

T(n) = cn +T(n − 1)

= cn + c(n − 1) +T(n − 2)
= cn + c(n − 1) + c(n − 2) +T(n − 3)

⋮
= cn + c(n − 1) + c(n − 2) + ⋅ ⋅ ⋅ + c

n terms, each of which at most cn �⇒ T(n) ≤ cn2 = O(n2)
At least n�2 terms which are at least cn�2 �⇒ T(n) ≥ cn

2

4
= ⌦(n2)

�⇒ T(n) =⇥(n2).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 13 / 18

Unrolling

Example: selection sort. T(n) = T(n − 1) + cn
Idea: “unroll” the recurrence.

T(n) = cn +T(n − 1)
= cn + c(n − 1) +T(n − 2)

= cn + c(n − 1) + c(n − 2) +T(n − 3)
⋮

= cn + c(n − 1) + c(n − 2) + ⋅ ⋅ ⋅ + c
n terms, each of which at most cn �⇒ T(n) ≤ cn2 = O(n2)
At least n�2 terms which are at least cn�2 �⇒ T(n) ≥ cn

2

4
= ⌦(n2)

�⇒ T(n) =⇥(n2).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 13 / 18

dot Et Cal

Unrolling

Example: selection sort. T(n) = T(n − 1) + cn
Idea: “unroll” the recurrence.

T(n) = cn +T(n − 1)
= cn + c(n − 1) +T(n − 2)
= cn + c(n − 1) + c(n − 2) +T(n − 3)

⋮
= cn + c(n − 1) + c(n − 2) + ⋅ ⋅ ⋅ + c

n terms, each of which at most cn �⇒ T(n) ≤ cn2 = O(n2)
At least n�2 terms which are at least cn�2 �⇒ T(n) ≥ cn

2

4
= ⌦(n2)

�⇒ T(n) =⇥(n2).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 13 / 18

Unrolling

Example: selection sort. T(n) = T(n − 1) + cn
Idea: “unroll” the recurrence.

T(n) = cn +T(n − 1)
= cn + c(n − 1) +T(n − 2)
= cn + c(n − 1) + c(n − 2) +T(n − 3)

⋮

= cn + c(n − 1) + c(n − 2) + ⋅ ⋅ ⋅ + c
n terms, each of which at most cn �⇒ T(n) ≤ cn2 = O(n2)
At least n�2 terms which are at least cn�2 �⇒ T(n) ≥ cn

2

4
= ⌦(n2)

�⇒ T(n) =⇥(n2).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 13 / 18

Unrolling

Example: selection sort. T(n) = T(n − 1) + cn
Idea: “unroll” the recurrence.

T(n) = cn +T(n − 1)
= cn + c(n − 1) +T(n − 2)
= cn + c(n − 1) + c(n − 2) +T(n − 3)

⋮
= cn + c(n − 1) + c(n − 2) + ⋅ ⋅ ⋅ + c

n terms, each of which at most cn �⇒ T(n) ≤ cn2 = O(n2)
At least n�2 terms which are at least cn�2 �⇒ T(n) ≥ cn

2

4
= ⌦(n2)

�⇒ T(n) =⇥(n2).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 13 / 18

Unrolling

Example: selection sort. T(n) = T(n − 1) + cn
Idea: “unroll” the recurrence.

T(n) = cn +T(n − 1)
= cn + c(n − 1) +T(n − 2)
= cn + c(n − 1) + c(n − 2) +T(n − 3)

⋮
= cn + c(n − 1) + c(n − 2) + ⋅ ⋅ ⋅ + c

n terms, each of which at most cn �⇒ T(n) ≤ cn2 = O(n2)

At least n�2 terms which are at least cn�2 �⇒ T(n) ≥ cn
2

4
= ⌦(n2)

�⇒ T(n) =⇥(n2).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 13 / 18

Unrolling

Example: selection sort. T(n) = T(n − 1) + cn
Idea: “unroll” the recurrence.

T(n) = cn +T(n − 1)
= cn + c(n − 1) +T(n − 2)
= cn + c(n − 1) + c(n − 2) +T(n − 3)

⋮
= cn + c(n − 1) + c(n − 2) + ⋅ ⋅ ⋅ + c

n terms, each of which at most cn �⇒ T(n) ≤ cn2 = O(n2)
At least n�2 terms which are at least cn�2 �⇒ T(n) ≥ cn

2

4
= ⌦(n2)

�⇒ T(n) =⇥(n2).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 13 / 18

Unrolling

Example: selection sort. T(n) = T(n − 1) + cn
Idea: “unroll” the recurrence.

