Lecture 18: Max-Flow Min-Cut

Michael Dinitz

October 28, 2021 601.433/633 Introduction to Algorithms

Introduction

Flow Network:

- Directed graph G = (V, E)
- ► Capacities $c : E \to \mathbb{R}_{\geq 0}$ (simplify notation: c(x,y) = 0 if $(x,y) \notin E$)
- ▶ Source $\mathbf{s} \in \mathbf{V}$, sink $\mathbf{t} \in \mathbf{V}$

Today: flows and cuts

- ▶ Flow: "sending stuff" from **s** to **t**
- Cut: separating t from s

Turn out to be very related!

Today: some algorithms but not efficient. Mostly structure. Better algorithms Thereay.

Michael Dinitz Lecture 18: Max-Flow Min-Cut

Intuition: send "stuff" from s to t

Water in a city water system, traffic along roads, trains along tracks, . . .

Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021

Intuition: send "stuff" from s to t

▶ Water in a city water system, traffic along roads, trains along tracks, . . .

Definition

An (s,t)-flow is a function $f: E \to \mathbb{R}_{\geq 0}$ such that

$$\sum_{u:(u,v)\in E} f(u,v) = \sum_{u:(v,u)\in E} f(v,u)$$

for all $\mathbf{v} \in \mathbf{V} \setminus \{\mathbf{s}, \mathbf{t}\}$. This constraint is known as *flow conservation*.

Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021

Intuition: send "stuff" from s to t

▶ Water in a city water system, traffic along roads, trains along tracks, . . .

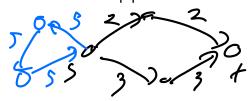
Definition

An (s,t)-flow is a function $f: E \to \mathbb{R}_{\geq 0}$ such that

$$\sum_{u:(u,v)\in E} f(u,v) = \sum_{u:(v,u)\in E} f(v,u)$$

for all $\mathbf{v} \in \mathbf{V} \setminus \{\mathbf{s}, \mathbf{t}\}$. This constraint is known as *flow conservation*.

Value of flow $|\mathbf{f}|$: "total amount of stuff sent from \mathbf{s} to \mathbf{t} "



Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021 3 / 21

Intuition: send "stuff" from s to t

Water in a city water system, traffic along roads, trains along tracks, . . .

Definition

An (s,t)-flow is a function $f: E \to \mathbb{R}_{\geq 0}$ such that

$$\sum_{u:(u,v)\in E} f(u,v) = \sum_{u:(v,u)\in E} f(v,u)$$

for all $\mathbf{v} \in \mathbf{V} \setminus \{\mathbf{s}, \mathbf{t}\}$. This constraint is known as *flow conservation*.

Value of flow $|\mathbf{f}|$: "total amount of stuff sent from \mathbf{s} to \mathbf{t} "

$$|f| = \sum_{u:(s,u)\in E} f(s,u) - \sum_{u:(u,s)\in E} f(u,s) = \sum_{u:(u,t)\in E} f(u,t) - \sum_{u:(t,u)\in E} f(t,u)$$

Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021 3 / 21

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

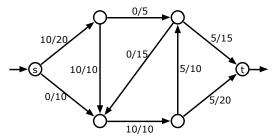
Definitions:

- ► An (s,t)-flow satisfying capacity constraints is a *feasible* flow.
- ▶ If **f(e)** = **c(e)** then **f** saturates **e**.
- ▶ If **f(e)** = **0** then **f** avoids **e**.

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

Definitions:

- ► An (s,t)-flow satisfying capacity constraints is a *feasible* flow.
- ▶ If **f**(**e**) = **c**(**e**) then **f** saturates **e**.
- If f(e) = 0 then f avoids e.

