Lecture 19: Max-Flow II

Michael Dinitz

November 2, 2021
601.433/633 Introduction to Algorithms

Introduction

Last time:

- Max-Flow $=$ Min-Cut
- Can compute max flow and min cut using Ford-Fulkerson: while residual graph has an $\mathbf{s} \rightarrow \mathbf{t}$ path, push flow along it.
- Corollary: if all capacities integers, max-flow is integral
- If max-flow has value \mathbf{F}, time $\mathbf{O}(\mathbf{F}(\mathbf{m}+\mathbf{n})$) (if all capacities integers)
- Exponential time!

Today:

- Important setting where FF is enough: max bipartite matching
- Two ways of making FF faster: Edmonds-Karp

Max Bipartite Matching

Setup

Definition

A graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ is bipartite if \mathbf{V} can be partitioned into two parts \mathbf{L}, \mathbf{R} such that every edge in \mathbf{E} has one endpoint in \mathbf{L} and one endpoint in \mathbf{R}.

Definition

A matching is a subset $\mathbf{M} \subseteq \mathbf{E}$ such that $\mathbf{e} \cap \mathbf{e}^{\prime}=\varnothing$ for all $\mathbf{e}, \mathbf{e}^{\prime} \in \mathbf{M}$ with $\mathbf{e} \neq \mathbf{e}^{\prime}$ (no two edges share an endpoint)

Bipartite Maximum Matching: Given bipartite graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, find matching \mathbf{M} maximizing $|\mathbf{M}|$

- Extremely important problem, doesn't seem to have much to do with flow!

Algorithm

Give all edges capacity 1 Direct all edges from \mathbf{L} to \mathbf{R} Add source \mathbf{s} and sink \mathbf{t}
Add edges of capacity $\mathbf{1}$ from \mathbf{s} to \mathbf{L} Add edges of capacity $\mathbf{1}$ from \mathbf{R} to \mathbf{t}

Run FF to get flow \mathbf{f}
Return $\mathbf{M}=\{\mathbf{e} \in \mathbf{L} \times \mathbf{R}: \mathbf{f}(\mathbf{e})>\mathbf{0}\}$

Correctness

Claim: \mathbf{M} is a matching

Correctness

Claim: M is a matching
Proof: capacities in $\{\mathbf{0}, \mathbf{1}\} \Longrightarrow \mathbf{f}(\mathbf{e}) \in\{\mathbf{0}, \mathbf{1}\}$ for all e (integrality)

Correctness

Claim: \mathbf{M} is a matching
Proof: capacities in $\{\mathbf{0}, \mathbf{1}\} \Longrightarrow \mathbf{f}(\mathbf{e}) \in\{\mathbf{0}, \mathbf{1}\}$ for all e (integrality)

Correctness

Claim: \mathbf{M} is a matching

Claim: \mathbf{M} is maximum matching
Proof: capacities in $\{\mathbf{0}, \mathbf{1}\} \Longrightarrow \mathbf{f}(\mathbf{e}) \in\{\mathbf{0}, \mathbf{1}\}$ for all e (integrality)

Correctness

Claim: M is a matching
Proof: capacities in $\{\mathbf{0}, \mathbf{1}\} \Longrightarrow \mathbf{f}(\mathbf{e}) \in\{\mathbf{0}, \mathbf{1}\} \quad$ Proof: Suppose larger matching \mathbf{M}^{\prime} for all e (integrality)

Correctness

Claim: \mathbf{M} is a matching
Proof: capacities in $\{\mathbf{0}, \mathbf{1}\} \Longrightarrow \mathbf{f}(\mathbf{e}) \in\{\mathbf{0}, \mathbf{1}\}$ for all e (integrality)

Claim: \mathbf{M} is maximum matching
Proof: Suppose larger matching \mathbf{M}^{\prime} Can send $\left|\mathbf{M}^{\prime}\right|$ flow using \mathbf{M}^{\prime} !

Correctness

Claim: M is a matching
Proof: capacities in $\{\mathbf{0}, \mathbf{1}\} \Longrightarrow \mathbf{f}(\mathbf{e}) \in\{\mathbf{0}, \mathbf{1}\}$ for all e (integrality)

Claim: \mathbf{M} is maximum matching
Proof: Suppose larger matching \mathbf{M}^{\prime} Can send $\left|\mathbf{M}^{\prime}\right|$ flow using \mathbf{M}^{\prime} !