T(n) = cn +T(n − 1)
= cn + c(n − 1) +T(n − 2)
= cn + c(n − 1) + c(n − 2) +T(n − 3)

⋮
= cn + c(n − 1) + c(n − 2) + ⋅ ⋅ ⋅ + c

n terms, each of which at most cn �⇒ T(n) ≤ cn2 = O(n2)
At least n�2 terms which are at least cn�2 �⇒ T(n) ≥ cn

2

4
= ⌦(n2)

�⇒ T(n) =⇥(n2).
Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 13 / 18

Cat Cu 1 c a 2 t

Yet letLex C

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: T(n) = 2T(n�2) + cn.

levels: log2 n

Contribution of level i: 2
i−1

cn�2i−1 = cn
�⇒ T(n) =⇥(n log n)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 14 / 18

IF
DE DE
DI ID TIRED

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: T(n) = 2T(n�2) + cn.
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8

⋮

levels: log2 n

Contribution of level i: 2
i−1

cn�2i−1 = cn
�⇒ T(n) =⇥(n log n)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 14 / 18

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: T(n) = 2T(n�2) + cn.
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8

⋮

levels:

log2 n

Contribution of level i: 2
i−1

cn�2i−1 = cn
�⇒ T(n) =⇥(n log n)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 14 / 18

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: T(n) = 2T(n�2) + cn.
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8

⋮

levels: log2 n

Contribution of level i: 2
i−1

cn�2i−1 = cn
�⇒ T(n) =⇥(n log n)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 14 / 18

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: T(n) = 2T(n�2) + cn.
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8

⋮

levels: log2 n

Contribution of level i:

2
i−1

cn�2i−1 = cn
�⇒ T(n) =⇥(n log n)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 14 / 18

ca

ch

ca

ca

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: T(n) = 2T(n�2) + cn.
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8

⋮

levels: log2 n

Contribution of level i: 2
i−1

cn�2i−1 = cn

�⇒ T(n) =⇥(n log n)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 14 / 18

level 0

I

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: T(n) = 2T(n�2) + cn.
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8

⋮

levels: log2 n

Contribution of level i: 2
i−1

cn�2i−1 = cn
�⇒ T(n) =⇥(n log n)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 14 / 18

Recursion Tree: Strassen

T(n) = 7T(n�2) + cn2

Level i: 7
i−1

c(n�2i−1)2 = (7�4)i−1cn2

Total:

T(n) = log n+1�
i=1
�7
4
�i−1 cn2 = cn2 log n+1�

i=1
�7
4
�i−1

�⇒ T(n) = O(n2(7�4)log n) = O(n2nlog(7�4)) = O(n2nlog 7−2)
= O(nlog 7)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 15 / 18

Recursion Tree: Strassen

T(n) = 7T(n�2) + cn2
cn2

c(n/2)2 c(n/2)2

⋮

c(n/2)2 c(n/2)2 c(n/2)2 c(n/2)2 c(n/2)2

c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2

Level i: 7
i−1

c(n�2i−1)2 = (7�4)i−1cn2

Total:

T(n) = log n+1�
i=1
�7
4
�i−1 cn2 = cn2 log n+1�

i=1
�7
4
�i−1

�⇒ T(n) = O(n2(7�4)log n) = O(n2nlog(7�4)) = O(n2nlog 7−2)
= O(nlog 7)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 15 / 18

Recursion Tree: Strassen

T(n) = 7T(n�2) + cn2
cn2

c(n/2)2 c(n/2)2

⋮

c(n/2)2 c(n/2)2 c(n/2)2 c(n/2)2 c(n/2)2

c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2

Level i: 7
i−1

c(n�2i−1)2 = (7�4)i−1cn2

Total:

T(n) = log n+1�
i=1
�7
4
�i−1 cn2 = cn2 log n+1�

i=1
�7
4
�i−1

�⇒ T(n) = O(n2(7�4)log n) = O(n2nlog(7�4)) = O(n2nlog 7−2)
= O(nlog 7)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 15 / 18

e e l I

2

3

Recursion Tree: Strassen

T(n) = 7T(n�2) + cn2
cn2

c(n/2)2 c(n/2)2

⋮

c(n/2)2 c(n/2)2 c(n/2)2 c(n/2)2 c(n/2)2

c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2

Level i: 7
i−1

c(n�2i−1)2 = (7�4)i−1cn2

Total:

