Lecture 15: All-Pairs Shortest Paths

Michael Dinitz

October 19, 2021
601.433/633 Introduction to Algorithms

Announcements

- HW5 due now
- HW6 due next Thursday
- Mid-Semester feedback on Campuswire!

Introduction

Setup:

- Directed graph G $=(\mathbf{V}, \mathbf{E})$
- Length $\ell(\mathbf{x}, \mathbf{y})$ on each edge $(\mathbf{x}, \mathbf{y}) \in \mathbf{E}$
- Length of path \mathbf{P} is $\ell(\mathbf{P})=\sum_{(x, y) \in \mathbf{P}} \ell(\mathbf{x}, \mathbf{y})$
- $\mathbf{d}(\mathrm{x}, \mathrm{y})=\boldsymbol{\operatorname { m i n }}_{\mathrm{x} \rightarrow \mathrm{y} \text { paths } \mathrm{P}} \ell(\mathrm{P})$

Last time: All distances from source node $\mathbf{v} \in \mathbf{V}$. Today: Distances between all pairs of nodes!

Introduction

Setup:

- Directed graph G $=(\mathbf{V}, \mathbf{E})$
- Length $\ell(\mathbf{x}, \mathbf{y})$ on each edge $(\mathbf{x}, \mathbf{y}) \in \mathbf{E}$
- Length of path \mathbf{P} is $\ell(\mathbf{P})=\sum_{(x, y) \in \mathbf{P}} \ell(\mathbf{x}, \mathbf{y})$
- $\mathbf{d}(\mathrm{x}, \mathrm{y})=\boldsymbol{\operatorname { m i n }}_{\mathrm{x} \rightarrow \mathrm{y} \text { paths } \mathrm{P}} \ell(\mathbf{P})$

Last time: All distances from source node $\mathbf{v} \in \mathbf{V}$. Today: Distances between all pairs of nodes!

Obvious solution:

Introduction

Setup:

- Directed graph G $=(\mathbf{V}, \mathbf{E})$
- Length $\ell(\mathbf{x}, \mathbf{y})$ on each edge $(\mathbf{x}, \mathbf{y}) \in \mathbf{E}$
- Length of path \mathbf{P} is $\ell(\mathbf{P})=\sum_{(x, y) \in \mathbf{P}} \ell(\mathbf{x}, \mathbf{y})$
- $\mathbf{d}(\mathrm{x}, \mathrm{y})=\boldsymbol{\operatorname { m i n }}_{\mathrm{x} \rightarrow \mathrm{y} \text { paths } \mathrm{P}} \ell(\mathbf{P})$

Last time: All distances from source node $\mathbf{v} \in \mathbf{V}$. Today: Distances between all pairs of nodes!

Obvious solution: single-source from each $\mathbf{v} \in \mathbf{V}$

Introduction

Setup:

- Directed graph G $=(\mathbf{V}, \mathbf{E})$
- Length $\ell(\mathbf{x}, \mathbf{y})$ on each edge $(\mathbf{x}, \mathbf{y}) \in \mathbf{E}$
- Length of path \mathbf{P} is $\ell(\mathbf{P})=\sum_{(x, y) \in \mathbf{P}} \ell(\mathbf{x}, \mathbf{y})$
- $\mathbf{d}(\mathrm{x}, \mathrm{y})=\boldsymbol{\operatorname { m i n }}_{\mathrm{x} \rightarrow \mathrm{y} \text { paths } \mathrm{P}} \ell(\mathrm{P})$

Last time: All distances from source node $\mathbf{v} \in \mathbf{V}$.
Today: Distances between all pairs of nodes!
Obvious solution: single-source from each $\mathbf{v} \in \mathbf{V}$

- No negative weights: \mathbf{n} runs of Dijkstra, time $\mathbf{O}(\mathbf{n}(\mathbf{m}+\mathbf{n} \log \mathbf{n}))$
- Negative weights: \mathbf{n} runs of Bellman-Ford, time $\mathbf{O}(\mathbf{n m n})=\mathbf{O}\left(\mathbf{m n}^{2}\right)$

Introduction

Setup:

