Lecture 16: Minimum Spanning Trees

Michael Dinitz

October 21, 2021 601.433/633 Introduction to Algorithms

Introduction

Definition

A *spanning tree* of an undirected graph G = (V, E) is a set of edges $T \subseteq E$ such that (V, T) is connected and acyclic.

Definition

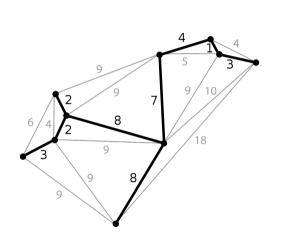
Minimum Spanning Tree problem (MST):

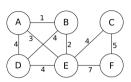
- Input:
 - Undirected graph G = (V, E)
 - ▶ Edge weights $\mathbf{w} : \mathbf{E} \to \mathbb{R}_{\geq \mathbf{0}}$
- Output: Spanning tree minimizing $w(T) = \sum_{e \in T} w(e)$.

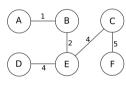
Foundational problem in network design. Tons of applications.

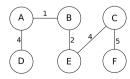
Today: one "recipe", two different algorithms from recipe. Main idea: greedy.

Examples









Generic Algorithm

Definition

Suppose that **A** is subset of *some* MST. If $\mathbf{A} \cup \{\mathbf{e}\}$ is also a subset of some MST, then **e** is *safe* for **A**.

Definition

Suppose that A is subset of *some* MST. If $A \cup \{e\}$ is also a subset of some MST, then e is *safe* for A.

```
Generic-MST {
    A = Ø
    while(A not a spanning tree) {
        find an edge e safe for A
        A = A ∪ {e}
    }
    return A
}
```

Definition

Suppose that **A** is subset of *some* MST. If $\mathbf{A} \cup \{\mathbf{e}\}$ is also a subset of some MST, then **e** is *safe* for **A**.

```
Generic-MST {
    A = Ø
    while(A not a spanning tree) {
        find an edge e safe for A
        A = A ∪ {e}
    }
    return A
}
```

Theorem

Generic-MST is correct: it always returns an MST.

Definition

Suppose that **A** is subset of *some* MST. If $\mathbf{A} \cup \{\mathbf{e}\}$ is also a subset of some MST, then **e** is *safe* for **A**.

```
Generic-MST {
    A = Ø
    while(A not a spanning tree) {
        find an edge e safe for A
        A = A ∪ {e}
    }
    return A
}
```

Theorem

Generic-MST is correct: it always returns an MST.

Proof.

Induction.

Claim: **A** always a subset of some MST.

Base case: ✓

Inductive step: ✓

 Michael Dinitz
 Lecture 16: MST
 October 21, 2021
 5 / 16

Definition

Suppose that **A** is subset of *some* MST. If $\mathbf{A} \cup \{\mathbf{e}\}$ is also a subset of some MST, then **e** is *safe* for **A**.

```
Generic-MST {
    A = Ø
    while(A not a spanning tree) {
        find an edge e safe for A
        A = A ∪ {e}
    }
    return A
}
```

Theorem

Generic-MST is correct: it always returns an MST.

Proof.

Induction.

Claim: **A** always a subset of some MST.

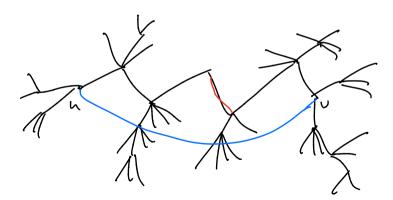
Base case: ✓
Inductive step: ✓

But how to find a safe edge? And which one to add?

 Michael Dinitz
 Lecture 16: MST
 October 21, 2021
 5 / 16

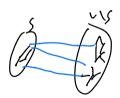
Lemma

Let **T** be a spanning tree, let $\mathbf{u}, \mathbf{v} \in \mathbf{V}$, and let **P** be the $\mathbf{u} - \mathbf{v}$ path in **T**. If $\{\mathbf{u}, \mathbf{v}\} \notin \mathbf{T}$, then $\mathbf{T}' = (\mathbf{T} \cup \{\{\mathbf{u}, \mathbf{v}\}\}) \setminus \{\mathbf{e}\}\$ is a spanning tree for all $\mathbf{e} \in \mathbf{P}$.