T(n) = log n+1�
i=1
�7
4
�i−1 cn2 = cn2 log n+1�

i=1
�7
4
�i−1

�⇒ T(n) = O(n2(7�4)log n) = O(n2nlog(7�4)) = O(n2nlog 7−2)
= O(nlog 7)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 15 / 18

Recursion Tree: Strassen

T(n) = 7T(n�2) + cn2
cn2

c(n/2)2 c(n/2)2

⋮

c(n/2)2 c(n/2)2 c(n/2)2 c(n/2)2 c(n/2)2

c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2

Level i: 7
i−1

c(n�2i−1)2 = (7�4)i−1cn2

Total:

T(n) = log n+1�
i=1
�7
4
�i−1 cn2 = cn2 log n+1�

i=1
�7
4
�i−1

�⇒ T(n) = O(n2(7�4)log n) = O(n2nlog(7�4)) = O(n2nlog 7−2)
= O(nlog 7)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 15 / 18

Master Theorem

T(n) = aT(n�b) + cnk T(1) = c
a,b, c,k constants with a ≥ 1, b > 1, c > 0, and k ≥ 0

levels: logb n + 1
Level i: a

i−1
c(n�bi−1)k = cnk(a�bk)i−1

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 16 / 18

Master Theorem

T(n) = aT(n�b) + cnk T(1) = c
a,b, c,k constants with a ≥ 1, b > 1, c > 0, and k ≥ 0

cnk

c(n/b)k

⋮

c(n/b)k c(n/b)k

c(n/b2)k c(n/b2)k c(n/b2)k

a

levels: logb n + 1
Level i: a

i−1
c(n�bi−1)k = cnk(a�bk)i−1

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 16 / 18

Master Theorem

T(n) = aT(n�b) + cnk T(1) = c
a,b, c,k constants with a ≥ 1, b > 1, c > 0, and k ≥ 0

cnk

c(n/b)k

⋮

c(n/b)k c(n/b)k

c(n/b2)k c(n/b2)k c(n/b2)k

a

levels: logb n + 1

Level i: a
i−1

c(n�bi−1)k = cnk(a�bk)i−1

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 16 / 18

Master Theorem

T(n) = aT(n�b) + cnk T(1) = c
a,b, c,k constants with a ≥ 1, b > 1, c > 0, and k ≥ 0

cnk

c(n/b)k

⋮

c(n/b)k c(n/b)k

c(n/b2)k c(n/b2)k c(n/b2)k

a

levels: logb n + 1
Level i: a

i−1
c(n�bi−1)k = cnk(a�bk)i−1

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 16 / 18

Master Theorem II
Let ↵ = (a�bk)�⇒ T(n) = cnk∑logb n+1

i=1 (a�bk)i−1 = cnk∑logb n+1
i=1 ↵i−1

� Case 1: ↵ = 1. All levels the same. T(n) = cnk∑logb n+1
i=1 1 =⇥(nk log n)

� Case 2: ↵ < 1. Dominated by top level.

�⇒ ∑logb n+1
i=1 ↵i−1 ≤ ∑∞

i=1↵i−1 = 1

1−↵ .�⇒ T(n) = O(nk)
T(n) ≥ cnk �⇒ T(n) = ⌦(nk) �⇒ T(n) =⇥(nk)

� Case 3: ↵ > 1. Dominated by bottom level

�⇒ logb n+1�
i=1

↵i−1 = ↵logb n

logb n+1�
i=1

� 1
↵
�i−1 ≤ ↵logb n

1

1 − (1�↵)
= O(↵logb n)

�⇒ T(n) =⇥(nk↵logb n) =⇥(nk(a�bk)logb n) =⇥(alogb n)
=⇥(nlogb a)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 17 / 18

Master Theorem II
Let ↵ = (a�bk)�⇒ T(n) = cnk∑logb n+1

i=1 (a�bk)i−1 = cnk∑logb n+1
i=1 ↵i−1

� Case 1: ↵ = 1. All levels the same. T(n) = cnk∑logb n+1
i=1 1 =⇥(nk log n)

� Case 2: ↵ < 1. Dominated by top level.