- Directed graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Length $\ell(\mathbf{x}, \mathbf{y})$ on each edge $(\mathbf{x}, \mathbf{y}) \in \mathbf{E}$
- Length of path \mathbf{P} is $\ell(\mathbf{P})=\sum_{(x, y) \in \mathbf{P}} \ell(\mathbf{x}, \mathbf{y})$
- $\mathbf{d}(\mathrm{x}, \mathrm{y})=\boldsymbol{\operatorname { m i n }}_{\mathrm{x} \rightarrow \mathrm{y} \text { paths } \mathrm{P}} \ell(\mathbf{P})$

Last time: All distances from source node $\mathbf{v} \in \mathbf{V}$.
Today: Distances between all pairs of nodes!
Obvious solution: single-source from each $\mathbf{v} \in \mathbf{V}$

- No negative weights: \mathbf{n} runs of Dijkstra, time $\mathbf{O}(\mathbf{n}(\mathbf{m}+\mathbf{n} \log \mathbf{n}))$
- Negative weights: \mathbf{n} runs of Bellman-Ford, time $\mathbf{O}(\mathbf{n m n})=\mathbf{O}\left(\mathbf{m n}^{2}\right)$

Can we do better? Particularly for negative edge weights?

- Main goal today: Negative weights as fast as possible.

Floyd-Warshall Algorithm

Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let $\mathbf{V}=\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$ and $\ell(\mathbf{i}, \mathbf{j})=\infty$ if $(\mathbf{i}, \mathbf{j}) \notin \mathbf{E}$
Bellman-Ford subproblems: length of shortest path with at most some number of edges

Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let $\mathbf{V}=\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$ and $\ell(\mathbf{i}, \mathbf{j})=\infty$ if $(\mathbf{i}, \mathbf{j}) \notin \mathbf{E}$
Bellman-Ford subproblems: length of shortest path with at most some number of edges
New subproblems:

- Intuition: "shortest path from \mathbf{u} to \mathbf{v} either goes through node \mathbf{n}, or it doesn't"
- If it doesn't: shortest uses only first nodes in $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n} \mathbf{- 1}\}$.
- If it does: consists of a path $\mathbf{P}_{\mathbf{1}}$ from \mathbf{u} to \mathbf{n} and a path $\mathbf{P}_{\mathbf{2}}$ from \mathbf{n} to \mathbf{v}, neither of which uses \mathbf{n} (internally).

Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let $\mathbf{V}=\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$ and $\ell(\mathbf{i}, \mathbf{j})=\infty$ if $(\mathbf{i}, \mathbf{j}) \notin \mathbf{E}$
Bellman-Ford subproblems: length of shortest path with at most some number of edges
New subproblems:

- Intuition: "shortest path from \mathbf{u} to \mathbf{v} either goes through node \mathbf{n}, or it doesn't"
- If it doesn't: shortest uses only first nodes in $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n} \mathbf{- 1}\}$.
- If it does: consists of a path $\mathbf{P}_{\mathbf{1}}$ from \mathbf{u} to \mathbf{n} and a path $\mathbf{P}_{\mathbf{2}}$ from \mathbf{n} to \mathbf{v}, neither of which uses \mathbf{n} (internally).
- Subproblems: shortest path from \mathbf{u} to \mathbf{v} that only uses nodes in $\{\mathbf{1}, \mathbf{2}, \ldots \mathbf{k}\}$ for all $\mathbf{u}, \mathbf{v}, \mathbf{k}$.

Formalizing Subproblems

$\mathbf{u} \rightarrow \mathbf{v}$ path \mathbf{P} : "intermediate nodes" are all nodes in \mathbf{P} other than \mathbf{u}, \mathbf{v}.
$\mathbf{d}_{\mathbf{i j}}^{\mathbf{k}}$: distance from \mathbf{i} to \mathbf{j} using only $\mathbf{i} \rightarrow \mathbf{j}$ paths with intermediate vertices in $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{k}\}$.

- Goal: compute $\mathbf{d}_{\mathbf{i j}}^{\mathbf{k}}$ for all $\mathbf{i}, \mathbf{j}, \mathbf{k} \in[\mathbf{n}]$.
- Return $\mathbf{d}_{\mathbf{i j}}^{\mathbf{n}}$ for all $\mathbf{i}, \mathbf{j} \in \mathbf{V}$.