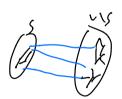
Definition

A cut (S, V \ S) (or (S, \bar{S}) or just S) is a partition of V into two parts. Edge e crosses cut (S, \bar{S}) if e has one endpoint in S and one endpoint in \bar{S} .



Definition

A cut (S, V \ S) (or (S, \bar{S}) or just S) is a partition of V into two parts. Edge e crosses cut (S, \bar{S}) if e has one endpoint in S and one endpoint in \bar{S} .

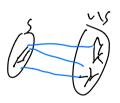


Definition

Cut (S, \overline{S}) respects $A \subseteq E$ if no edge in A crosses (S, \overline{S})

Definition

A cut (S, V \ S) (or (S, \bar{S}) or just S) is a partition of V into two parts. Edge e crosses cut (S, \bar{S}) if e has one endpoint in S and one endpoint in \bar{S} .



Definition

Cut (S, \overline{S}) respects $A \subseteq E$ if no edge in A crosses (S, \overline{S})

Definition

e is a *light edge* for (S, \bar{S}) if e crosses (S, \bar{S}) and $w(e) = min_{e' \text{ crossing } (S, \bar{S})} w(e')$

Theorem

Let $\mathbf{A} \subseteq \mathbf{E}$ be a subset of some MST \mathbf{T} , let $(\mathbf{S}, \overline{\mathbf{S}})$ be a cut respecting \mathbf{A} , and let $\mathbf{e} = \{\mathbf{u}, \mathbf{v}\}$ be a light edge for $(\mathbf{S}, \overline{\mathbf{S}})$. Then \mathbf{e} is safe for \mathbf{A} .

Theorem

Let $\mathbf{A} \subseteq \mathbf{E}$ be a subset of some MST \mathbf{T} , let $(\mathbf{S}, \overline{\mathbf{S}})$ be a cut respecting \mathbf{A} , and let $\mathbf{e} = \{\mathbf{u}, \mathbf{v}\}$ be a light edge for $(\mathbf{S}, \overline{\mathbf{S}})$. Then \mathbf{e} is safe for \mathbf{A} .

Need to show there is an MST containing $\mathbf{A} \cup \{\mathbf{e}\}$.

Theorem

Let $\mathbf{A} \subseteq \mathbf{E}$ be a subset of some MST \mathbf{T} , let $(\mathbf{S}, \bar{\mathbf{S}})$ be a cut respecting \mathbf{A} , and let $\mathbf{e} = \{\mathbf{u}, \mathbf{v}\}$ be a light edge for $(\mathbf{S}, \bar{\mathbf{S}})$. Then \mathbf{e} is safe for \mathbf{A} .

Need to show there is an MST containing $\mathbf{A} \cup \{\mathbf{e}\}$.

If **e** ∈ **T**: ✓

Theorem

Let $\mathbf{A} \subseteq \mathbf{E}$ be a subset of some MST \mathbf{T} , let $(\mathbf{S}, \bar{\mathbf{S}})$ be a cut respecting \mathbf{A} , and let $\mathbf{e} = \{\mathbf{u}, \mathbf{v}\}$ be a light edge for $(\mathbf{S}, \bar{\mathbf{S}})$. Then \mathbf{e} is safe for \mathbf{A} .

Need to show there is an MST containing $\mathbf{A} \cup \{\mathbf{e}\}$.

If $\mathbf{e} \in \mathbf{T}$: \checkmark Otherwise:

Theorem

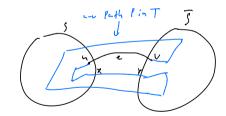
Let $A \subseteq E$ be a subset of some MST T, let (S, \overline{S}) be a cut respecting A, and let $e = \{u, v\}$ be a light edge for (S, \overline{S}) . Then e is safe for A.