�⇒ ∑logb n+1
i=1 ↵i−1 ≤ ∑∞

i=1↵i−1 = 1

1−↵ .�⇒ T(n) = O(nk)
T(n) ≥ cnk �⇒ T(n) = ⌦(nk) �⇒ T(n) =⇥(nk)

� Case 3: ↵ > 1. Dominated by bottom level

�⇒ logb n+1�
i=1

↵i−1 = ↵logb n

logb n+1�
i=1

� 1
↵
�i−1 ≤ ↵logb n

1

1 − (1�↵)
= O(↵logb n)

�⇒ T(n) =⇥(nk↵logb n) =⇥(nk(a�bk)logb n) =⇥(alogb n)
=⇥(nlogb a)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 17 / 18

Master Theorem II
Let ↵ = (a�bk)�⇒ T(n) = cnk∑logb n+1

i=1 (a�bk)i−1 = cnk∑logb n+1
i=1 ↵i−1

� Case 1: ↵ = 1. All levels the same. T(n) = cnk∑logb n+1
i=1 1 =⇥(nk log n)

� Case 2: ↵ < 1. Dominated by top level.

�⇒ ∑logb n+1
i=1 ↵i−1 ≤ ∑∞

i=1↵i−1 = 1

1−↵ .�⇒ T(n) = O(nk)
T(n) ≥ cnk �⇒ T(n) = ⌦(nk) �⇒ T(n) =⇥(nk)

� Case 3: ↵ > 1. Dominated by bottom level

�⇒ logb n+1�
i=1

↵i−1 = ↵logb n

logb n+1�
i=1

� 1
↵
�i−1 ≤ ↵logb n

1

1 − (1�↵)
= O(↵logb n)

�⇒ T(n) =⇥(nk↵logb n) =⇥(nk(a�bk)logb n) =⇥(alogb n)
=⇥(nlogb a)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 17 / 18

Master Theorem II
Let ↵ = (a�bk)�⇒ T(n) = cnk∑logb n+1

i=1 (a�bk)i−1 = cnk∑logb n+1
i=1 ↵i−1

� Case 1: ↵ = 1. All levels the same. T(n) = cnk∑logb n+1
i=1 1 =⇥(nk log n)

� Case 2: ↵ < 1. Dominated by top level.

�⇒ ∑logb n+1
i=1 ↵i−1 ≤ ∑∞

i=1↵i−1 = 1

1−↵ .�⇒ T(n) = O(nk)

T(n) ≥ cnk �⇒ T(n) = ⌦(nk) �⇒ T(n) =⇥(nk)
� Case 3: ↵ > 1. Dominated by bottom level

�⇒ logb n+1�
i=1

↵i−1 = ↵logb n

logb n+1�
i=1

� 1
↵
�i−1 ≤ ↵logb n

1

1 − (1�↵)
= O(↵logb n)

�⇒ T(n) =⇥(nk↵logb n) =⇥(nk(a�bk)logb n) =⇥(alogb n)
=⇥(nlogb a)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 17 / 18

Master Theorem II
Let ↵ = (a�bk)�⇒ T(n) = cnk∑logb n+1

i=1 (a�bk)i−1 = cnk∑logb n+1
i=1 ↵i−1

� Case 1: ↵ = 1. All levels the same. T(n) = cnk∑logb n+1
i=1 1 =⇥(nk log n)

� Case 2: ↵ < 1. Dominated by top level.

�⇒ ∑logb n+1
i=1 ↵i−1 ≤ ∑∞

i=1↵i−1 = 1

1−↵ .�⇒ T(n) = O(nk)
T(n) ≥ cnk �⇒ T(n) = ⌦(nk)

�⇒ T(n) =⇥(nk)
� Case 3: ↵ > 1. Dominated by bottom level

�⇒ logb n+1�
i=1

↵i−1 = ↵logb n

logb n+1�
i=1

� 1
↵
�i−1 ≤ ↵logb n

1

1 − (1�↵)
= O(↵logb n)

�⇒ T(n) =⇥(nk↵logb n) =⇥(nk(a�bk)logb n) =⇥(alogb n)
=⇥(nlogb a)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 17 / 18

Master Theorem II
Let ↵ = (a�bk)�⇒ T(n) = cnk∑logb n+1

i=1 (a�bk)i−1 = cnk∑logb n+1
i=1 ↵i−1

� Case 1: ↵ = 1. All levels the same. T(n) = cnk∑logb n+1
i=1 1 =⇥(nk log n)

� Case 2: ↵ < 1. Dominated by top level.