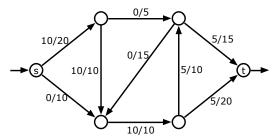


An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

Definitions:

- An (s,t)-flow satisfying capacity constraints is a *feasible* flow.
- ▶ If **f**(**e**) = **c**(**e**) then **f** saturates **e**.
- ▶ If **f(e)** = **0** then **f** avoids **e**.



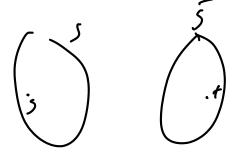
An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

Problem we'll talk about: find feasible flow of maximum value (max flow)

Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021 4 / 21

Definition

▶ An (s,t)-cut is a partition of V into (S,\bar{S}) such that $s \in S$, $t \notin S$



Definition

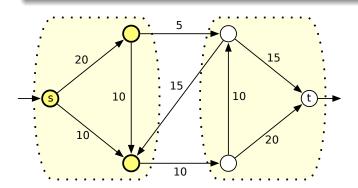
- ▶ An (s,t)-cut is a partition of V into (S,\bar{S}) such that $s \in S$, $t \notin S$
- ▶ The *capacity* of an (s,t)-cut (S,\bar{S}) is

$$cap(S,\bar{S}) = \sum_{(u,v)\in E: u\in S, v\in \bar{S}} c(u,v) = \sum_{u\in S} \sum_{v\in \bar{S}} c(u,v)$$

Definition

- ▶ An (s,t)-cut is a partition of V into (S,\bar{S}) such that $s \in S$, $t \notin S$
- ▶ The *capacity* of an (s,t)-cut (S,\bar{S}) is

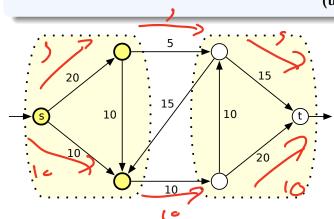
$$cap(S,\bar{S}) = \sum_{(u,v)\in E: u\in S, v\in \bar{S}} c(u,v) = \sum_{u\in S} \sum_{v\in \bar{S}} c(u,v)$$



Definition

- ▶ An (s,t)-cut is a partition of V into (S,\bar{S}) such that $s \in S$, $t \notin S$
- ▶ The *capacity* of an (s,t)-cut (S,\bar{S}) is

$$cap(S,\bar{S}) = \sum_{(u,v)\in E: u\in S, v\in \bar{S}} c(u,v) = \sum_{u\in S} \sum_{v\in \bar{S}} c(u,v)$$



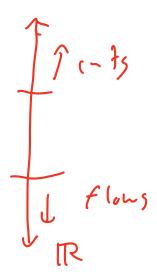
Problem we'll talk about: find (s,t)-cut of minimum capacity (min cut)

5 / 21

Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021

Theorem

Let **f** be a feasible (s,t)-flow, and let (S,\bar{S}) be an (s,t)-cut. Then $|f| \le cap(S,\bar{S})$.



Theorem

Let **f** be a feasible (s,t)-flow, and let (S,\bar{S}) be an (s,t)-cut. Then $|f| \le cap(S,\bar{S})$.

$$|\mathbf{f}| = \sum_{\mathbf{v} \in \mathbf{V}} \mathbf{f}(\mathbf{s}, \mathbf{v}) - \sum_{\mathbf{v} \in \mathbf{V}} \mathbf{f}(\mathbf{v}, \mathbf{s})$$
 (definition)

Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021

Theorem

Let **f** be a feasible (s,t)-flow, and let (S,\bar{S}) be an (s,t)-cut. Then $|f| \le cap(S,\bar{S})$.

