Lecture 2: Asymptotic Analysis, Recurrences

Michael Dinitz

September 2, 2021
601.433/633 Introduction to Algorithms
Level of Formality:

- Part of mathematical maturity is knowing when to be formal, when not necessary
- Rule of thumb: Be formal for important parts
 - Problem 1 is *about* asymptotic notation. Be formal!
 - Problem 2 is *about* recurrences. Can be a little less formal with asymptotic notation.

Lectures:

- I tend to go fast, not be super formal. But I expect you to be formal in homeworks (unless stated otherwise)

Handwriting:

- I have bad handwriting. If something’s not clear, ask!
Today

Should be review, some might be new.
See math background in CLRS

Asymptotics: $O(\cdot)$, $\Omega(\cdot)$, and $\Theta(\cdot)$ notation.
 ▷ Should know from Data Structures. We’ll be a bit more formal.
 ▷ Intuitively: hide constants and lower order terms, since we only care what happen “at scale” (asymptotically)

Recurrences: How to solve recurrence relations.
 ▷ Should know from Discrete Math.
Asymptotic Notation
Definition

\(g(n) \in O(f(n)) \) if there exist constants \(c, n_0 > 0 \) such that \(g(n) \leq c \cdot f(n) \) for all \(n > n_0 \).
Definition

\(g(n) \in O(f(n)) \) if there exist constants \(c, n_0 > 0 \) such that \(g(n) \leq c \cdot f(n) \) for all \(n > n_0 \).

Technically \(O(f(n)) \) is a set.

Abuse notation: "\(g(n) \) is \(O(f(n)) \)" or \(g(n) = O(f(n)) \).
O(·)

Definition

\[g(n) \in O(f(n)) \text{ if there exist constants } c, n_0 > 0 \text{ such that } g(n) \leq c \cdot f(n) \text{ for all } n > n_0. \]

Technically \(O(f(n)) \) is a set.

Abuse notation: “\(g(n) \) is \(O(f(n)) \)” or \(g(n) = O(f(n)) \).

Examples:

- \(2n^2 + 27 = O(n^2) \): set \(n_0 = 6 \) and \(c = 3 \)
- \(2n^2 + 27 = O(n^3) \): same values, or \(n_0 = 4 \) and \(c = 1 \)
- \(n^3 + 2000n^2 + 2000n = O(n^3) \): set \(n_0 = 10000 \) and \(c = 2 \)
Definition

\(g(n) \in O(f(n))\) if there exist constants \(c, n_0 > 0\) such that \(g(n) \leq c \cdot f(n)\) for all \(n > n_0\).

Technically \(O(f(n))\) is a set.
Abuse notation: “\(g(n)\) is \(O(f(n))\)” or \(g(n) = O(f(n))\).

Examples:

- \(2n^2 + 27 = O(n^2)\): set \(n_0 = 6\) and \(c = 3\)
- \(2n^2 + 27 = O(n^3)\): same values, or \(n_0 = 4\) and \(c = 1\)
- \(n^3 + 2000n^2 + 2000n = O(n^3)\): set \(n_0 = 10000\) and \(c = 2\)

About functions not algorithms!
Expresses an upper bound.
Example

Definition

\(g(n) \in O(f(n)) \) if there exist constants \(c, n_0 > 0 \) such that \(g(n) \leq c \cdot f(n) \) for all \(n > n_0 \).

Theorem

\[2n^2 + 27 = O(n^2) \]
Example

Definition

\[g(n) \in O(f(n)) \text{ if there exist constants } c, n_0 > 0 \text{ such that } g(n) \leq c \cdot f(n) \text{ for all } n > n_0. \]

Theorem

\[2n^2 + 27 = O(n^2) \]

Proof.

Set \(c = 3 \). Suppose \(2n^2 + 27 > cn^2 = 3n^2 \)
Example

Definition

\[g(n) \in O(f(n)) \] if there exist constants \(c, n_0 > 0 \) such that \(g(n) \leq c \cdot f(n) \) for all \(n > n_0 \).

Theorem

\[2n^2 + 27 = O(n^2) \]

Proof.

