Lecture 17: Matroids and the Greedy Algorithm

Michael Dinitz

October 26, 2021 601.433/633 Introduction to Algorithms

Introduction

Last time: somewhat greedy algorithm (Prim's), extremely greedy algorithm (Kruskal's) Question: when does greedy algorithm return optimal solution?

Want abstraction that includes MSTs, but also works for many other problems.

Weighted Set System:

- Universe U
- Collection $\mathcal{I} \subseteq 2^{U}$ (so $I \subseteq U$ for all $I \in \mathcal{I}$). Called *independent sets*
- Weights $\mathbf{w}: \mathbf{U} \to \mathbb{R}^+$

Problem: find max weight independent set

MST as Weighted Set System

MST: weighted graph $\mathbf{G} = (\mathbf{V}, \mathbf{E}, \mathbf{w})$. Find MST.

Set system:

- ▶ U = E
- $\mathcal{I} = \{ \mathbf{F} \subseteq \mathbf{E} : (\mathbf{V}, \mathbf{F}) \text{ a forest} \}$

What about weights? MST is minimize, but problem we defined is maximize.

• Let $\bar{\mathbf{w}} > \mathbf{w}(\mathbf{e})$ for all $\mathbf{e} \in \mathbf{E}$, let $\mathbf{w}'(\mathbf{e}) = \bar{\mathbf{w}} - \mathbf{w}(\mathbf{e})$ for all $\mathbf{e} \in \mathbf{E}$

For any tree \mathbf{T} :

$$w'(\mathsf{T}) = \sum_{e \in \mathsf{T}} w'(e) = \sum_{e \in \mathsf{T}} (\bar{w} - w(e)) = (n-1)\bar{w} - \sum_{e \in \mathsf{T}} w(e)$$

So under weights $\bm{w}',$ max-weight IS = max-weight forest = max-weight tree = min-weight tree (weights $\bm{w})$

▶ So finding max-weight forest = finding min spanning tree.

Useful Properties of Forests

Let $\mathbf{U} = \mathbf{E}$ and $\mathcal{I} = {\mathbf{F} \subseteq \mathbf{E} : (\mathbf{V}, \mathbf{F}) \text{ a forest}}$

Useful properties:

- 1. $\emptyset \in \mathcal{I}$
- 2. If $\mathbf{F} \in \mathcal{I}$ and $\mathbf{F}' \subseteq \mathbf{F}$, then $\mathbf{F}' \in \mathcal{I}$
- Augmentation Property: If F₁ ∈ I and F₂ ∈ I with |F₂| > |F₁|, then there is some edge e ∈ F₂ × F₁ such that F₁ ∪ {e} ∈ I.

Proof Sketch that Forests have Augmentation Property.

Suppose false: no edge in $F_2 \smallsetminus F_1$ can be added to $F_1.$ Let c_1 = # components in $F_1, \, c_2$ = # components in F_2

 \implies every edge of F_2 has both endpoints in same component of F_1

 \implies every component of F_2 contained in component of $F_1 \implies c_2 \ge c_1$ But $c_2 = n - |F_2| < n - |F_1| = c_1$.

Contradiction.

Matroids

Definition

 (U, \mathcal{I}) is a *matroid* if the following three properties hold:

- 1. $\emptyset \in \mathcal{I}$,
- 2. If $\mathbf{F} \in \mathcal{I}$ and $\mathbf{F}' \subseteq \mathbf{F}$, then $\mathbf{F}' \in \mathcal{I}$, and

3. If $F_1 \in \mathcal{I}$ and $F_2 \in \mathcal{I}$ with $|F_2| > |F_1|$, then there is some element $e \in F_2 \setminus F_1$ such that $F_1 \cup \{e\} \in \mathcal{I}$.

 (U, \mathcal{I}) is a *hereditary set system* if the first two properties hold.

Matroid theory: super interesting area of combinatorics! Surprising amount of structure.

Warmup: In any matroid, the maximal independent sets (called bases) have the same size (called the rank of the matroid).

Examples of Matroids

- Forests in graphs
- Linearly independent vectors in vector space
 - ${}^{\blacktriangleright}$ U a finite set of vectors in \mathbb{R}^d
 - $\mathcal{I} = {\mathbf{F} \subseteq \mathbf{U} : \mathbf{F} \text{ linearly independent}}$
 - Ø linearly independent
 - If F linearly independent and $F' \subseteq F$, then F' linearly independent
 - Augmentation: if F_1 linearly independent, F_2 linearly independent, and $|F_2| > |F_1| \implies dim(span(F_1)) = |F_1| < |F_2| = dim(span(F_2))$

Matroids: generalize both graph theory and linear algebra!

 Originally invented by Whitney as an attempt to generalize the concept of "linear independence"

Representation

To do algorithms with matroids, need to figure out how they're represented.

- Option 1: list all independent sets
 - Too many of them!