- $\mathbf{f}^{\prime}(\mathbf{s}, \mathbf{u})=\mathbf{1}$ is \mathbf{u} matched in \mathbf{M}^{\prime}, otherwise 0
- $\mathbf{f}^{\prime}(\mathbf{v}, \mathbf{t})=\mathbf{1}$ if \mathbf{v} matched in \mathbf{M}^{\prime}, otherwise 0
- $\mathbf{f}^{\prime}(\mathbf{u}, \mathbf{v})=\mathbf{1}$ if $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{M}^{\prime}$, otherwise $\mathbf{0}$

Correctness

Claim: M is a matching
Proof: capacities in $\{\mathbf{0}, \mathbf{1}\} \Longrightarrow \mathbf{f}(\mathbf{e}) \in\{\mathbf{0}, \mathbf{1}\}$ for all e (integrality)

Claim: \mathbf{M} is maximum matching
Proof: Suppose larger matching \mathbf{M}^{\prime} Can send $\left|\mathbf{M}^{\prime}\right|$ flow using \mathbf{M}^{\prime} !

- $\mathbf{f}^{\prime}(\mathbf{s}, \mathbf{u})=\mathbf{1}$ is \mathbf{u} matched in \mathbf{M}^{\prime}, otherwise 0
- $\mathbf{f}^{\prime}(\mathbf{v}, \mathbf{t})=\mathbf{1}$ if \mathbf{v} matched in \mathbf{M}^{\prime}, otherwise 0
- $\mathbf{f}^{\prime}(\mathbf{u}, \mathbf{v})=\mathbf{1}$ if $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{M}^{\prime}$, otherwise $\mathbf{0}$
- $\left|\mathbf{f}^{\prime}\right|=\left|\mathbf{M}^{\prime}\right|>|\mathbf{M}|=|\mathbf{f}|$

Correctness

Claim: M is a matching
Proof: capacities in $\{\mathbf{0}, \mathbf{1}\} \Longrightarrow \mathbf{f}(\mathbf{e}) \in\{\mathbf{0}, \mathbf{1}\}$ for all e (integrality)

Claim: \mathbf{M} is maximum matching
Proof: Suppose larger matching \mathbf{M}^{\prime} Can send $\left|\mathbf{M}^{\prime}\right|$ flow using \mathbf{M}^{\prime} !

- $\mathbf{f}^{\prime}(\mathbf{s}, \mathbf{u})=\mathbf{1}$ is \mathbf{u} matched in \mathbf{M}^{\prime}, otherwise 0
- $\mathbf{f}^{\prime}(\mathbf{v}, \mathbf{t})=\mathbf{1}$ if \mathbf{v} matched in \mathbf{M}^{\prime}, otherwise 0
- $\mathbf{f}^{\prime}(\mathbf{u}, \mathbf{v})=\mathbf{1}$ if $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{M}^{\prime}$, otherwise $\mathbf{0}$
- $\left|\mathbf{f}^{\prime}\right|=\left|\mathbf{M}^{\prime}\right|>|\mathbf{M}|=|\mathbf{f}|$
- Contradiction

Running Time

Running Time:

- $\mathbf{O}(\mathbf{n}+\mathbf{m})$ to make new graph

- $|\mathbf{f}|=|\mathbf{M}| \leq \mathbf{n} / \mathbf{2}$ iterations of FF
$\Longrightarrow \mathbf{O}(\mathbf{n}(\mathbf{m}+\mathbf{n}))=\mathbf{O}(\mathbf{m n})$ time (assuming $\mathbf{m} \geq \Omega(\mathbf{n})$)

Edmonds-Karp

Intuition

Bad example for Ford-Fulkerson:

If Ford-Fulkerson chooses bad augmenting paths, super slow!

A bad example for the Ford-Fulkerson algorithm.

Intuition

Bad example for Ford-Fulkerson:

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Obvious idea: Choose better paths!

A bad example for the Ford-Fulkerson algorithm.

Intuition

Bad example for Ford-Fulkerson:

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Obvious idea: Choose better paths!

A bad example for the Ford-Fulkerson algorithm.
Obvious path to pick:

Intuition

Bad example for Ford-Fulkerson:

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Obvious idea: Choose better paths!