Set \(c = 3 \). Suppose \(2n^2 + 27 > cn^2 = 3n^2 \)

\[\implies n^2 < 27 \]
Example

Definition

\[g(n) \in O(f(n)) \text{ if there exist constants } c, n_0 > 0 \text{ such that } g(n) \leq c \cdot f(n) \text{ for all } n > n_0. \]

Theorem

\[2n^2 + 27 = O(n^2) \]

Proof.

Set \(c = 3 \). Suppose \(2n^2 + 27 > cn^2 = 3n^2 \)

\[\implies n^2 < 27 \implies n < 6 \]
Example

Definition

\(g(n) \in O(f(n)) \) if there exist constants \(c, n_0 > 0 \) such that \(g(n) \leq c \cdot f(n) \) for all \(n > n_0 \).

Theorem

\(2n^2 + 27 = O(n^2) \)

Proof.

Set \(c = 3 \). Suppose \(2n^2 + 27 > cn^2 = 3n^2 \)

\(\implies n^2 < 27 \implies n < 6 \)

\(\implies 2n^2 + 27 \leq 3n^2 \) for all \(n \geq 6 \).
Definition

\(g(n) \in O(f(n)) \) if there exist constants \(c, n_0 > 0 \) such that \(g(n) \leq c \cdot f(n) \) for all \(n > n_0 \).

Theorem

\[2n^2 + 27 = O(n^2) \]

Proof.

Set \(c = 3 \). Suppose \(2n^2 + 27 > cn^2 = 3n^2 \)

\[\implies n^2 < 27 \implies n < 6 \]

\[\implies 2n^2 + 27 \leq 3n^2 \text{ for all } n \geq 6. \]

Set \(n_0 = 6 \). Then \(2n^2 + 27 \leq cn^2 \) for all \(n > n_0 \).
Example

Definition

\[g(n) \in O(f(n)) \] if there exist constants \(c, n_0 > 0 \) such that \[g(n) \leq c \cdot f(n) \] for all \(n > n_0 \).

Theorem

\[2n^2 + 27 = O(n^2) \]

Proof.

Set \(c = 3 \). Suppose \(2n^2 + 27 > cn^2 = 3n^2 \)

\[\implies n^2 < 27 \implies n < 6 \]

\[\implies 2n^2 + 27 \leq 3n^2 \] for all \(n \geq 6 \).

Set \(n_0 = 6 \). Then \(2n^2 + 27 \leq cn^2 \) for all \(n > n_0 \).

Many other ways to prove this!
Counterpart to $O(\cdot)$: lower bound rather than upper bound.

Definition

$g(n) \in \Omega(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \geq c \cdot f(n)$ for all $n > n_0$.

Examples:
- $2n^2 + 27 = \Omega(n^2)$: set $n_0 = 1$ and $c = 1$
- $100n^3 - 1000n^2 = \Omega(n^3)$: set $n_0 = 1000000$ and $c = 1$
Counterpart to $O(\cdot)$: lower bound rather than upper bound.

Definition

$g(n) \in \Omega(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \geq c \cdot f(n)$ for all $n > n_0$.

Examples:

- $2n^2 + 27 = \Omega(n^2)$: set $n_0 = 1$ and $c = 1$
- $2n^2 + 27 = \Omega(n)$: set $n_0 = 1$ and $c = 1$
- $\frac{1}{100}n^3 - 1000n^2 = \Omega(n^3)$: set $n_0 = 1000000$ and $c = 1/1000$
$\Theta(\cdot)$

Combination of $O(\cdot)$ and $\Omega(\cdot)$.

Definition

$g(n) \in \Theta(f(n))$ if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$.

Note: constants n_0, c can be different in the proofs for $O(f(n))$ and $\Omega(f(n))$.
\(\Theta(\cdot) \)

Combination of \(\mathcal{O}(\cdot) \) and \(\Omega(\cdot) \).

Definition

\[g(n) \in \Theta(f(n)) \text{ if } g(n) \in \mathcal{O}(f(n)) \text{ and } g(n) \in \Omega(f(n)). \]

Note: constants \(n_0, c \) can be different in the proofs for \(\mathcal{O}(f(n)) \) and \(\Omega(f(n)) \).