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

$$= \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

(definition)

(flow conservation constraints)

Michael Dinitz

Theorem

Let **f** be a feasible (s,t)-flow, and let (S,\bar{S}) be an (s,t)-cut. Then $|f| \le cap(S,\bar{S})$.

$$\begin{aligned} |f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) \\ &= \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\ &= \sum_{u \in S} \left(\sum_{v \in \overline{S}} f(u, v) - \sum_{v \in \overline{S}} f(v, u) \right) \end{aligned}$$

(definition)

(flow conservation constraints)

(remove terms which cancel)

Theorem

Let **f** be a feasible (s,t)-flow, and let (S,\bar{S}) be an (s,t)-cut. Then $|f| \le cap(S,\bar{S})$.

$$|\mathbf{f}| = \sum_{\mathbf{v} \in \mathbf{V}} \mathbf{f}(\mathbf{s}, \mathbf{v}) - \sum_{\mathbf{v} \in \mathbf{V}} \mathbf{f}(\mathbf{v}, \mathbf{s})$$
 (definition)
$$= \sum_{\mathbf{u} \in \mathbf{S}} \left(\sum_{\mathbf{v} \in \mathbf{V}} \mathbf{f}(\mathbf{u}, \mathbf{v}) - \sum_{\mathbf{v} \in \mathbf{V}} \mathbf{f}(\mathbf{v}, \mathbf{u}) \right)$$
 (flow conservation constraints)
$$= \sum_{\mathbf{u} \in \mathbf{S}} \left(\sum_{\mathbf{v} \in \mathbf{S}} \mathbf{f}(\mathbf{u}, \mathbf{v}) + \sum_{\mathbf{v} \in \mathbf{S}} \mathbf{f}(\mathbf{v}, \mathbf{u}) \right)$$
 (remove terms which cancel)
$$\leq \sum_{\mathbf{u} \in \mathbf{S}} \sum_{\mathbf{v} \in \mathbf{S}} \mathbf{f}(\mathbf{u}, \mathbf{v})$$
 (flow is nonnegative)

6 / 21

Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021

Theorem

Let **f** be a feasible (s,t)-flow, and let (S,\bar{S}) be an (s,t)-cut. Then $|f| \le cap(S,\bar{S})$.

$$|\mathbf{f}| = \sum_{\mathbf{v} \in V} \mathbf{f}(\mathbf{s}, \mathbf{v}) - \sum_{\mathbf{v} \in V} \mathbf{f}(\mathbf{v}, \mathbf{s})$$
 (definition)
$$= \sum_{\mathbf{u} \in S} \left(\sum_{\mathbf{v} \in V} \mathbf{f}(\mathbf{u}, \mathbf{v}) - \sum_{\mathbf{v} \in V} \mathbf{f}(\mathbf{v}, \mathbf{u}) \right)$$
 (flow conservation constraints)
$$= \sum_{\mathbf{u} \in S} \left(\sum_{\mathbf{v} \in \bar{S}} \mathbf{f}(\mathbf{u}, \mathbf{v}) - \sum_{\mathbf{v} \in \bar{S}} \mathbf{f}(\mathbf{v}, \mathbf{u}) \right)$$
 (remove terms which cancel)
$$\leq \sum_{\mathbf{u} \in S} \sum_{\mathbf{v} \in \bar{S}} \mathbf{f}(\mathbf{u}, \mathbf{v})$$
 (flow is nonnegative)
$$\leq \sum_{\mathbf{u} \in S} \sum_{\mathbf{v} \in \bar{S}} \mathbf{c}(\mathbf{u}, \mathbf{v}) = \mathbf{cap}(\mathbf{S}, \bar{S})$$
 (flow is feasible)

Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021 6 / 21

Max-Flow Min-Cut

Corollary

If **f** avoids every $\bar{S} \to S$ edge and saturates every $S \to \bar{S}$ edge, then **f** is a maximum flow and (S,\bar{S}) is a minimum cut.

Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021

Max-Flow Min-Cut

Corollary

If **f** avoids every $\bar{S} \to S$ edge and saturates every $S \to \bar{S}$ edge, then **f** is a maximum flow and (S,\bar{S}) is a minimum cut.

Theorem (Max-Flow Min-Cut Theorem)

In any flow network, value of max(s,t)-flow = capacity of min(s,t)-cut.

Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021

Max-Flow Min-Cut

Corollary

If **f** avoids every $\bar{S} \to S$ edge and saturates every $S \to \bar{S}$ edge, then **f** is a maximum flow and (S,\bar{S}) is a minimum cut.

Theorem (Max-Flow Min-Cut Theorem)

In any flow network, value of max(s,t)-flow = capacity of min(s,t)-cut.

Spend rest of today proving this.

- Many different valid proofs.
- We'll see a classical proof which will naturally lead to algorithms for these problems.

Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021

One Direction

Cycles of length 2 will turn out to be annoying. Get rid of them.

One Direction

Cycles of length 2 will turn out to be annoying. Get rid of them.

- Doesn't change max-flow or min-cut
- ▶ Increases #edges by constant factor, # nodes to original # edges.

Residual

Let f be feasible (s,t)-flow. Define *residual capacities*:

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

Residual

Let f be feasible (s,t)-flow. Define *residual capacities*:

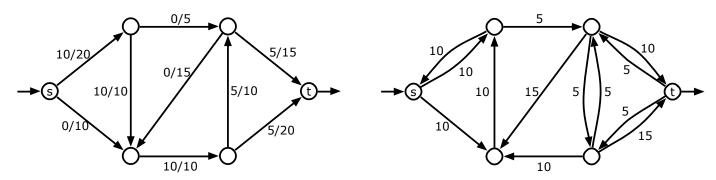
$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ f(v,u) & \text{if } (v,u) \in E \\ 0 & \text{otherwise} \end{cases}$$

Residual

Let f be feasible (s,t)-flow. Define *residual capacities*:

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ f(v,u) & \text{if } (v,u) \in E \\ 0 & \text{otherwise} \end{cases}$$

Residual Graph: $G_f = (V, E_f)$ where $(u, v) \in E_f$ if $c_f(u, v) > 0$.



A flow f in a weighted graph G and the corresponding residual graph G_f .

Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021 9 / 21

Let f be a max (s,t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Let f be a max (s,t)-flow with residual graph G_f .

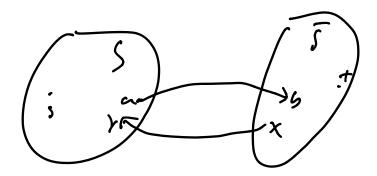
Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let f be a max (s,t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

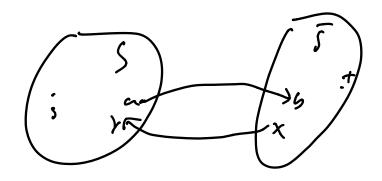


Let f be a max (s,t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{ \text{vertices reachable from } s \text{ in } G_f \}$

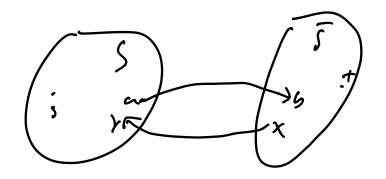


• (S,\bar{S}) an (s,t)-cut. \checkmark

Let f be a max (s,t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

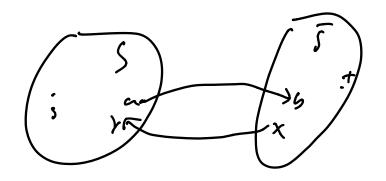


- ▶ (S,\bar{S}) an (s,t)-cut. \checkmark
- $ightharpoonup c_f(a,b) =$

Let f be a max (s,t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

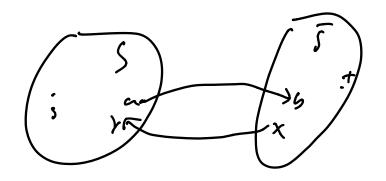


- ► (S, S̄) an (s, t)-cut. ✓
- $c_f(a,b) = 0$

Let f be a max (s,t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

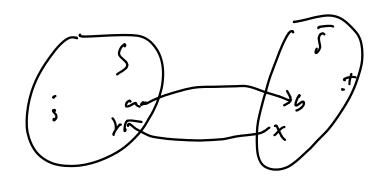


- ► (**S**,**S**̄) an (**s**,**t**)-cut. ✓
- $c_f(a,b) = 0$ c(a,b) f(a,b) = 0 c(a,b) = f(a,b)