�⇒ ∑logb n+1
i=1 ↵i−1 ≤ ∑∞

i=1↵i−1 = 1

1−↵ .�⇒ T(n) = O(nk)
T(n) ≥ cnk �⇒ T(n) = ⌦(nk) �⇒ T(n) =⇥(nk)

� Case 3: ↵ > 1. Dominated by bottom level

�⇒ logb n+1�
i=1

↵i−1 = ↵logb n

logb n+1�
i=1

� 1
↵
�i−1 ≤ ↵logb n

1

1 − (1�↵)
= O(↵logb n)

�⇒ T(n) =⇥(nk↵logb n) =⇥(nk(a�bk)logb n) =⇥(alogb n)
=⇥(nlogb a)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 17 / 18

Master Theorem II
Let ↵ = (a�bk)�⇒ T(n) = cnk∑logb n+1

i=1 (a�bk)i−1 = cnk∑logb n+1
i=1 ↵i−1

� Case 1: ↵ = 1. All levels the same. T(n) = cnk∑logb n+1
i=1 1 =⇥(nk log n)

� Case 2: ↵ < 1. Dominated by top level.

�⇒ ∑logb n+1
i=1 ↵i−1 ≤ ∑∞

i=1↵i−1 = 1

1−↵ .�⇒ T(n) = O(nk)
T(n) ≥ cnk �⇒ T(n) = ⌦(nk) �⇒ T(n) =⇥(nk)

� Case 3: ↵ > 1. Dominated by bottom level

�⇒ logb n+1�
i=1

↵i−1 = ↵logb n

logb n+1�
i=1

� 1
↵
�i−1 ≤ ↵logb n

1

1 − (1�↵)
= O(↵logb n)

�⇒ T(n) =⇥(nk↵logb n) =⇥(nk(a�bk)logb n) =⇥(alogb n)
=⇥(nlogb a)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 17 / 18

Master Theorem II
Let ↵ = (a�bk)�⇒ T(n) = cnk∑logb n+1

i=1 (a�bk)i−1 = cnk∑logb n+1
i=1 ↵i−1

� Case 1: ↵ = 1. All levels the same. T(n) = cnk∑logb n+1
i=1 1 =⇥(nk log n)

� Case 2: ↵ < 1. Dominated by top level.

�⇒ ∑logb n+1
i=1 ↵i−1 ≤ ∑∞

i=1↵i−1 = 1

1−↵ .�⇒ T(n) = O(nk)
T(n) ≥ cnk �⇒ T(n) = ⌦(nk) �⇒ T(n) =⇥(nk)

� Case 3: ↵ > 1. Dominated by bottom level

�⇒ logb n+1�
i=1

↵i−1 = ↵logb n

logb n+1�
i=1

� 1
↵
�i−1 ≤ ↵logb n

1

1 − (1�↵)
= O(↵logb n)

�⇒ T(n) =⇥(nk↵logb n) =⇥(nk(a�bk)logb n) =⇥(alogb n)
=⇥(nlogb a)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 17 / 18

Master Theorem II
Let ↵ = (a�bk)�⇒ T(n) = cnk∑logb n+1

i=1 (a�bk)i−1 = cnk∑logb n+1
i=1 ↵i−1

� Case 1: ↵ = 1. All levels the same. T(n) = cnk∑logb n+1
i=1 1 =⇥(nk log n)

� Case 2: ↵ < 1. Dominated by top level.

�⇒ ∑logb n+1
i=1 ↵i−1 ≤ ∑∞

i=1↵i−1 = 1

1−↵ .�⇒ T(n) = O(nk)
T(n) ≥ cnk �⇒ T(n) = ⌦(nk) �⇒ T(n) =⇥(nk)

� Case 3: ↵ > 1. Dominated by bottom level

�⇒ logb n+1�
i=1

↵i−1 = ↵logb n

logb n+1�
i=1

� 1
↵
�i−1 ≤ ↵logb n

1

1 − (1�↵)
= O(↵logb n)

�⇒ T(n) =⇥(nk↵logb n) =⇥(nk(a�bk)logb n) =⇥(alogb n)
=⇥(nlogb a)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 17 / 18

Master Theorem III

Theorem (“Master Theorem”)

The recurrence

T(n) = aT(n�b) + cnk T(1) = c
where a,b, c, and k are constants with a ≥ 1, b > 1, c > 0, and k ≥ 0, is equal to

T(n) =⇥(nk) if a < bk,
T(n) =⇥(nk log n) if a = bk,
T(n) =⇥(nlogb a) if a > bk.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences September 2, 2021 18 / 18