Equivalent:

Definition

\[g(n) \in \Theta(f(n)) \text{ if there are constants } c_1, c_2, n_0 > 0 \text{ such that } c_1 f(n) \leq g(n) \leq c_2 f(n) \text{ for all } n > n_0. \]

Both lower bound and upper bound, so asymptotic equality.
Little notation

Strict versions of O and Ω:

Definition

\[g(n) \in o(f(n)) \text{ if for every constant } c > 0 \text{ there exists a constant } n_0 > 0 \text{ such that } g(n) < c \cdot f(n) \text{ for all } n > n_0. \]

Definition

\[g(n) \in \omega(f(n)) \text{ if for every constant } c > 0 \text{ there exists a constant } n_0 > 0 \text{ such that } g(n) > c \cdot f(n) \text{ for all } n > n_0. \]

Examples:

- \[2n^2 + 27 = o(n^2 \log n) \]
- \[2n^2 + 27 = \omega(n) \]
- \[2n^2 \not\in o(n^2) \quad 2n^4 + 27 = O(n^4 \log n) \]
Recurrence Relations
Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Selection Sort
- Find smallest unsorted element, put it just after sorted elements. Repeat.
- Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.

$T(n) = T(n-1) + cn$

Mergesort
- Split array into left and right halves. Recursively sort each half, then merge.
- Running time: Merging takes $O(n)$ time. Two recursive calls on half the size.

$T(n) = 2T(n/2) + cn$

Also need base case. For algorithms, constant size input takes constant time.

$T(n) \leq cn_0$ for all $n \leq n_0$, for some constants $n_0, c > 0$.

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- Selection Sort

- Mergesort

Also need base case. For algorithms, constant size input takes constant time.
Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:
 - Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Mergesort
 - Split array into left and right halves. Recursively sort each half, then merge.
 - Running time: Merging takes $O(n)$ time. Two recursive calls on half the size.
 - $T(n) = 2T(n/2) + cn$
Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.

$$T(n) = T(n - 1) + cn$$

- Mergesort
 - Split array into left and right halves. Recursively sort each half, then merge.
 - Running time: Merging takes $O(n)$ time. Two recursive calls on half the size.

Also need base case. For algorithms, constant size input takes constant time.

$$T(n) \leq c$$ for all $n \leq n_0$, for some constants $n_0, c > 0$.
Sorting
Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:
- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.
 $\implies T(n) = T(n - 1) + cn$
- Mergesort
Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- **Selection Sort**
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.
 $\implies T(n) = T(n-1) + cn$
- **Mergesort**
 - Split array into left and right halves. Recursively sort each half, then merge.
Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Selection Sort
- Find smallest unsorted element, put it just after sorted elements. Repeat.
- Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.
 $$T(n) = T(n-1) + cn$$

Mergesort
- Split array into left and right halves. Recursively sort each half, then merge.
- Running time: Merging takes $O(n)$ time. Two recursive calls on half the size.
 $$T(n) = 2T(n/2) + cn$$
Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- **Selection Sort**
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.
 \[T(n) = T(n-1) + cn \]

- **Mergesort**
 - Split array into left and right halves. Recursively sort each half, then merge.
 - Running time: Merging takes $O(n)$ time. Two recursive calls on half the size.
 \[T(n) = 2T(n/2) + cn \]

Also need base case. For algorithms, constant size input takes constant time.

\[T(n) \leq c \text{ for all } n \leq n_0, \text{ for some constants } n_0, c > 0. \]
Guess and Check

\[T(n) = 3T\left(\frac{n}{3}\right) + n \quad \text{and} \quad T(1) = 1 \]
Guess and Check

\[T(n) = 3T(n/3) + n \]

Guess: \(T(n) \leq cn. \)

Check: assume true for \(n' < n \), prove true for \(n \) (induction).

\[T(n) = 3T(n/3) + n \leq 3c(n/3) + n \]

Failure! Wanted \(T(n) \leq cn \), got \(T(n) \leq (c+1)n \). Guess was wrong.