A bad example for the Ford-Fulkerson algorithm.
Obvious path to pick:

$$
\underset{\text { augmenting paths } P}{\arg \max } \min _{\mathbf{e} \in \mathrm{P}} \mathbf{C}_{f}(\mathbf{e}) .
$$

Intuition

Bad example for Ford-Fulkerson:

If Ford-Fulkerson chooses bad augmenting paths, super slow!
Obvious idea: Choose better paths!

A bad example for the Ford-Fulkerson algorithm.
Obvious path to pick:

$$
\underset{\text { augmenting paths } P}{\arg \max } \min _{\mathrm{e} \in P} \mathbf{c}_{\mathbf{f}}(\mathbf{e}) .
$$

- "Widest" path: push as much flow as possible each iteration

Edmonds-Karp \#1

Edmonds-Karp \#1: Ford-Fulkerson, always choose "widest" path.

- Correct, since FF. Running time?

Edmonds-Karp \#1

Edmonds-Karp \#1: Ford-Fulkerson, always choose "widest" path.

- Correct, since FF. Running time?

Lemma

In any graph with max s-t flow \mathbf{F}, there exists a path from \mathbf{s} to \mathbf{t} with capacity at least \mathbf{F} / \mathbf{m}

Edmonds-Karp \#1

Edmonds-Karp \#1: Ford-Fulkerson, always choose "widest" path.

- Correct, since FF. Running time?

Lemma

In any graph with max s-t flow \mathbf{F}, there exists a path from \mathbf{s} to \mathbf{t} with capacity at least \mathbf{F} / \mathbf{m}

```
Proof.
Let X={\mathbf{e}\in\mathbf{E:c}\mathbf{c}(\mathbf{e})<\mathbf{F}/\mathbf{m}}.
```


Edmonds-Karp \#1

Edmonds-Karp \#1: Ford-Fulkerson, always choose "widest" path.

- Correct, since FF. Running time?

Lemma

In any graph with max s-t flow \mathbf{F}, there exists a path from \mathbf{s} to \mathbf{t} with capacity at least \mathbf{F} / \mathbf{m}

Proof.

Let $\mathbf{X}=\{\mathbf{e} \in \mathbf{E}: \mathbf{c}(\mathbf{e})<\mathbf{F} / \mathbf{m}\}$.
If no $\mathbf{s} \rightarrow \mathbf{t}$ path in $\mathbf{G} \backslash \mathbf{X}$, then \mathbf{X} an (edge) cut. Let $\mathbf{S}=$ nodes reachable from \mathbf{s} in $\mathbf{G} \backslash \mathbf{X}$.

Edmonds-Karp \#1

Edmonds-Karp \#1: Ford-Fulkerson, always choose "widest" path.

- Correct, since FF. Running time?

Lemma

In any graph with max s-t flow \mathbf{F}, there exists a path from \mathbf{s} to \mathbf{t} with capacity at least \mathbf{F} / \mathbf{m}

Proof.

Let $\mathbf{X}=\{\mathbf{e} \in \mathbf{E}: \mathbf{c}(\mathbf{e})<\mathbf{F} / \mathbf{m}\}$.
If no $\mathbf{s} \rightarrow \mathbf{t}$ path in $\mathbf{G} \backslash \mathbf{X}$, then \mathbf{X} an (edge) cut. Let $\mathbf{S}=$ nodes reachable from \mathbf{s} in $\mathbf{G} \backslash \mathbf{X}$.

$$
\operatorname{cap}(S, \bar{S}) \leq \operatorname{cap}(X)=\sum_{e \in X} c(e)<\mathbf{m} \cdot(F / \mathbf{m})=F
$$

Edmonds-Karp \#1

Edmonds-Karp \#1: Ford-Fulkerson, always choose "widest" path.

- Correct, since FF. Running time?

Lemma

In any graph with max s-t flow \mathbf{F}, there exists a path from \mathbf{s} to \mathbf{t} with capacity at least \mathbf{F} / \mathbf{m}

Proof.