Need to show there is an MST containing $\mathbf{A} \cup \{\mathbf{e}\}$.

If $\mathbf{e} \in \mathbf{T}$: \checkmark Otherwise:

Let
$$T' = (T \cup \{e\}) \setminus \{\{x,y\}\}$$

 \implies **T**' a spanning tree by first lemma



Theorem

Let $\mathbf{A} \subseteq \mathbf{E}$ be a subset of some MST \mathbf{T} , let $(\mathbf{S}, \overline{\mathbf{S}})$ be a cut respecting \mathbf{A} , and let $\mathbf{e} = \{\mathbf{u}, \mathbf{v}\}$ be a light edge for $(\mathbf{S}, \overline{\mathbf{S}})$. Then \mathbf{e} is safe for \mathbf{A} .

Need to show there is an MST containing $\mathbf{A} \cup \{\mathbf{e}\}$.

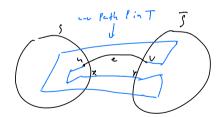
If $\mathbf{e} \in \mathbf{T}$: \checkmark Otherwise:

Let
$$T' = (T \cup \{e\}) \setminus \{\{x,y\}\}$$

 \implies **T**' a spanning tree by first lemma

$$\{x,y\} \notin A$$
, since (S,\bar{S}) respects A

$$\implies$$
 $\mathbf{A} \cup \{\mathbf{e}\} \subseteq \mathbf{T}'$



Theorem

Let $\mathbf{A} \subseteq \mathbf{E}$ be a subset of some MST \mathbf{T} , let $(\mathbf{S}, \overline{\mathbf{S}})$ be a cut respecting \mathbf{A} , and let $\mathbf{e} = \{\mathbf{u}, \mathbf{v}\}$ be a light edge for $(\mathbf{S}, \overline{\mathbf{S}})$. Then \mathbf{e} is safe for \mathbf{A} .

Need to show there is an MST containing $\mathbf{A} \cup \{\mathbf{e}\}$.

If $\mathbf{e} \in \mathbf{T}$: \checkmark Otherwise:

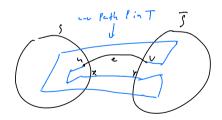
Let
$$T' = (T \cup \{e\}) \setminus \{\{x,y\}\}$$

$$\implies$$
 T $'$ a spanning tree by first lemma

$$\{x,y\} \notin A$$
, since (S,\bar{S}) respects A

$$\implies$$
 $\mathbf{A} \cup \{\mathbf{e}\} \subseteq \mathbf{T}'$

$$w(T') = w(T) + w(e) - w(x, y) \le w(T)$$



Theorem

Let $\mathbf{A} \subseteq \mathbf{E}$ be a subset of some MST \mathbf{T} , let $(\mathbf{S}, \bar{\mathbf{S}})$ be a cut respecting \mathbf{A} , and let $\mathbf{e} = \{\mathbf{u}, \mathbf{v}\}$ be a light edge for $(\mathbf{S}, \bar{\mathbf{S}})$. Then \mathbf{e} is safe for \mathbf{A} .

Need to show there is an MST containing $\mathbf{A} \cup \{\mathbf{e}\}$.

If $\mathbf{e} \in \mathbf{T}$: \checkmark Otherwise:

Let
$$T' = (T \cup \{e\}) \setminus \{\{x,y\}\}$$

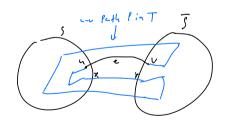
$$\implies$$
 T' a spanning tree by first lemma

