Lecture 19: Max-Flow II

Michael Dinitz

November 2, 2021
601.433/633 Introduction to Algorithms
Introduction

Last time:
- Max-Flow = Min-Cut
- Can compute max flow and min cut using Ford-Fulkerson: while residual graph has an $s \rightarrow t$ path, push flow along it.
 - Corollary: if all capacities integers, max-flow is integral
 - If max-flow has value F, time $O(F(m + n))$ (if all capacities integers)
 - Exponential time!

Today:
- Important setting where FF is enough: max bipartite matching
- Two ways of making FF faster: Edmonds-Karp
Max Bipartite Matching
Setup

Definition

A graph $G = (V, E)$ is **bipartite** if V can be partitioned into two parts L, R such that every edge in E has one endpoint in L and one endpoint in R.

Definition

A **matching** is a subset $M \subseteq E$ such that $e \cap e' = \emptyset$ for all $e, e' \in M$ with $e \neq e'$ (no two edges share an endpoint).

Bipartite Maximum Matching: Given bipartite graph $G = (V, E)$, find matching M maximizing $|M|$

- Extremely important problem, doesn’t seem to have much to do with flow!
Algorithm

- Give all edges capacity 1
- Direct all edges from L to R
- Add source s and sink t
- Add edges of capacity 1 from s to L
- Add edges of capacity 1 from R to t

Run FF to get flow f
Return $M = \{ e \in L \times R : f(e) > 0 \}$
Correctness

Claim: M is a matching

Proof: capacities in $\{0, 1\} \implies f(e) \in \{0, 1\}$ for all e (integrality)

Claim: M is maximum matching

Proof: Suppose larger matching M'
Can send $|M'|$ flow using M'!

- $f'(s, u) = 1$ if u matched in M', otherwise 0
- $f'(v, t) = 1$ if v matched in M', otherwise 0
- $f'(u, v) = 1$ if $\{u, v\} \in M'$, otherwise 0
- $|f'| = |M'| > |M| = |f|$
- Contradiction
Running Time:

- $O(n + m)$ to make new graph
- $|f| = |M| \leq n/2$ iterations of FF

$O(n(m + n)) = O(mn)$ time (assuming $m \geq \Omega(n)$)
Edmonds-Karp
Bad example for Ford-Fulkerson:

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Obvious idea: Choose better paths!

“Widest” path: push as much flow as possible each iteration
Edmonds-Karp #1

Edmonds-Karp #1: Ford-Fulkerson, always choose “widest” path.
 ▶ Correct, since FF. Running time?

Lemma

In any graph with max \(s - t \) flow \(F \), there exists a path from \(s \) to \(t \) with capacity at least \(F/m \)

Proof.

Let \(X = \{ e \in E : c(e) < F/m \} \).
If no \(s \to t \) path in \(G \setminus X \), then \(X \) an (edge) cut. Let \(S = \) nodes reachable from \(s \) in \(G \setminus X \).

\[
\text{cap}(S, \bar{S}) \leq \text{cap}(X) = \sum_{e \in X} c(e) < m \cdot (F/m) = F
\]

\(\implies \) min \((s, t) \) cut \(\leq \text{cap}(S, \bar{S}) < F \). Contradiction.

\(\implies \exists s \to t \) path \(P \) in \(G \setminus X \): every edge of \(P \) has capacity at least \(F/m \)

Does this implies at most \(m \) iterations?
EK 1 Running Time

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at most $O(m \log F)$

How much flow remains to be be sent after iteration i?

- $i = 0$: F
- $i = 1$: Sent at least F/m, so at most $F - F/m = F(1 - 1/m)$ remaining
- $i = 2$: Sent at least R/m if R was remaining after iteration 1, so at most $R - R/m = R(1 - 1/m) \leq F(1 - 1/m)^2$ remaining

By induction: after iteration i, at most $F(1 - 1/m)^i$ flow remaining to be sent.

Super useful inequality: $1 + x \leq e^x$ for all $x \in \mathbb{R}$

\implies If $i > m \ln F$, amount remaining to be sent at most

$$F(1 - 1/m)^i < F(1 - 1/m)^{m \ln F} \leq F(e^{-1/m})^{m \ln F} = F \cdot e^{-\ln F} = 1$$

But all capacities integers, so must be finished!
Modified version of Dijkstra: find widest path in $O(m \log n)$ time

- Total time $O(m \log n \cdot m \log F) = O(m^2 \log n \log F)$
- Polynomial time!

Question: can we get running time independent of F?

- *Strongly* polynomial-time algorithm.
Edmonds-Karp #2

Again use Ford-Fulkerson, but pick *shortest* augmenting path (unweighted)

- Ignore capacities, just find augmenting path with fewest hops!
- Easy to compute with BFS in $O(m + n)$ time.

Main question: how many iterations?

Theorem

EK2 has at most $O(mn)$ iterations, so at most $O(m^2n)$ running time (if $m \geq n$)
Proof (sketch) of EK2

Idea: prove that distance from s to t (unweighted) goes up by at least one every $\leq m$ iterations.

- Distance initially $\geq 1 \implies$ distance $> n$ after at most mn iterations
- Only distance larger than n is ∞: no $s \to t$ path

\implies Terminates after at most mn iterations.
Proof (sketch) of EK2 (continued)

Suppose $s \rightarrow t$ distance is d.

“Lay out” residual graph in levels by BFS (distance from s)

![Graph with levels L_1 to L_6](image)

Edge types:
- Forward edges: 1 level
- Edges inside level
- Backwards edges

What happens when we choose a *shortest* augmenting path? Only uses forward edges!
- At least 1 forward edge gets removed, replaced with backwards edge.
- No backwards edges turned forward

So after m iterations (same layout): no path using only forward edges \rightarrow distance larger than d!
Finishing EK2

So at most mn iterations. Each iteration unweighted shortest path: BFS, time $O(m + n)$

Total time: $O(mn(m + n)) = O(m^2n)$. Independent of F!
Extensions

Many better algorithms for max-flow: *blocking flows* (Dinitz’s algorithm (not me)), *push-relabel* algorithms, etc.

- CLRS has a few of these.
- State of the art:
 - Weakly Polynomial: $\tilde{O}(m^{3/2} - \frac{1}{328} \log U)$ (where U is maximum capacity). Gao, Liu, Peng [2021]

Many other variants of flows, some of which are just $s - t$ max flow in disguise!

- Min-Cost Max-Flow: every edge also has a cost. Find minimum cost max-flow. Can be solved with just normal max flow!