Let f be a max (s,t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f



- ► (**S**,**S**̄) an (**s**,**t**)-cut. ✓
- $c_f(a,b) = 0$ c(a,b) f(a,b) = 0 c(a,b) = f(a,b)
- $c_f(y,x) =$

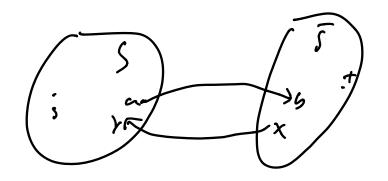
Start of Proof

Let f be a max (s,t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{ \text{vertices reachable from } s \text{ in } G_f \}$



- ► (**S**,**S**̄) an (**s**,**t**)-cut. ✓
- $c_f(a,b) = 0$ c(a,b) f(a,b) = 0 c(a,b) = f(a,b)
- $c_f(y,x) = 0$

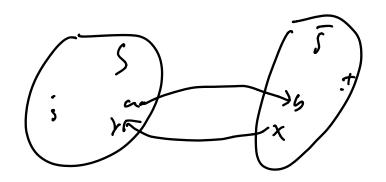
Start of Proof

Let **f** be a max (s,t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{ \text{vertices reachable from } s \text{ in } G_f \}$



•
$$(S, \bar{S})$$
 an (s, t) -cut. \checkmark

$$c_f(a,b) = 0$$

$$c(a,b) - f(a,b) = 0$$

$$c(a,b) = f(a,b)$$

$$c_f(y,x) = 0$$

$$f(x,y) = 0$$

10 / 21

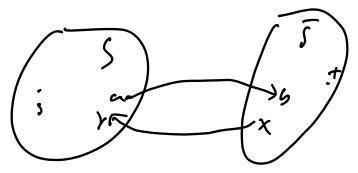
Start of Proof

Let f be a max (s,t)-flow with residual graph G_f .

Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{ \text{vertices reachable from } s \text{ in } G_f \}$



•
$$(S, \bar{S})$$
 an (s, t) -cut. \checkmark

$$c_f(a,b) = 0$$

$$c(a,b) - f(a,b) = 0$$

$$c(a,b) = f(a,b)$$

$$c_f(y,x) = 0$$

$$\implies f(x,y) = 0$$

f saturates $S \to \bar{S}$ edges, avoids $\bar{S} \to S$ edges $\Longrightarrow cap(S, \bar{S}) = |f|$ by corollary

Case 2

Suppose \exists an $\mathbf{s} \rightarrow \mathbf{t}$ path \mathbf{P} in $\mathbf{G}_{\mathbf{f}}$.

Called an augmenting path

Idea: show that we can "push" more flow along \mathbf{P} , so \mathbf{f} not a max flow. Contradiction, can't be in this case.

Case 2

Suppose \exists an $\mathbf{s} \to \mathbf{t}$ path \mathbf{P} in $\mathbf{G}_{\mathbf{f}}$.

Called an augmenting path

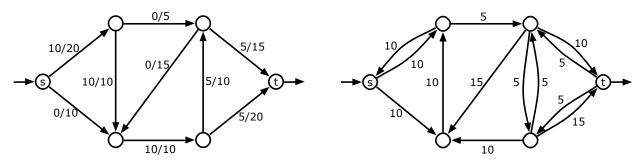
Idea: show that we can "push" more flow along \mathbf{P} , so \mathbf{f} not a max flow. Contradiction, can't be in this case.