Better guess? What goes up by 1 when \(n \) goes up by a factor of 3?

\[\log_3 n \]

Guess: \(T(n) \leq n \log_3 (3n) \)

Check: assume true for \(n' < n \), prove true for \(n \) (induction).

\[T(n) = 3T(n/3) + n \leq 3(n/3) \log_3 (n/3) + n \]

\[= n \log_3 (n) + n = n \left(\log_3 n + \log_3 3 \right) = n \log_3 (3n) \].
Guess and Check

\[T(n) = 3T(n/3) + n \quad \quad \quad \quad \quad \quad \quad T(1) = 1 \]

Guess: \(T(n) \leq cn \).

Check: assume true for \(n' < n \), prove true for \(n \) (induction).
Guess and Check

\[T(n) = 3T(n/3) + n \quad \text{for } n \geq 1 \]

Guess: \(T(n) \leq cn. \)

Check: assume true for \(n' < n, \) prove true for \(n \) (induction).

\[T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c + 1)n \]

\[\text{def} \quad \text{induction} \quad \text{algebra} \]

\[\text{induction: } T(n/3) \leq c \cdot \frac{n}{3} \]
Guess and Check

\[T(n) = 3T(n/3) + n \quad \text{and} \quad T(1) = 1 \]

Guess: \(T(n) \leq cn. \)

Check: Assume true for \(n' < n \), prove true for \(n \) (induction).

\[
T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c + 1)n
\]

Failure! Wanted \(T(n) \leq cn \), got \(T(n) \leq (c + 1)n \). Guess was wrong.
Guess and Check

\[T(n) = 3T(n/3) + n \quad \quad \quad \quad \quad \quad \quad T(1) = 1 \]

Guess: \(T(n) \leq cn \).

Check: assume true for \(n' < n \), prove true for \(n \) (induction).

\[T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c + 1)n \]

Failure! Wanted \(T(n) \leq cn \), got \(T(n) \leq (c + 1)n \). Guess was wrong.

Better guess? What goes up by 1 when \(n \) goes up by a factor of 3?
Guess and Check

\[T(n) = 3T(n/3) + n \quad T(1) = 1 \]

Guess: \(T(n) \leq cn \).

Check: assume true for \(n' < n \), prove true for \(n \) (induction).

\[T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c + 1)n \]

Failure! Wanted \(T(n) \leq cn \), got \(T(n) \leq (c + 1)n \). Guess was wrong.

Better guess? What goes up by 1 when \(n \) goes up by a factor of 3? \(\log_3 n \)
Guess and Check

\[T(n) = 3T(n/3) + n \]

Guess: \(T(n) \leq cn. \)

Check: assume true for \(n' < n \), prove true for \(n \) (induction).

\[T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c + 1)n \]

Failure! Wanted \(T(n) \leq cn \), got \(T(n) \leq (c + 1)n \). Guess was wrong.

Better guess? What goes up by 1 when \(n \) goes up by a factor of 3? \(\log_3 n \)

Guess: \(T(n) \leq n \log_3(3n) \)

Check: assume true for \(n' < n \), prove true for \(n \) (induction).

\[T(n) = 3T(n/3) + n \leq 3(n/3) \log_3(n) + n = n \log_3(n) + n \]
\[= n(\log_3(n) + \log_3 3) = n \log_3(3n). \]
Unrolling

Example: selection sort. \(T(n) = T(n - 1) + cn \)
Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1) + c(n - 1) + T(n - 2) + c(n - 2) + \cdots + c(n - \text{terms}) + \cdots + c(n - 2) + c(n - 1) + T(0)
\]

\[
\leq cn + c(n - 1) + c(n - 2) + \cdots + c(n - \text{terms}) + \cdots + c(n - 2) + c(n - 1) + c(0)
\]

At least \(n^2 \) terms which are at least \(cn^2 \)

\[
T(n) \leq cn^2 + c(n - 1) + c(n - 2) + \cdots + c(n - \text{terms}) + \cdots + c(n - 2) + c(n - 1) + c(0)
\]

\[
\geq c \cdot n^2 + 0 + 0 + \cdots + 0 + 0 = c \cdot n^2
\]

\[
T(n) = \Theta(n^2)
\]
Unrolling

Example: selection sort. \(T(n) = T(n - 1) + cn \)

Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1)
\]
Unrolling

Example: selection sort. \(T(n) = T(n - 1) + cn \)

Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1) \\
= cn + c(n - 1) + T(n - 2) \\
\vdots \\
= cn + c(n - 1) + c(n - 2) + \cdots + cn \text{ terms, each of which at most } cn
\]

\[
T(n) \leq cn^2 = O(n^2)
\]

At least \(n^2 \) terms which are at least \(cn^2 \) \(\Rightarrow \)

\[
T(n) \geq c n^2 4 = \Omega(n^2)
\]

\(\Rightarrow \)

\[
T(n) = \Theta(n^2)
\]
Unrolling

Example: selection sort. \(T(n) = T(n - 1) + cn \)

Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1)
= cn + c(n - 1) + T(n - 2)
= cn + c(n - 1) + c(n - 2) + T(n - 3)
\]

\[\vdots\]

At least \(n^2 \) terms which are at least \(cn^2 \)
\[\Rightarrow T(n) \geq c n^2 = \Theta(n^2)\]
Unrolling

Example: selection sort. $T(n) = T(n - 1) + cn$

Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1)
\]
\[
= cn + c(n - 1) + T(n - 2)
\]
\[
= cn + c(n - 1) + c(n - 2) + T(n - 3)
\]
\[\vdots\]
Unrolling

Example: selection sort. \(T(n) = T(n - 1) + cn \)

Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1) \\
= cn + c(n - 1) + T(n - 2) \\
= cn + c(n - 1) + c(n - 2) + T(n - 3) \\
\vdots \\
= cn + c(n - 1) + c(n - 2) + \cdots + c
\]
Unrolling

Example: selection sort. $T(n) = T(n-1) + cn$

Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n-1) = cn + c(n-1) + T(n-2) = cn + c(n-1) + c(n-2) + T(n-3) \\
\vdots \\
= cn + c(n-1) + c(n-2) + \cdots + c
\]

n terms, each of which at most $cn \implies T(n) \leq cn^2 = O(n^2)$
Unrolling

Example: selection sort. \[T(n) = T(n - 1) + cn \]

Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1) \\
= cn + c(n - 1) + T(n - 2) \\
= cn + c(n - 1) + c(n - 2) + T(n - 3) \\
\vdots \\
= cn + c(n - 1) + c(n - 2) + \cdots + c
\]

\(n \) terms, each of which at most \(cn \) \(\implies \) \(T(n) \leq cn^2 = O(n^2) \)

At least \(n/2 \) terms which are at least \(cn/2 \) \(\implies \) \(T(n) \geq c\frac{n^2}{4} = \Omega(n^2) \)
Unrolling

Example: selection sort. \(T(n) = T(n - 1) + cn \)

Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1) = cn + c(n - 1) + T(n - 2) = cn + c(n - 1) + c(n - 2) + T(n - 3) \\
\vdots \\
= cn + c(n - 1) + c(n - 2) + \cdots + c_n \text{ terms, each of which at most } cn \\
\implies T(n) \leq cn^2 = O(n^2)
\]

At least \(n/2 \) terms which are at least \(cn/2 \) \(\implies T(n) \geq c \frac{n^2}{4} = \Omega(n^2) \)

\(\implies T(n) = \Theta(n^2) \).
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: \(T(n) = 2T(n/2) + cn \).
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: \(T(n) = 2T(n/2) + cn. \)
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: \(T(n) = 2T(n/2) + cn \).
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: $T(n) = 2T(n/2) + cn$.

levels: $\log_2 n$
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: \(T(n) = 2T(n/2) + cn. \)

\[\begin{array}{c}
\text{levels: } \log_2 n \\
\text{Contribution of level } i: \\
\end{array} \]

\(\begin{array}{c}
\text{cn} \\
\text{cn/2} \\
\text{cn/4} \\
\text{cn/8} \\
\vdots \\
\end{array} \)
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: $T(n) = 2T(n/2) + cn$.

levels: $\log_2 n$

Contribution of level i: $2^{i-1}cn/2^{i-1} = cn$
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: $T(n) = 2T(n/2) + cn$.