Let $\mathbf{X}=\{\mathbf{e} \in \mathbf{E}: \mathbf{c}(\mathbf{e})<\mathbf{F} / \mathbf{m}\}$.
If no $\mathbf{s} \rightarrow \mathbf{t}$ path in $\mathbf{G} \backslash \mathbf{X}$, then \mathbf{X} an (edge) cut. Let $\mathbf{S}=$ nodes reachable from \mathbf{s} in $\mathbf{G} \backslash \mathbf{X}$.

$$
\operatorname{cap}(S, \bar{S}) \leq \operatorname{cap}(X)=\sum_{e \in X} c(e)<\mathbf{m} \cdot(F / \mathbf{m})=F
$$

$\Longrightarrow \min (\mathrm{s}, \mathrm{t})$ cut $\leq \boldsymbol{\operatorname { c a p }}(\mathbf{S}, \overline{\mathbf{S}})<\mathbf{F}$.

Edmonds-Karp \#1

Edmonds-Karp \#1: Ford-Fulkerson, always choose "widest" path.

- Correct, since FF. Running time?

Lemma

In any graph with max s-t flow \mathbf{F}, there exists a path from \mathbf{s} to \mathbf{t} with capacity at least \mathbf{F} / \mathbf{m}

Proof.

Let $\mathbf{X}=\{\mathbf{e} \in \mathbf{E}: \mathbf{c}(\mathbf{e})<\mathbf{F} / \mathbf{m}\}$.
If no $\mathbf{s} \rightarrow \mathbf{t}$ path in $\mathbf{G} \backslash \mathbf{X}$, then \mathbf{X} an (edge) cut. Let $\mathbf{S}=$ nodes reachable from \mathbf{s} in $\mathbf{G} \backslash \mathbf{X}$.

$$
\operatorname{cap}(S, \bar{S}) \leq \operatorname{cap}(X)=\sum_{e \in X} c(e)<\mathbf{m} \cdot(F / \mathbf{m})=F
$$

$\Longrightarrow \min (\mathrm{s}, \mathbf{t})$ cut $\leq \boldsymbol{\operatorname { c a p }}(\mathbf{S}, \overline{\mathbf{S}})<\mathbf{F}$. Contradiction.

Edmonds-Karp \#1

Edmonds-Karp \#1: Ford-Fulkerson, always choose "widest" path.

- Correct, since FF. Running time?

Lemma

In any graph with max s-t flow \mathbf{F}, there exists a path from \mathbf{s} to \mathbf{t} with capacity at least \mathbf{F} / \mathbf{m}

Proof.

Let $\mathbf{X}=\{\mathbf{e} \in \mathbf{E}: \mathbf{c}(\mathbf{e})<\mathbf{F} / \mathbf{m}\}$.
If no $\mathbf{s} \rightarrow \mathbf{t}$ path in $\mathbf{G} \backslash \mathbf{X}$, then \mathbf{X} an (edge) cut. Let $\mathbf{S}=$ nodes reachable from \mathbf{s} in $\mathbf{G} \backslash \mathbf{X}$.

$$
\operatorname{cap}(S, \bar{S}) \leq \operatorname{cap}(X)=\sum_{e \in X} c(e)<\mathbf{m} \cdot(F / \mathbf{m})=F
$$

$\Longrightarrow \min (\mathbf{s}, \mathbf{t})$ cut $\leq \boldsymbol{\operatorname { c a p }}(\mathbf{S}, \overline{\mathbf{S}})<\mathbf{F}$. Contradiction.
$\Longrightarrow \exists \mathbf{s} \rightarrow \mathbf{t}$ path \mathbf{P} in $\mathbf{G} \backslash \mathbf{X}$: every edge of \mathbf{P} has capacity at least \mathbf{F} / \mathbf{m}

Edmonds-Karp \#1

Edmonds-Karp \#1: Ford-Fulkerson, always choose "widest" path.

- Correct, since FF. Running time?

Lemma

In any graph with max s-t flow \mathbf{F}, there exists a path from \mathbf{s} to \mathbf{t} with capacity at least \mathbf{F} / \mathbf{m}

Proof.