• Foreshadowing: augmenting path allows us to send more flow. Algorithm to increase flow!

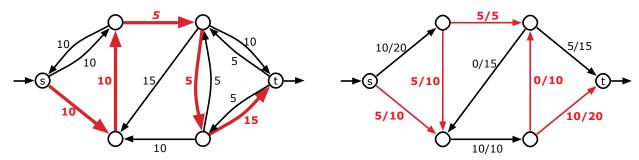
Michael Dinitz Lecture 18: Max-Flow Min-Cut October 28, 2021

11 / 21

Intuition



A flow f in a weighted graph G and the corresponding residual graph G_f .



An augmenting path in G_f with value F=5 and the augmented flow f'.

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$.

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$.

Define new flow f': for all $(u, v) \in E$, let

$$f'(u,v) = \begin{cases} f(u,v) + F & \text{if } (u,v) \text{ in } P \\ f(u,v) - F & \text{if } (v,u) \text{ in } P \\ f(u,v) & \text{otherwise} \end{cases}$$

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$.

Define new flow f': for all $(u, v) \in E$, let

$$f'(u,v) = \begin{cases} f(u,v) + F & \text{if } (u,v) \text{ in } P \\ f(u,v) - F & \text{if } (v,u) \text{ in } P \\ f(u,v) & \text{otherwise} \end{cases}$$

Claim: f' is a feasible (s, t)-flow with |f'| > |f|.

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$.

Define new flow f': for all $(u, v) \in E$, let

$$f'(u,v) = \begin{cases} f(u,v) + F & \text{if } (u,v) \text{ in } P \\ f(u,v) - F & \text{if } (v,u) \text{ in } P \\ f(u,v) & \text{otherwise} \end{cases}$$

Claim: f' is a feasible (s, t)-flow with |f'| > |f|.

Plan: prove (sketch) each subclaim individually

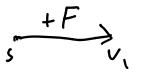
- |f'| > |f|
- ▶ **f**′ an **(s,t)**-flow (flow conservation)
- f' feasible (obeys capacities)

Michael Dinitz

$$|\mathbf{f}'| > |\mathbf{f}|$$

Consider first edge of P (out of s), say (s, v_1)

- ▶ If $(s, v_1) \in E$, then $f'(s, v_1) = f(s, v_1) + F$
- ▶ If $(v_1, s) \in E$ then $f'(v_1, s) = f(v_1, s) F$

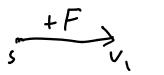


ov

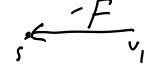
$$|\mathbf{f}'| > |\mathbf{f}|$$

Consider first edge of P (out of s), say (s, v_1)

- ▶ If $(s, v_1) \in E$, then $f'(s, v_1) = f(s, v_1) + F$
- ▶ If $(v_1, s) \in E$ then $f'(v_1, s) = f(v_1, s) F$



ov



$$|f'| = \sum_{u} f'(s, u) - \sum_{u} f'(u, s) = |f| + F > |f|$$

f' obeys flow conservation

Consider some $\mathbf{u} \in \mathbf{V} \setminus \{\mathbf{s}, \mathbf{t}\}$.

October 28, 2021

15 / 21

f' obeys flow conservation

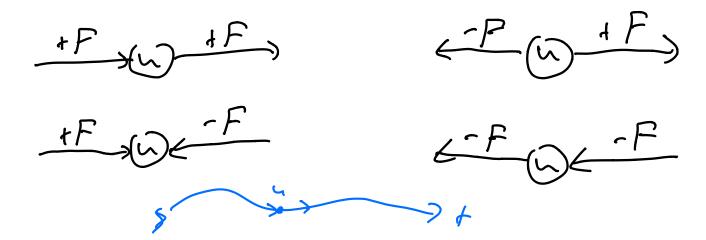
Consider some $\mathbf{u} \in \mathbf{V} \setminus \{\mathbf{s}, \mathbf{t}\}$.