What did we need for MST (Kruskal)?

Independence Oracle: algorithm which take $\mathbf{F} \subseteq \mathbf{U}$, returns YES if $\mathbf{F} \in \mathcal{I}$, NO if $\mathbf{F} \notin \mathcal{I}$ For MST: "does \mathbf{F} have any cycles"? Independence oracle: DFS/BFS

We'll assume we have independence oracle.

Greedy Algorithm

Kruskal, generalized to matroids (and max weight)!

```
\label{eq:F} \begin{array}{l} \textbf{F} = \varnothing \\ \text{Sort } \textbf{U} \text{ by weight (largest to smallest)} \\ \text{For each } \textbf{u} \in \textbf{U} \text{ in sorted order } \{ \\ \quad \text{If } \textbf{F} \cup \{ \textbf{u} \} \in \mathcal{I}, \text{ add } \textbf{u} \text{ to } \textbf{F} \\ \\ \end{array} \\ \begin{array}{l} \text{Return } \textbf{F} \end{array}
```

Correctness

Theorem

Let **F** be independent set returned by greedy. Then $w(F) \ge w(F')$ for all $F' \in \mathcal{I}$.

▶ $F = \{f_1, f_2, \dots, f_r\}$, where $w(f_i) \ge w(f_{i+1})$ for all i (order added by greedy)

▶
$$F' = \{e_1, e_2, \dots, e_r\}$$
 where $w(e_i) \ge w(e_{i+1})$ for all i

Claim: $w(f_i) \ge w(e_i)$ for all i.

Proof: Suppose false, let j smallest integer such that $w(f_j) < w(e_j)$.

Let
$$\mathsf{F_1}$$
 = $\{\mathsf{f_1},\ldots,\mathsf{f_{j-1}}\}$ and let $\mathsf{F_2}$ = $\{\mathsf{e_1},\ldots,\mathsf{e_j}\}$

 $|\mathsf{F}_2| > |\mathsf{F}_1| \text{, so by augmentation there is some } \mathbf{e}_z \in \mathsf{F}_2 \smallsetminus \mathsf{F}_1 \text{ such that } \mathsf{F}_1 \cup \{\mathbf{e}_z\} \in \mathcal{I}.$

$$w(e_z) \ge w(e_j) > w(f_j)$$

Contradiction! Greedy would add e_z next, not f_j .

So greedy works on matroids. Amazing fact: if greedy works, set system is a matroid!

Theorem

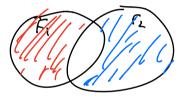
Let $(\mathbf{U}, \mathcal{I})$ be an hereditary set system. If for every weighting $\mathbf{w} : \mathbf{U} \to \mathbb{R}_{\geq 0}$ the greedy algorithm returns a maximum weight independent set, then $(\mathbf{U}, \mathcal{I})$ is a matroid.

So for hereditary set systems, matroids exactly characterize when the greedy algorithm works!

Proof

Contradiction. Suppose false \implies (U, \mathcal{I}) hereditary but not matroid.

 $\implies \exists \mathsf{F}_1,\mathsf{F}_2 \in \mathcal{I} \text{ such that } |\mathsf{F}_1| < |\mathsf{F}_2| \text{ but } \mathsf{F}_1 \cup \{e\} \notin \mathcal{I} \text{ for all } e \in \mathsf{F}_2 \smallsetminus \mathsf{F}_1$



Easy facts:

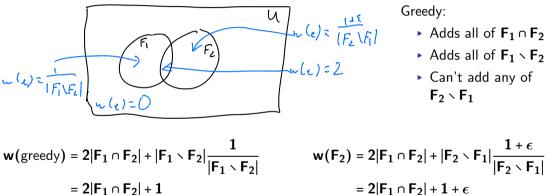
1. $|\mathbf{F}_2 \setminus \mathbf{F}_1| > |\mathbf{F}_1 \setminus \mathbf{F}_2|$

$$2. |\mathbf{F}_2 \setminus \mathbf{F}_1| \ge 1$$

- 3. $|F_1 \setminus F_2| \ge 1$ (hereditary)
- $\implies \exists \epsilon > 0$ such that $0 < (1 + \epsilon) |\mathsf{F}_1 \smallsetminus \mathsf{F}_2| < |\mathsf{F}_2 \smallsetminus \mathsf{F}_1|$

$$\implies \frac{1}{|\mathsf{F}_1 \smallsetminus \mathsf{F}_2|} > \frac{1+\epsilon}{|\mathsf{F}_2 \smallsetminus \mathsf{F}_1|}$$

Proof (cont'd) Use fact that $\frac{1}{|F_1 \setminus F_2|} > \frac{1+\epsilon}{|F_2 \setminus F_1|}$ to define weights.



$$||\mathbf{r}_2| + \mathbf{I} = 2|\mathbf{r}_1||\mathbf{r}_2| + 1$$

Greedy not optimal: contradiction!