Let $\mathbf{X}=\{\mathbf{e} \in \mathbf{E}: \mathbf{c}(\mathbf{e})<\mathbf{F} / \mathbf{m}\}$.
If no $\mathbf{s} \rightarrow \mathbf{t}$ path in $\mathbf{G} \backslash \mathbf{X}$, then \mathbf{X} an (edge) cut. Let $\mathbf{S}=$ nodes reachable from \mathbf{s} in $\mathbf{G} \backslash \mathbf{X}$.

$$
\operatorname{cap}(S, \bar{S}) \leq \operatorname{cap}(X)=\sum_{e \in X} c(e)<\mathbf{m} \cdot(F / \mathbf{m})=F
$$

$\Longrightarrow \min (\mathrm{s}, \mathbf{t})$ cut $\leq \boldsymbol{\operatorname { c a p }}(\mathbf{S}, \overline{\mathbf{S}})<\mathbf{F}$. Contradiction.
$\Longrightarrow \exists \mathbf{s} \rightarrow \mathbf{t}$ path \mathbf{P} in $\mathbf{G} \backslash \mathbf{X}$: every edge of \mathbf{P} has capacity at least \mathbf{F} / \mathbf{m}
Does this implies at most \mathbf{m} iterations?

EK 1 Running Time

Theorem

If \mathbf{F} is the value of the maximum flow and all capacities are integers, \# iterations of EK1 is at most $\mathbf{O}(\mathbf{m} \log \mathrm{F})$

EK 1 Running Time

Theorem

If \mathbf{F} is the value of the maximum flow and all capacities are integers, \# iterations of EK1 is at most $\mathbf{O}(\mathbf{m} \log \mathbf{F})$

How much flow remains to be be sent after iteration i?

EK 1 Running Time

Theorem

If \mathbf{F} is the value of the maximum flow and all capacities are integers, \# iterations of EK1 is at most $\mathbf{O}(\mathbf{m} \log \mathrm{F})$

How much flow remains to be be sent after iteration i?

- $\mathbf{i}=0$:

EK 1 Running Time

Theorem

If \mathbf{F} is the value of the maximum flow and all capacities are integers, \# iterations of EK1 is at most $\mathbf{O}(\mathbf{m} \log \mathrm{F})$

How much flow remains to be be sent after iteration i?

- $\mathbf{i}=0$: \mathbf{F}

EK 1 Running Time

Theorem

If \mathbf{F} is the value of the maximum flow and all capacities are integers, \# iterations of EK1 is at most $\mathbf{O}(\mathbf{m} \log \mathrm{F})$

How much flow remains to be be sent after iteration i?

- $\mathbf{i = 0}$: F
- $i_{m=1}$: Sent at least F / m, so at most $F-F / m=F(\mathbf{1 - 1 / m})$ remaining

EK 1 Running Time

Theorem

If \mathbf{F} is the value of the maximum flow and all capacities are integers, \# iterations of EK1 is at most $\mathbf{O}(\mathbf{m} \log \mathbf{F})$

How much flow remains to be be sent after iteration i?

- $\mathbf{i = 0 : F}$

- $\mathbf{i}=\mathbf{2}$: Sent at least \mathbf{R} / \mathbf{m} if \mathbf{R} was remaining after iteration $\mathbf{1}$, so at most $R-R / m=R(1-\mathbf{1} / \mathbf{m}) \leq F(\mathbf{1 - 1 / m})^{\mathbf{2}}$ remaining

EK 1 Running Time

Theorem

If \mathbf{F} is the value of the maximum flow and all capacities are integers, \# iterations of EK1 is at most $\mathbf{O}(\mathbf{m} \log \mathrm{F})$

How much flow remains to be be sent after iteration i?

- $\mathbf{i = 0 : ~ F}$

- $\mathbf{i}=\mathbf{2}$: Sent at least \mathbf{R} / \mathbf{m} if \mathbf{R} was remaining after iteration $\mathbf{1}$, so at most $R-R / m=R(1-1 / m) \leq F(1-1 / m)^{\mathbf{2}}$ remaining
By induction: after iteration \mathbf{i}, at most $\mathbf{F}(\mathbf{1}-\mathbf{1} / \mathbf{m})^{\mathbf{i}}$ flow remaining to be sent.

EK 1 Running Time

Theorem

If \mathbf{F} is the value of the maximum flow and all capacities are integers, \# iterations of EK1 is at most $\mathbf{O}(\mathbf{m} \log \mathrm{F})$

How much flow remains to be be sent after iteration i?