▶ If $\mathbf{u} \notin \mathbf{P}$, no change in flow at $\mathbf{u} \implies$ still balanced.

f' obeys flow conservation

Consider some $\mathbf{u} \in \mathbf{V} \setminus \{\mathbf{s}, \mathbf{t}\}$.

- ▶ If $\mathbf{u} \notin \mathbf{P}$, no change in flow at $\mathbf{u} \implies$ still balanced.
- ▶ If $\mathbf{u} \in \mathbf{P}$, four possibilities:



October 28, 2021

15 / 21

Michael Dinitz Lecture 18: Max-Flow Min-Cut

Let $(u, v) \in E$

Let
$$(u, v) \in E$$

▶ If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \le c(u, v)$

16 / 21

Let
$$(u, v) \in E$$

- ▶ If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \le c(u, v)$
 - ▶ If (u, v) ∈ P:

Let
$$(u, v) \in E$$

- ► If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \le c(u, v)$
- ▶ If (u, v) ∈ P:

$$f'(u, v) = f(u, v) + F$$

 $\leq f(u, v) + c_f(u, v)$
 $= f(u, v) + c(u, v) - f(u, v)$
 $= c(u, v)$

Let
$$(u, v) \in E$$

- ▶ If $(u,v),(v,u) \notin P$: $f'(u,v) = f(u,v) \le c(u,v)$
 - ▶ If (u, v) ∈ P:

▶ If (v, u) ∈ P:

$$f'(u,v) = f(u,v) + F$$

$$\leq f(u,v) + c_f(u,v)$$

$$= f(u,v) + c(u,v) - f(u,v)$$

$$= c(u,v)$$

Let
$$(u, v) \in E$$

- ▶ If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \le c(u, v)$
- ▶ If (u, v) ∈ P:

$$\begin{split} f'(u,v) &= f(u,v) + F \\ &\leq f(u,v) + c_f(u,v) \\ &= f(u,v) + c(u,v) - f(u,v) \\ &= c(u,v) \end{split}$$

▶ If (v, u) ∈ P:

$$f'(u,v) = f(u,v) - F$$

$$\geq f(u,v) - c_f(u,v)$$

$$= f(u,v) - f(u,v)$$

$$= 0$$

Ford-Fulkerson Algorithm and Integrality

FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

```
\begin{split} f &= \vec{0} \\ \text{while}(\exists s \to t \text{ path } P \text{ in } G_f) \ \{ \\ &F = min_{e \in P} \, c_f(e) \\ &\text{Push } F \text{ flow along } P \text{ to get new flow } f' \\ &f = f' \\ \} \\ \text{return } f \end{split}
```

FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

```
\begin{split} f &= \vec{0} \\ \text{while}(\exists s \to t \text{ path } P \text{ in } G_f) \; \{ \\ F &= \min_{e \in P} c_f(e) \\ \text{Push } F \text{ flow along } P \text{ to get new flow } f' \\ f &= f' \\ \} \\ \text{return } f \text{ or } \{ v \in V : v \text{ reachable from } s \text{ in } G_f \} \end{split}
```

FF Algorithm

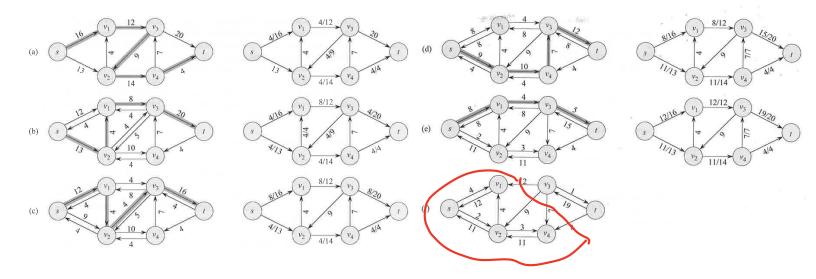
Obvious algorithm from previous proof: keep pushing flow!

```
\begin{split} f &= \vec{0} \\ \text{while}(\exists s \to t \text{ path } P \text{ in } G_f) \ \{ \\ &F = min_{e \in P} \, c_f(e) \\ &\text{Push } F \text{ flow along } P \text{ to get new flow } f' \\ &f = f' \\ \} \\ &\text{return } f \text{ or } \{ v \in V : v \text{ reachable from } s \text{ in } G_f \} \end{split}
```