Formalizing Subproblems

$\mathbf{u} \rightarrow \mathbf{v}$ path \mathbf{P} : "intermediate nodes" are all nodes in \mathbf{P} other than \mathbf{u}, \mathbf{v}.
$\mathbf{d}_{\mathbf{i j}}^{\mathbf{k}}$: distance from \mathbf{i} to \mathbf{j} using only $\mathbf{i} \rightarrow \mathbf{j}$ paths with intermediate vertices in $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{k}\}$.

- Goal: compute $\mathbf{d}_{\mathbf{i j}}^{\mathbf{k}}$ for all $\mathbf{i}, \mathbf{j}, \mathbf{k} \in[\mathbf{n}]$.
- Return $\mathbf{d}_{\mathbf{i j}}^{\mathbf{n}}$ for all $\mathbf{i}, \mathbf{j} \in \mathbf{V}$.

$$
\mathbf{d}_{\mathrm{ij}}^{\mathbf{k}}= \begin{cases} & \text { if } \mathbf{k}=\mathbf{0} \\ & \text { if } \mathbf{k} \geq \mathbf{1}\end{cases}
$$

Formalizing Subproblems

$\mathbf{u} \rightarrow \mathbf{v}$ path \mathbf{P} : "intermediate nodes" are all nodes in \mathbf{P} other than \mathbf{u}, \mathbf{v}.
$\mathbf{d}_{\mathbf{i j}}^{\mathbf{k}}$: distance from \mathbf{i} to \mathbf{j} using only $\mathbf{i} \rightarrow \mathbf{j}$ paths with intermediate vertices in $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{k}\}$.

- Goal: compute $\mathbf{d}_{\mathbf{i j}}^{\mathbf{k}}$ for all $\mathbf{i}, \mathbf{j}, \mathbf{k} \in[\mathbf{n}]$.
- Return $\mathbf{d}_{\mathrm{ij}}^{\mathrm{n}}$ for all $\mathbf{i}, \mathbf{j} \in \mathbf{V}$.

$$
\mathbf{d}_{\mathrm{ij}}^{\mathrm{k}}= \begin{cases}\ell(\mathbf{i}, \mathbf{j}) & \text { if } \mathbf{k}=\mathbf{0} \\ & \text { if } \mathbf{k} \geq \mathbf{1}\end{cases}
$$

Formalizing Subproblems

$\mathbf{u} \rightarrow \mathbf{v}$ path \mathbf{P} : "intermediate nodes" are all nodes in \mathbf{P} other than \mathbf{u}, \mathbf{v}.
$\mathbf{d}_{\mathbf{i j}}^{\mathbf{k}}$: distance from \mathbf{i} to \mathbf{j} using only $\mathbf{i} \rightarrow \mathbf{j}$ paths with intermediate vertices in $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{k}\}$.

- Goal: compute $\mathbf{d}_{\mathbf{i j}}^{\mathbf{k}}$ for all $\mathbf{i}, \mathbf{j}, \mathbf{k} \in[\mathbf{n}]$.
- Return $\mathbf{d}_{\mathrm{ij}}^{\mathrm{n}}$ for all $\mathbf{i}, \mathbf{j} \in \mathbf{V}$.

$$
d_{i j}^{k}= \begin{cases}\ell(i, j) & \text { if } k=0 \\ \min \left(d_{i j}^{k-1}, d_{i k}^{k-1}+d_{k j}^{k-1}\right) & \text { if } k \geq 1\end{cases}
$$

Optimal Substructure

Theorem

For all $\mathbf{i}, \mathbf{j}, \mathbf{k} \in[\mathbf{n}]$:

$$
d_{i j}^{k}= \begin{cases}\ell(i, j) & \text { if } k=0 \\ \min \left(d_{i j}^{k-1}, d_{i k}^{k-1}+d_{k j}^{k-1}\right) & \text { if } k \geq 1\end{cases}
$$

