Lecture 19: Max-Flow II

Michael Dinitz

November 2, 2021 601.433/633 Introduction to Algorithms

Introduction

Last time:

- Max-Flow = Min-Cut
- Can compute max flow and min cut using Ford-Fulkerson: while residual graph has an $s \rightarrow t$ path, push flow along it.
 - · Corollary: if all capacities integers, max-flow is integral
 - ▶ If max-flow has value **F**, time **O**(**F**(**m** + **n**)) (if all capacities integers)
 - Exponential time!

Today:

- Important setting where FF is enough: max bipartite matching
- Two ways of making FF faster: Edmonds-Karp

Max Bipartite Matching

Setup

Definition

A graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ is *bipartite* if \mathbf{V} can be partitioned into two parts \mathbf{L}, \mathbf{R} such that every edge in \mathbf{E} has one endpoint in \mathbf{L} and one endpoint in \mathbf{R} .

Definition

A *matching* is a subset $\mathbf{M} \subseteq \mathbf{E}$ such that $\mathbf{e} \cap \mathbf{e}' = \emptyset$ for all $\mathbf{e}, \mathbf{e}' \in \mathbf{M}$ with $\mathbf{e} \neq \mathbf{e}'$ (no two edges share an endpoint)

Bipartite Maximum Matching: Given bipartite graph G = (V, E), find matching M maximizing |M|

Extremely important problem, doesn't seem to have much to do with flow!

Algorithm

Give all edges capacity 1Direct all edges from L to RAdd source s and sink tAdd edges of capacity 1 from s to LAdd edges of capacity 1 from R to t

Run FF to get flow f Return $M = \{e \in L \times R : f(e) > 0\}$

Correctness

Claim: M is a matching

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality)

Claim: M is maximum matching

- **Proof:** Suppose larger matching M' Can send |M'| flow using M'!
 - f'(s,u) = 1 is u matched in M', otherwise
 0
 - f'(v,t) = 1 if v matched in M', otherwise
 0
 - f'(u,v) = 1 if $\{u,v\} \in M'$, otherwise 0
 - $\blacktriangleright |\mathbf{f}'| = |\mathbf{M}'| > |\mathbf{M}| = |\mathbf{f}|$
 - Contradiction

Running Time

Running Time:

- O(n + m) to make new graph
- $|f| = |M| \le n/2$ iterations of FF
- $\implies O(n(m + n)) = O(mn)$ time (assuming $m \ge \Omega(n)$)

Edmonds-Karp

Intuition

Bad example for Ford-Fulkerson:

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Obvious idea: Choose better paths!

A bad example for the Ford-Fulkerson algorithm.

Obvious path to pick:

 $\mathop{arg\,max}\limits_{\text{augmenting paths P}} \mathop{minc_f(e)}\limits_{e\in P}$

"Widest" path: push as much flow as possible each iteration

Edmonds-Karp #1

Edmonds-Karp #1: Ford-Fulkerson, always choose "widest" path.

Correct, since FF. Running time?

Lemma

In any graph with max s - t flow F, there exists a path from s to t with capacity at least F/m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$. If no $s \rightarrow t$ path in $G \setminus X$, then X an (edge) cut. Let S = nodes reachable from s in $G \setminus X$.

$$\mathsf{cap}(\mathsf{S},\bar{\mathsf{S}}) \le \mathsf{cap}(\mathsf{X}) = \sum_{e \in \mathsf{X}} \mathsf{c}(e) < \mathsf{m} \cdot (\mathsf{F}/\mathsf{m}) = \mathsf{F}$$

 $\begin{array}{l} \implies \mbox{ min } (s,t) \mbox{ cut } \leq cap(S,\bar{S}) < F. \mbox{ Contradiction.} \\ \implies \exists s \rightarrow t \mbox{ path } P \mbox{ in } G \smallsetminus X: \mbox{ every edge of } P \mbox{ has capacity at least } F/m \end{array}$

Does this implies at most **m** iterations?

EK 1 Running Time

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at most $O(m \log F)$

How much flow remains to be be sent after iteration i?

▶ i = 0: F

- I = 1: Sent at least F/m, so at most F F/m = F(1 1/m) remaining
- i = 2: Sent at least R/m if R was remaining after iteration 1, so at most $R R/m = R(1 1/m) \le F(1 1/m)^2$ remaining

By induction: after iteration i, at most $F(1-1/m)^i$ flow remaining to be sent. Super useful inequality: $1+x \leq e^x$ for all $x \in \mathbb{R}$

 \implies If $i > m \ln F$, amount remaining to be sent at most

$$F(1 - 1/m)^{i} < F(1 - 1/m)^{m \ln F} \le F(e^{-1/m})^{m \ln F} = F \cdot e^{-\ln F} = 1$$

But all capacities integers, so must be finished!

Modified version of Dijkstra: find widest path in $O(m \log n)$ time

- Total time $O(m \log n \cdot m \log F) = O(m^2 \log n \log F)$
- Polynomial time!

Question: can we get running time independent of $\ensuremath{\textbf{F}}\xspace?$

Strongly polynomial-time algorithm.

Edmonds-Karp #2

Again use Ford-Fulkerson, but pick *shortest* augmenting path (unweighted)

- Ignore capacities, just find augmenting path with fewest hops!
- Easy to compute with BFS in O(m + n) time.

Main question: how many iterations?

Theorem

EK2 has at most O(mn) iterations, so at most $O(m^2n)$ running time (if $m \ge n$)

Idea: prove that distance from s to t (unweighted) goes up by at least one every $\leq m$ iterations.

- Distance initially $\geq 1 \implies$ distance > n after at most mn iterations
- Only distance larger than \mathbf{n} is ∞ : no $\mathbf{s} \rightarrow \mathbf{t}$ path
- → Terminates after at most **mn** iterations.

Proof (sketch) of EK2 (continued)

Suppose $\mathbf{s} \rightarrow \mathbf{t}$ distance is \mathbf{d} .

"Lay out" residual graph in levels by BFS (distance from s)

Edge types:

- Forward edges: 1 level
- Edges inside level
- Backwards edges

What happens when we choose a *shortest* augmenting path? Only uses forward edges!

- \blacktriangleright At least 1 forward edge gets removed, replaced with backwards edge.
- No backwards edges turned forward

So after **m** iterations (same layout): no path using only forward edges \implies distance larger than **d**!

So at most mn iterations. Each iteration unweighted shortest path: BFS, time O(m + n)

Total time: $O(mn(m + n)) = O(m^2n)$. Independent of F!

Extensions

Many better algorithms for max-flow: *blocking flows* (Dinitz's algorithm (not me)), *push-relabel* algorithms, etc.

- CLRS has a few of these.
- State of the art:
 - Strongly polynomial: O(mn). Orlin [2013] & King, Rao, Tarjan [1994]
 - Weakly Polynomial: $\tilde{O}(m^{\frac{3}{2}-\frac{1}{328}} \log U)$ (where U is maximum capacity). Gao, Liu, Peng [2021]

Many other variants of flows, some of which are just s - t max flow in disguise!

Min-Cost Max-Flow: every edge also has a cost. Find minimum cost max-flow. Can be solved with just normal max flow!