levels: $\log_2 n$

Contribution of level i: $2^{i-1} cn/2^{i-1} = cn$

$\implies T(n) = \Theta(n \log n)$
Recursion Tree: Strassen

\[T(n) = 7T(n/2) + cn^2 \]
Recursion Tree: Strassen

\[T(n) = 7T(n/2) + cn^2 \]
Recursion Tree: Strassen

\[T(n) = 7T(n/2) + cn^2 \]

Level \(i \): \(7^{i-1}c(n/2^{i-1})^2 = (7/4)^{i-1}cn^2 \)
Recursion Tree: Strassen

\[T(n) = 7T(n/2) + cn^2 \]

Level \(i \): \(7^{i-1}c(n/2^{i-1})^2 = (7/4)^{i-1}cn^2 \)

Total:

\[T(n) = \sum_{i=1}^{\log n+1} \left(\frac{7}{4} \right)^{i-1} cn^2 = cn^2 \sum_{i=1}^{\log n+1} \left(\frac{7}{4} \right)^{i-1} \]
Recursion Tree: Strassen

\[T(n) = 7T\left(\frac{n}{2}\right) + cn^2 \]

Level \(i \): \(7^{i-1}c\left(\frac{n}{2^{i-1}}\right)^2 = (7/4)^{i-1}cn^2 \)

\[T(n) = \sum_{i=1}^{\log n + 1} \left(\frac{7}{4}\right)^{i-1} cn^2 = cn^2 \sum_{i=1}^{\log n + 1} \left(\frac{7}{4}\right)^{i-1} \]

Total:

\[\Longrightarrow T(n) = O\left(n^2\left(\frac{7}{4}\right)^{\log n}\right) = O\left(n^2 n^{\log (7/4)}\right) = O(n^2 n^{\log 7-2}) \]

\[= O(n^{\log 7}) \]
Master Theorem

\[T(n) = aT(n/b) + cn^k \quad \text{with} \quad T(1) = c \]

\[a, b, c, k \text{ constants with } a \geq 1, \ b > 1, \ c > 0, \ \text{and} \ k \geq 0 \]
Master Theorem

\[T(n) = aT\left(\frac{n}{b}\right) + cn^k \]

\[T(1) = c \]

\(a, b, c, k \) constants with \(a \geq 1, b > 1, c > 0, \) and \(k \geq 0 \)
Master Theorem

\[T(n) = aT(n/b) + cn^k \quad \text{T}(1) = c \]

\(a, b, c, k \) constants with \(a \geq 1, b > 1, c > 0, \) and \(k \geq 0 \)

levels: \(\log_b n + 1 \)
Master Theorem

\[T(n) = aT(n/b) + cn^k \quad \quad T(1) = c \]

\(a, b, c, k \) constants with \(a \geq 1, \ b > 1, \ c > 0, \) and \(k \geq 0 \)

\# levels: \(\log_b n + 1 \)

Level 1: \(a^{i-1} c(n/b^{i-1})^k = cn^k(a/b^k)^{i-1} \)
Master Theorem II

Let $\alpha = (a/b^k)$

$$T(n) = cn^k \sum_{i=1}^{\log_b n + 1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n + 1} \alpha^{i-1}$$
Master Theorem II

Let $\alpha = (a/b^k)$

$\implies T(n) = cn^k \sum_{i=1}^{\log_b n + 1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n + 1} \alpha^{i-1}$

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n + 1} 1 = \Theta(n^k \log n)$
Master Theorem II

Let $\alpha = \frac{a}{b^k}$

$$\implies T(n) = cn^k \sum_{i=1}^{\log_b n + 1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n + 1} \alpha^{i-1}$$

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n + 1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.
Master Theorem II

Let $\alpha = \frac{a}{b^k}$

$\implies T(n) = cn^k \sum_{i=1}^{\log_b n + 1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n + 1} \alpha^{i-1}$

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n + 1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.
 $\implies \sum_{i=1}^{\log_b n + 1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}$.
 $\implies T(n) = O(n^k)$
Master Theorem II

Let $\alpha = (a/b^k)$

$\implies T(n) = cn^k \sum_{i=1}^{\log_b n + 1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n + 1} \alpha^{i-1}$