Optimal Substructure

Theorem

For all $\mathbf{i}, \mathbf{j}, \mathbf{k} \in[\mathbf{n}]$:

$$
\mathbf{d}_{\mathrm{ij}}^{\mathrm{k}}= \begin{cases}\ell(\mathbf{i}, \mathbf{j}) & \text { if } \mathbf{k}=\mathbf{0} \\ \min \left(\mathbf{d}_{\mathrm{ij}}^{\mathrm{k}-1}, \mathbf{d}_{\mathrm{ik}}^{\mathrm{k}-\mathbf{1}}+\mathbf{d}_{\mathrm{kj}}^{\mathrm{k}-\mathbf{1}}\right) & \text { if } \mathrm{k} \geq \mathbf{1}\end{cases}
$$

If $\mathbf{k}=\mathbf{0}: \checkmark$

Optimal Substructure

Theorem

For all $\mathbf{i}, \mathbf{j}, \mathbf{k} \in[\mathbf{n}]$:

$$
\mathrm{d}_{\mathrm{ij}}^{\mathrm{k}}= \begin{cases}\ell(\mathbf{i}, \mathbf{j}) & \text { if } \mathrm{k}=\mathbf{0} \\ \min \left(\mathrm{d}_{\mathrm{ij}}^{k-1}, \mathrm{~d}_{\mathrm{i}}^{\mathrm{k}-1}+\mathrm{d}_{\mathrm{kj}}^{\mathrm{k}-1}\right) & \text { if } \mathrm{k} \geq \mathbf{1}\end{cases}
$$

If $\mathbf{k}=\mathbf{0}: \checkmark$
If $\mathbf{k} \geq \mathbf{1}$: prove \leq and \geq

Optimal Substructure

Theorem

For all $\mathbf{i}, \mathbf{j}, \mathbf{k} \in[\mathbf{n}]$:

$$
\mathrm{d}_{\mathrm{ij}}^{\mathrm{k}}= \begin{cases}\ell(\mathbf{i}, \mathbf{j}) & \text { if } \mathrm{k}=\mathbf{0} \\ \min \left(\mathrm{d}_{\mathrm{ij}}^{k-1}, \mathrm{~d}_{\mathrm{i}}^{\mathrm{k}-1}+\mathrm{d}_{\mathrm{kj}}^{\mathrm{k}-1}\right) & \text { if } \mathrm{k} \geq \mathbf{1}\end{cases}
$$

If $\mathbf{k}=\mathbf{0}: \checkmark$
If $\mathbf{k} \geq \mathbf{1}$: prove \leq and \geq
$\leq:$

Optimal Substructure

Theorem

For all $\mathbf{i}, \mathbf{j}, \mathbf{k} \in[\mathbf{n}]$:

$$
\mathrm{d}_{\mathrm{ij}}^{\mathrm{k}}= \begin{cases}\ell(\mathbf{i}, \mathbf{j}) & \text { if } \mathrm{k}=\mathbf{0} \\ \min \left(\mathrm{d}_{\mathrm{ij}}^{k-1}, \mathrm{~d}_{\mathrm{i}}^{\mathrm{k}-1}+\mathrm{d}_{\mathrm{kj}}^{\mathrm{k}-1}\right) & \text { if } \mathrm{k} \geq \mathbf{1}\end{cases}
$$

If $\mathbf{k}=\mathbf{0}: \checkmark$
If $\mathbf{k} \geq \mathbf{1}$: prove \leq and \geq
\leq : Two feasible solutions

Optimal Substructure

Theorem

For all $\mathbf{i}, \mathbf{j}, \mathbf{k} \in[\mathbf{n}]$:

$$
\mathbf{d}_{\mathrm{ij}}^{\mathrm{k}}= \begin{cases}\ell(\mathrm{i}, \mathbf{j}) & \text { if } \mathrm{k}=\mathbf{0} \\ \min \left(\mathrm{d}_{\mathrm{ij}}^{k-1}, \mathrm{~d}_{\mathrm{i} k}^{k-1}+\mathrm{d}_{\mathrm{kj}}^{\mathrm{k}-1}\right) & \text { if } \mathrm{k} \geq \mathbf{1}\end{cases}
$$