Correctness: directly from previous proof

18 / 21

Example



Integrality

Corollary

If all capacities are integers, then there is a max flow such that the flow through every edge is an integer

Integrality

Corollary

If all capacities are integers, then there is a max flow such that the flow through every edge is an integer

Proof.

Induction on iterations of the Ford-Fulkerson algorithm: initially true, stays true \implies true at end.

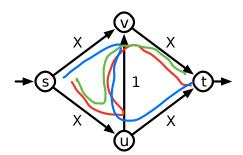
Theorem

If all capacities are integers and the max flow value is \mathbf{F} , Ford-Fulkerson takes time at most $\mathbf{O}(\mathbf{F}(\mathbf{m}+\mathbf{n}))$

Theorem

If all capacities are integers and the max flow value is \mathbf{F} , Ford-Fulkerson takes time at most $\mathbf{O}(\mathbf{F}(\mathbf{m} + \mathbf{n}))$

Finding path takes O(m + n) time, increase flow by at least 1

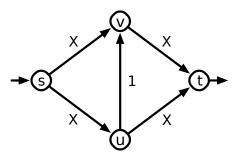


A bad example for the Ford-Fulkerson algorithm.

Theorem

If all capacities are integers and the max flow value is \mathbf{F} , Ford-Fulkerson takes time at most $\mathbf{O}(\mathbf{F}(\mathbf{m} + \mathbf{n}))$

Finding path takes O(m + n) time, increase flow by at least 1



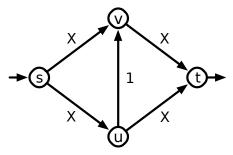
Running time $\geq \#$ iterations.

A bad example for the Ford-Fulkerson algorithm.

Theorem

If all capacities are integers and the max flow value is \mathbf{F} , Ford-Fulkerson takes time at most $\mathbf{O}(\mathbf{F}(\mathbf{m}+\mathbf{n}))$

Finding path takes O(m + n) time, increase flow by at least 1



A bad example for the Ford-Fulkerson algorithm.

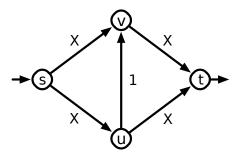
Running time $\geq \#$ iterations. This example:

• Running time: $\Omega(x)$

Theorem

If all capacities are integers and the max flow value is **F**, Ford-Fulkerson takes time at most O(F(m+n))

Finding path takes O(m + n) time, increase flow by at least 1



A bad example for the Ford-Fulkerson algorithm.

Running time $\geq \#$ iterations. This example:

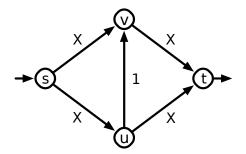
- Running time: $\Omega(x)$
- Input size $O(\log x) + O(1)$

Lecture 18: Max-Flow Min-Cut October 28, 2021 21 / 21

Theorem

If all capacities are integers and the max flow value is \mathbf{F} , Ford-Fulkerson takes time at most $\mathbf{O}(\mathbf{F}(\mathbf{m} + \mathbf{n}))$

Finding path takes O(m + n) time, increase flow by at least 1



A bad example for the Ford-Fulkerson algorithm.

Running time $\geq \#$ iterations.

This example:

- Running time: $\Omega(x)$
- Input size $O(\log x) + O(1)$

⇒ Exponential time!