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n + 1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.
 $\implies \sum_{i=1}^{\log_b n + 1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}$.
 $\implies T(n) = O(n^k)$
 $T(n) \geq cn^k \implies T(n) = \Omega(n^k)$
Master Theorem II

Let $\alpha = (a/b^k)$

\[T(n) = cn^k \sum_{i=1}^{\log_b n + 1} (a/b^k)i^{-1} = cn^k \sum_{i=1}^{\log_b n + 1} \alpha^{i-1} \]

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n + 1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.
 \[\sum_{i=1}^{\log_b n + 1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}. \]
 \[T(n) = O(n^k) \]
 \[T(n) \geq cn^k \implies T(n) = \Omega(n^k) \implies T(n) = \Theta(n^k) \]
Master Theorem II

Let $\alpha = (a/b^k)$

$$T(n) = cn^k \sum_{i=1}^{\log_b n + 1} (a/b^k)^i = cn^k \sum_{i=1}^{\log_b n + 1} \alpha^i$$

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n + 1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.

$$\sum_{i=1}^{\log_b n + 1} \alpha^i \leq \sum_{i=1}^{\infty} \alpha^i = \frac{1}{1-\alpha}.$$

$$T(n) = O(n^k)$$

$T(n) \geq cn^k \Rightarrow T(n) = \Omega(n^k) \Rightarrow T(n) = \Theta(n^k)$

- Case 3: $\alpha > 1$. Dominated by bottom level
Master Theorem II

Let $\alpha = (a/b^k)$

$$\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$$

- **Case 1:** $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
- **Case 2:** $\alpha < 1$. Dominated by top level.
 $$\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}.$$
 $$\implies T(n) = O(n^k)$$

 $$T(n) \geq cn^k \implies T(n) = \Omega(n^k) \implies T(n) = \Theta(n^k)$$
- **Case 3:** $\alpha > 1$. Dominated by bottom level
 $$\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} = \alpha^{\log_b n} \sum_{i=1}^{\log_b n+1} \left(\frac{1}{\alpha}\right)^{i-1} \leq \alpha^{\log_b n} \frac{1}{1 - (1/\alpha)}$$
 $$= O(\alpha^{\log_b n})$$
Master Theorem II

Let \(\alpha = \frac{a}{b^k} \)

\[T(n) = cn^k \sum_{i=1}^{\log_b n+1} \left(\frac{1}{\alpha} \right)^{i-1} \leq \left(\frac{\alpha^{\log_b n}}{1 - (1/\alpha)} \right) \]

\[\alpha^i \leq \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha} \]

\[T(n) = O\left(n^k \right) \]

\[T(n) \geq cn^k \implies T(n) = \Omega\left(n^k \right) \implies T(n) = \Theta\left(n^k \right) \]

Case 1: \(\alpha = 1 \). All levels the same. \(T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n) \)

Case 2: \(\alpha < 1 \). Dominated by top level.

\[T(n) = O(n^k) \]

\[T(n) \geq cn^k \implies T(n) = \Omega(n^k) \implies T(n) = \Theta(n^k) \]

Case 3: \(\alpha > 1 \). Dominated by bottom level

\[\sum_{i=1}^{\log_b n+1} \alpha^{i-1} = \alpha^{\log_b n} \sum_{i=1}^{\log_b n+1} \left(\frac{1}{\alpha} \right)^{i-1} \leq \alpha^{\log_b n} \frac{1}{1 - (1/\alpha)} \]

\[= O\left(\alpha^{\log_b n} \right) \]

\[T(n) = \Theta(n^k \alpha^{\log_b n}) = \Theta(n^k (a/b^k)^{\log_b n}) = \Theta(a^{\log_b n}) \]

\[= \Theta(n^{\log_b a}) \]
Master Theorem III

Theorem ("Master Theorem")

The recurrence

\[T(n) = aT(n/b) + cn^k \]

where \(a, b, c, \) and \(k \) are constants with \(a \geq 1, b > 1, c > 0, \) and \(k \geq 0, \) is equal to

- \(T(n) = \Theta(n^k) \) if \(a < b^k, \)
- \(T(n) = \Theta(n^k \log n) \) if \(a = b^k, \)
- \(T(n) = \Theta(n^{\log_b a}) \) if \(a > b^k. \)