- $\mathbf{i = 0 : ~ F}$

- $\mathbf{i}=\mathbf{2}$: Sent at least \mathbf{R} / \mathbf{m} if \mathbf{R} was remaining after iteration $\mathbf{1}$, so at most $R-R / m=R(1-1 / m) \leq F(1-1 / m)^{\mathbf{2}}$ remaining
By induction: after iteration \mathbf{i}, at most $\mathbf{F}(\mathbf{1 - 1 / m})^{\mathbf{i}}$ flow remaining to be sent. Super useful inequality: $\mathbf{1}+\mathbf{x} \leq \mathbf{e}^{\mathbf{x}}$ for all $\mathbf{x} \in \mathbb{R}$

EK 1 Running Time

Theorem

If \mathbf{F} is the value of the maximum flow and all capacities are integers, \# iterations of EK1 is at most $\mathbf{O}(\mathbf{m} \log \mathrm{F})$

How much flow remains to be be sent after iteration i?

- $\mathbf{i = 0}$: \mathbf{F}

- $\mathbf{i}=\mathbf{2}$: Sent at least \mathbf{R} / \mathbf{m} if \mathbf{R} was remaining after iteration $\mathbf{1}$, so at most $R-R / m=R(1-1 / m) \leq F(1-1 / m)^{\mathbf{2}}$ remaining
By induction: after iteration \mathbf{i}, at most $\mathbf{F}(\mathbf{1} \mathbf{- 1 / m})^{\mathbf{i}}$ flow remaining to be sent.
Super useful inequality: $\mathbf{1}+\mathrm{x} \leq \mathrm{e}^{\mathrm{x}}$ for all $\mathrm{x} \in \mathbb{R}$
\Longrightarrow If $\mathbf{i}>\mathbf{m} \boldsymbol{\operatorname { l n }} \mathbf{F}$, amount remaining to be sent at most

$$
F(1-1 / m)^{i}<F(1-1 / m)^{m \ln F} \leq F\left(e^{-1 / m}\right)^{m \ln F}=F \cdot e^{-\ln F}=1
$$

But all capacities integers, so must be finished!

Finishing EK1

Modified version of Dijkstra: find widest path in $\mathbf{O}(\mathbf{m} \log \mathbf{n})$ time

- Total time $\mathbf{O}(\mathbf{m} \log \mathbf{n} \cdot \mathbf{m} \log \mathbf{F})=\mathbf{O}\left(\mathbf{m}^{2} \log \mathbf{n} \log \mathbf{F}\right)$
- Polynomial time!

Finishing EK1

Modified version of Dijkstra: find widest path in $\mathbf{O}(\mathbf{m} \log \mathbf{n})$ time

- Total time $\mathbf{O}(\mathbf{m} \log \mathbf{n} \cdot \mathbf{m} \log \mathbf{F})=\mathbf{O}\left(\mathbf{m}^{2} \log \mathbf{n} \log \mathbf{F}\right)$
- Polynomial time!

Question: can we get running time independent of \mathbf{F} ?

- Strongly polynomial-time algorithm.

Edmonds-Karp \#2

Again use Ford-Fulkerson, but pick shortest augmenting path (unweighted)

- Ignore capacities, just find augmenting path with fewest hops!
- Easy to compute with BFS in $\mathbf{O}(\mathbf{m}+\mathbf{n})$ time.

Edmonds-Karp \#2

Again use Ford-Fulkerson, but pick shortest augmenting path (unweighted)

- Ignore capacities, just find augmenting path with fewest hops!
- Easy to compute with BFS in $\mathbf{O}(\mathbf{m}+\mathbf{n})$ time.

Main question: how many iterations?

Edmonds-Karp \#2

Again use Ford-Fulkerson, but pick shortest augmenting path (unweighted)

- Ignore capacities, just find augmenting path with fewest hops!
- Easy to compute with BFS in $\mathbf{O}(\mathbf{m}+\mathbf{n})$ time.

Main question: how many iterations?

Theorem

EK2 has at most $\mathbf{O}(\mathbf{m n})$ iterations, so at most $\mathbf{O}\left(\mathbf{m}^{\mathbf{2}} \mathbf{n}\right)$ running time (if $\mathbf{m} \geq \mathbf{n}$)

Proof (sketch) of EK2

c:n res! d-al guph)

Idea: prove that distance from \mathbf{s} to \mathbf{t} (unweighted) goes up by at least one every $\leq \mathbf{m}$ iterations.