$$\{x,y\} \notin A$$
, since (S,\bar{S}) respects A

$$\implies$$
 $\mathbf{A} \cup \{\mathbf{e}\} \subseteq \mathbf{T}'$

$$w(T') = w(T) + w(e) - w(x, y) \le w(T)$$

$$\implies$$
 T' an MST containing $\mathbf{A} \cup \{\mathbf{e}\}\$



8 / 16

Prim's Algorithm

9 / 16

Prim's Algorithm

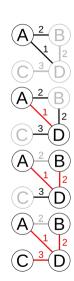
Idea: start at arbitrary node \mathbf{u} . Greedily grow MST out of \mathbf{u} .

```
\begin{array}{l} \textbf{A} = \varnothing \\ \text{Let } \textbf{u} \text{ be an arbitrary node, and let } \textbf{S} = \{\textbf{u}\} \\ \text{while}(\textbf{A} \text{ is not a spanning tree}) \ \{ \\ \text{Find an edge } \{\textbf{x}, \textbf{y}\} \text{ with } \textbf{x} \in \textbf{S} \text{ and } \textbf{y} \notin \textbf{S} \text{ that is light for } (\textbf{S}, \overline{\textbf{S}}) \\ \textbf{A} \leftarrow \textbf{A} \cup \{\{\textbf{x}, \textbf{y}\}\} \\ \textbf{S} \leftarrow \textbf{S} \cup \{\textbf{y}\} \\ \} \\ \text{return } \textbf{A} \end{array}
```

Prim's Algorithm

Idea: start at arbitrary node u. Greedily grow MST out of u.

```
\label{eq:A=Ø} \begin{array}{l} \textbf{Let } \textbf{u} \text{ be an arbitrary node, and let } \textbf{S} = \{\textbf{u}\} \\ \text{while}(\textbf{A} \text{ is not a spanning tree}) \ \{ \\ \text{Find an edge } \{\textbf{x}, \textbf{y}\} \text{ with } \textbf{x} \in \textbf{S} \text{ and } \textbf{y} \notin \textbf{S} \text{ that is light for } (\textbf{S}, \overline{\textbf{S}}) \\ \textbf{A} \leftarrow \textbf{A} \cup \{\{\textbf{x}, \textbf{y}\}\} \\ \textbf{S} \leftarrow \textbf{S} \cup \{\textbf{y}\} \\ \} \\ \text{return } \textbf{A} \end{array}
```



Correctness

Theorem

Prim's algorithm returns an MST.

Correctness

Theorem

Prim's algorithm returns an MST.

Proof.

Just Generic-MST!

Correctness

Theorem

Prim's algorithm returns an MST.

Proof.

Just Generic-MST!

- ▶ (S, S̄) always respects A (induction).
- If edge e added then light for (S, \overline{S})
- ▶ Hence **e** safe for **A** by main structural theorem.

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \Longrightarrow O(m)$ time
- ► Total **O(mn)**

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \Longrightarrow O(m)$ time
- ► Total **O(mn)**

Like Dijkstra's algorithm, do better by using a data structure: heap!

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \Longrightarrow O(m)$ time
- ► Total **O(mn)**

Like Dijkstra's algorithm, do better by using a data structure: heap!

▶ Need to be able to get minimum-weight edge across (S, \overline{S})

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \Longrightarrow O(m)$ time
- ► Total O(mn)

Like Dijkstra's algorithm, do better by using a data structure: heap!

▶ Need to be able to get minimum-weight edge across (S, \overline{S})

Heap of vertices in \bar{S} . Key of v is min-weight edge from v to S.

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S,\bar{S}) \Longrightarrow O(m)$ time
- ► Total **O(mn)**

Like Dijkstra's algorithm, do better by using a data structure: heap!

▶ Need to be able to get minimum-weight edge across (S, \overline{S})

Heap of vertices in \bar{S} . Key of v is min-weight edge from v to S.

▶ When new vertex **y** added to **S**, need to update keys of nodes adjacent to **y**

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \Longrightarrow O(m)$ time
- ► Total **O(mn)**

Like Dijkstra's algorithm, do better by using a data structure: heap!

▶ Need to be able to get minimum-weight edge across (S, \overline{S})

Heap of vertices in \bar{S} . Key of v is min-weight edge from v to S.