If $\mathbf{k}=\mathbf{0}: \checkmark$
If $\mathbf{k} \geq \mathbf{1}$: prove \leq and \geq
$\leq:$ Two feasible solutions
\geq : Let \mathbf{P} be shortest $\mathbf{i} \rightarrow \mathbf{j}$ path with all intermediate nodes in [k]

- If \mathbf{k} not an intermediate node of \mathbf{P} :

Optimal Substructure

Theorem

For all $\mathbf{i}, \mathbf{j}, \mathbf{k} \in[\mathbf{n}]$:

$$
\mathbf{d}_{\mathrm{ij}}^{\mathrm{k}}= \begin{cases}\ell(\mathrm{i}, \mathbf{j}) & \text { if } \mathrm{k}=\mathbf{0} \\ \min \left(\mathrm{d}_{\mathrm{ij}}^{k-1}, \mathrm{~d}_{\mathrm{i} k}^{k-1}+\mathrm{d}_{\mathrm{kj}}^{\mathrm{k}-1}\right) & \text { if } \mathrm{k} \geq \mathbf{1}\end{cases}
$$

If $\mathbf{k}=\mathbf{0}: \checkmark$
If $\mathbf{k} \geq \mathbf{1}$: prove \leq and \geq
$\leq:$ Two feasible solutions
\geq : Let \mathbf{P} be shortest $\mathbf{i} \rightarrow \mathbf{j}$ path with all intermediate nodes in [k]

- If \mathbf{k} not an intermediate node of $\mathbf{P}: \mathbf{P}$ has all intermediate nodes in $[\mathbf{k}-\mathbf{1}] \Longrightarrow$ $\min \left(\mathrm{d}_{\mathrm{ij}}^{\mathrm{k}-1}, \mathrm{~d}_{\mathrm{ik}}^{\mathrm{k}-1}+\mathrm{d}_{\mathrm{kj}}^{\mathrm{k}-1}\right) \leq \mathrm{d}_{\mathrm{ij}}^{\mathrm{k}-1} \leq \ell(\mathrm{P})=\mathrm{d}_{\mathrm{ij}}^{\mathrm{k}}$

Optimal Substructure

Theorem

For all $\mathbf{i}, \mathbf{j}, \mathbf{k} \in[\mathbf{n}]$:

$$
\mathrm{d}_{\mathrm{ij}}^{\mathrm{k}}= \begin{cases}\ell(\mathrm{i}, \mathbf{j}) & \text { if } \mathrm{k}=\mathbf{0} \\ \min \left(\mathrm{d}_{\mathrm{ij}}^{k-1}, \mathrm{~d}_{\mathrm{i}}^{\mathrm{k}-1}+\mathrm{d}_{\mathrm{kj}}^{\mathrm{k}-1}\right) & \text { if } \mathrm{k} \geq \mathbf{1}\end{cases}
$$

If $\mathbf{k}=\mathbf{0}: \checkmark$
If $\mathbf{k} \geq \mathbf{1}$: prove \leq and \geq
$\leq:$ Two feasible solutions
\geq : Let \mathbf{P} be shortest $\mathbf{i} \rightarrow \mathbf{j}$ path with all intermediate nodes in [k]

- If \mathbf{k} not an intermediate node of $\mathbf{P}: \mathbf{P}$ has all intermediate nodes in $[\mathbf{k}-\mathbf{1}] \Longrightarrow$ $\min \left(d_{i j}^{k-1}, d_{i k}^{k-1}+d_{k j}^{k-1}\right) \leq d_{i j}^{k-1} \leq \ell(P)=d_{i j}^{k}$
- If \mathbf{k} is an intermediate node of \mathbf{P} :

Optimal Substructure

Theorem

For all $\mathbf{i}, \mathbf{j}, \mathbf{k} \in[\mathbf{n}]$:

$$
\mathrm{d}_{\mathrm{ij}}^{\mathrm{k}}=\left\{\begin{array}{lr}
\ell(\mathrm{i}, \mathrm{j}) & \text { if } \mathrm{k}=\mathbf{0} \\
\min \left(\mathrm{d}_{\mathrm{ij}}^{k-1}, \mathrm{~d}_{\mathrm{ik}}^{\mathrm{k}-1}+\mathrm{d}_{\mathrm{kj}}^{\mathrm{k}-1}\right) & \text { if } \mathrm{k} \geq 1
\end{array}\right.
$$