Proof (sketch) of EK2

Idea: prove that distance from \mathbf{s} to \mathbf{t} (unweighted) goes up by at least one every $\leq \mathbf{m}$ iterations.

- Distance initially $\geq \mathbf{1} \Longrightarrow$ distance $>\mathbf{n}$ after at most $\mathbf{m n}$ iterations
- Only distance larger than \mathbf{n} is $\boldsymbol{\infty}$: no $\mathbf{s} \rightarrow \mathbf{t}$ path
\Longrightarrow Terminates after at most $\mathbf{m n}$ iterations.

Proof (sketch) of EK2 (continued)

Suppose $\mathbf{s} \rightarrow \mathbf{t}$ distance is \mathbf{d}.
"Lay out" residual graph in levels by BFS (distance from s)

Proof (sketch) of EK2 (continued)

Suppose $\mathbf{s} \rightarrow \mathbf{t}$ distance is \mathbf{d}.
"Lay out" residual graph in levels by BFS (distance from s)

Edge types:

- Forward edges: 1 level
- Edges inside level
- Backwards edges

Proof (sketch) of EK2 (continued)

Suppose $\mathbf{s} \rightarrow \mathbf{t}$ distance is \mathbf{d}.
"Lay out" residual graph in levels by BFS (distance from s)

Edge types:

- Forward edges: 1 level
- Edges inside level
- Backwards edges

What happens when we choose a shortest augmenting path?

Proof (sketch) of EK2 (continued)

Suppose $\mathbf{s} \rightarrow \mathbf{t}$ distance is \mathbf{d}.
"Lay out" residual graph in levels by BFS (distance from s)

Edge types:

- Forward edges: 1 level
- Edges inside level
- Backwards edges

What happens when we choose a shortest augmenting path? Only uses forward edges!

Proof (sketch) of EK2 (continued)

Suppose $\mathbf{s} \rightarrow \mathbf{t}$ distance is \mathbf{d}.
"Lay out" residual graph in levels by BFS (distance from s)

Edge types:

- Forward edges: 1 level
- Edges inside level
- Backwards edges

What happens when we choose a shortest augmenting path? Only uses forward edges!

- At least 1 forward edge gets removed, replaced with backwards edge.
- No backwards edges turned forward

Proof (sketch) of EK2 (continued)

Suppose $\mathbf{s} \rightarrow \mathbf{t}$ distance is \mathbf{d}.
"Lay out" residual graph in levels by BFS (distance from s)

Edge types:

- Forward edges: 1 level
- Edges inside level
- Backwards edges

What happens when we choose a shortest augmenting path? Only uses forward edges!

- At least 1 forward edge gets removed, replaced with backwards edge.
- No backwards edges turned forward

So after \mathbf{m} iterations (same layout): no path using only forward edges \Longrightarrow distance larger than d!

Finishing EK2

So at most mn iterations. Each iteration unweighted shortest path: BFS, time $\mathbf{O}(\mathbf{m}+\mathbf{n})$

Finishing EK2

So at most mn iterations. Each iteration unweighted shortest path: BFS, time $\mathbf{O}(\mathbf{m}+\mathbf{n})$
Total time: $\mathbf{O}\left(\mathbf{m n}(\mathbf{m}+\mathbf{n}) \mathbf{)}=\mathbf{O}\left(\mathbf{m}^{\mathbf{2}} \mathbf{n}\right)\right.$. Independent of \mathbf{F} !

Extensions

Many better algorithms for max-flow: blocking flows (Dinitz's algorithm (not me)), push-relabel algorithms, etc.

- CLRS has a few of these.
- State of the art:
- Strongly polynomial: O(mn). Orlin [2013] \& King, Rao, Tarjan [1994]
- Weakly Polynomial: $\tilde{\mathbf{O}}\left(\mathbf{m}^{\frac{3}{2}-\frac{1}{328}} \log \mathbf{U}\right)$ (where \mathbf{U} is maximum capacity). Gao, Liu, Peng [2021]

Many other variants of flows, some of which are just s-t max flow in disguise!

- Min-Cost Max-Flow: every edge also has a cost. Find minimum cost max-flow. Can be solved with just normal max flow!