- ▶ When new vertex **y** added to **S**, need to update keys of nodes adjacent to **y**
 - ▶ Happens at most **m** times total

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \Longrightarrow O(m)$ time
- ► Total **O(mn)**

Like Dijkstra's algorithm, do better by using a data structure: heap!

▶ Need to be able to get minimum-weight edge across (S, \overline{S})

Heap of vertices in \bar{S} . Key of v is min-weight edge from v to S.

- ▶ When new vertex **y** added to **S**, need to update keys of nodes adjacent to **y**
 - Happens at most m times total
- ▶ n Inserts, n Extract-Mins, m Decrease-Keys

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \overline{S}) \Longrightarrow O(m)$ time
- ► Total O(mn)

Like Dijkstra's algorithm, do better by using a data structure: heap!

▶ Need to be able to get minimum-weight edge across (S, \overline{S})

Heap of vertices in \bar{S} . Key of v is min-weight edge from v to S.

- ▶ When new vertex **y** added to **S**, need to update keys of nodes adjacent to **y**
 - Happens at most m times total
- ▶ n Inserts, n Extract-Mins, m Decrease-Keys
- ► Like Dijkstra, **O**(**m log n**) using binary heap. **O**(**m + n log n**) with Fibonacci heap (only Extract-Min is logarithmic)

Kruskal's Algorithm

13 / 16

Algorithm

Intuition: can we be even greedier than Prim's Algorithm?

14 / 16

Algorithm

Intuition: can we be even greedier than Prim's Algorithm?

```
A = Ø
Sort edges by weight (small to large)
For each edge e in this order {
   if A ∪ {e} has no cycles, A = A ∪ {e}
}
return A
```

Theorem

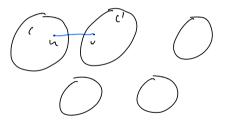
Kruskal's algorithm computes an MST.

Want to show just Generic-MST: when $\{u, v\}$ added, it was safe for **A**.

Theorem

Kruskal's algorithm computes an MST.

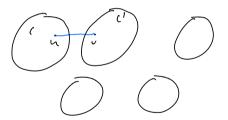
Want to show just Generic-MST: when $\{u,v\}$ added, it was safe for A.



Theorem

Kruskal's algorithm computes an MST.

Want to show just Generic-MST: when $\{u, v\}$ added, it was safe for **A**.

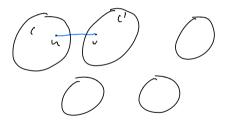


Consider cut (C, \overline{C}) . Respects **A**, and $\{u, v\}$ light for it.

Theorem

Kruskal's algorithm computes an MST.

Want to show just Generic-MST: when $\{u, v\}$ added, it was safe for **A**.



Consider cut (C, \bar{C}) . Respects A, and $\{u, v\}$ light for it. Main structural theorem $\implies \{u, v\}$ safe for A

Sorting edges: $O(m \log m) = O(m \log n)$

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already

connected.

Michael Dinitz Lecture 16: MST October 21, 2021 16 / 16

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: **m** iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Union-Find! Connected components of **A** are disjoint sets.

Make-Sets:

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: **m** iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Union-Find! Connected components of **A** are disjoint sets.

Make-Sets: n

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

- ▶ Make-Sets: n
- Finds:

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

- ▶ Make-Sets: n
- Finds: 2m

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: **m** iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

- ▶ Make-Sets: n
- Finds: 2m
- Unions:

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

- ▶ Make-Sets: n
- Finds: 2m
- ▶ Unions: n 1

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: **m** iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.

- Make-Sets: n
- Finds: 2m
- ▶ Unions: n 1

O(m log* n) using union-by-rank + path compression O(m + n log n) using list data structure

Michael Dinitz Lecture 16: MST October 21, 2021 16 / 16

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Union-Find! Connected components of **A** are disjoint sets.

- ▶ Make-Sets: n
- Finds: 2m
- ▶ Unions: n-1

O(m log* n) using union-by-rank + path compression

 $O(m + n \log n)$ using list data structure

Sorting dominates! $O(m \log n)$ total.