If $\mathbf{k}=\mathbf{0}: \checkmark$
If $\mathbf{k} \geq \mathbf{1}$: prove \leq and \geq
$\leq:$ Two feasible solutions
\geq : Let \mathbf{P} be shortest $\mathbf{i} \rightarrow \mathbf{j}$ path with all intermediate nodes in $[\mathbf{k}]$

- If \mathbf{k} not an intermediate node of $\mathbf{P}: \mathbf{P}$ has all intermediate nodes in $[\mathbf{k}-\mathbf{1}] \Longrightarrow$ $\min \left(d_{i j}^{k-1}, d_{i k}^{k-1}+d_{k j}^{k-1}\right) \leq d_{i j}^{k-1} \leq \ell(P)=d_{i j}^{k}$
- If \mathbf{k} is an intermediate node of \mathbf{P} : divide \mathbf{P} into $\mathbf{P}_{\mathbf{1}}$ (subpath from \mathbf{i} to \mathbf{k}) and $\mathbf{P}_{\mathbf{2}}$ (subpath from \mathbf{k} to \mathbf{j})

$$
\min \left(d_{i j}^{k-1}, d_{i k}^{k-1}+d_{k j}^{k-1}\right) \leq d_{i k}^{k-1}+d_{k j}^{k-1} \leq \ell\left(P_{1}\right)+\ell\left(P_{2}\right)=\ell(P)=d_{i j}^{k}
$$

Floyd-Warshall Algorithm
Usually bottom-up, since so simple:

$$
\begin{aligned}
& M[\mathbf{i}, \mathbf{j}, \mathbf{0}]=\ell(\mathbf{i}, \mathbf{j}) \text { for all } \mathbf{i}, \mathbf{j} \in[\mathbf{n}] \\
& \operatorname{for}(\mathbf{k}=\mathbf{1} \text { to } \mathbf{n}) \\
& \quad \operatorname{for}(\mathbf{i}=\mathbf{1} \text { to } \mathbf{n}) \\
& \quad \operatorname{for}(\mathbf{j}=\mathbf{1} \text { to } \mathbf{n}) \\
& \quad \mathbf{M}[\mathbf{i}, \mathbf{j}, \mathbf{k}]=\min (M[\mathbf{i}, \mathbf{j}, \mathbf{k}-\mathbf{1}], M[\mathbf{i}, \mathbf{k}, \mathbf{k}-\mathbf{1}]+M[\mathbf{k}, \mathbf{j}, \mathbf{k}-\mathbf{1}])
\end{aligned}
$$

Floyd-Warshall Algorithm
Usually bottom-up, since so simple:

$$
\begin{aligned}
& M[\mathbf{i}, \mathbf{j}, \mathbf{0}]=\ell(\mathbf{i}, \mathbf{j}) \text { for all } \mathbf{i}, \mathbf{j} \in[\mathbf{n}] \\
& \operatorname{for}(\mathbf{k}=\mathbf{1} \text { to } \mathbf{n}) \\
& \quad \operatorname{for}(\mathbf{i}=\mathbf{1} \text { to } \mathbf{n}) \\
& \quad \operatorname{for}(\mathbf{j}=\mathbf{1} \text { to } \mathbf{n}) \\
& \quad \mathbf{M}[\mathbf{i}, \mathbf{j}, \mathbf{k}]=\min (M[\mathbf{i}, \mathbf{j}, \mathbf{k}-\mathbf{1}], M[\mathbf{i}, \mathbf{k}, \mathbf{k}-\mathbf{1}]+M[\mathbf{k}, \mathbf{j}, \mathbf{k}-\mathbf{1}])
\end{aligned}
$$

Correctness: obvious for $\mathbf{k}=\mathbf{0}$. For $\mathbf{k} \geq \mathbf{1}$:

$$
\begin{aligned}
M[i, j, k] & =\min (M[i, j, k-1], M[i, k, k-1]+M[k, j, k-1]) \\
& =\min \left(d_{i j}^{k-1}, d_{i k}^{k-1}+d_{k j}^{k-1}\right) \\
& =d_{i j}^{k}
\end{aligned}
$$

(def of algorithm)
(induction)
(optimal substructure)

Floyd-Warshall Algorithm
Usually bottom-up, since so simple:

$$
\begin{aligned}
& M[\mathbf{i}, \mathbf{j}, \mathbf{0}]=\ell(\mathbf{i}, \mathbf{j}) \text { for all } \mathbf{i}, \mathbf{j} \in[\mathbf{n}] \\
& \operatorname{for}(\mathbf{k}=\mathbf{1} \text { to } \mathbf{n}) \\
& \quad \operatorname{for}(\mathbf{i}=\mathbf{1} \text { to } \mathbf{n}) \\
& \quad \operatorname{for}(\mathbf{j}=\mathbf{1} \text { to } \mathbf{n}) \\
& \quad \mathbf{M}[\mathbf{i}, \mathbf{j}, \mathbf{k}]=\min (M[\mathbf{i}, \mathbf{j}, \mathbf{k}-\mathbf{1}], M[\mathbf{i}, \mathbf{k}, \mathbf{k}-\mathbf{1}]+M[\mathbf{k}, \mathbf{j}, \mathbf{k}-\mathbf{1}])
\end{aligned}
$$

Correctness: obvious for $\mathbf{k}=\mathbf{0}$. For $\mathbf{k} \geq \mathbf{1}$:

$$
\begin{aligned}
M[i, j, k] & =\min (M[i, j, k-1], M[i, k, k-1]+M[k, j, k-1]) \\
& =\min \left(d_{i j}^{k-1}, d_{i k}^{k-1}+d_{k j}^{k-1}\right) \\
& =d_{i j}^{k}
\end{aligned}
$$

(def of algorithm)
(induction)
(optimal substructure)

Running Time: $\mathbf{O}\left(\mathbf{n}^{3}\right)$

Johnson's Algorithm

Reweighting

Different Approach: Can we "fix" negative weights so Dijkstra from every node works?

- Time would be $\mathbf{O}(\mathbf{n}(\mathbf{m}+\mathbf{n} \log \mathbf{n}))=\mathbf{O}\left(\mathbf{m n}+\mathbf{n}^{\mathbf{2}} \boldsymbol{\operatorname { l o g }} \mathbf{n}\right)$, better than Floyd-Warshall

Reweighting

Different Approach: Can we "fix" negative weights so Dijkstra from every node works?

- Time would be $\mathbf{O}(\mathbf{n}(\mathbf{m}+\mathbf{n} \log \mathbf{n}))=\mathbf{O}\left(\mathbf{m n}+\mathbf{n}^{2} \log \mathbf{n}\right)$, better than Floyd-Warshall

First attempt: Let $-\alpha$ be smallest length (most negative). Add α to every edge.

- Does this work?

Reweighting

Different Approach: Can we "fix" negative weights so Dijkstra from every node works?

- Time would be $\mathbf{O}(\mathbf{n}(\mathbf{m}+\mathbf{n} \log \mathbf{n}))=\mathbf{O}\left(\mathbf{m n}+\mathbf{n}^{2} \log \mathbf{n}\right)$, better than Floyd-Warshall

First attempt: Let $-\alpha$ be smallest length (most negative). Add α to every edge.

- Does this work? No!

Reweighting

Different Approach: Can we "fix" negative weights so Dijkstra from every node works?

- Time would be $\mathbf{O}(\mathbf{n}(\mathbf{m}+\mathbf{n} \log \mathbf{n}))=\mathbf{O}\left(\mathbf{m n}+\mathbf{n}^{2} \log \mathbf{n}\right)$, better than Floyd-Warshall

First attempt: Let $-\alpha$ be smallest length (most negative). Add α to every edge.

- Does this work? No!
- New length of path \mathbf{P} is $\ell(\mathbf{P})+\alpha|\mathbf{P}|$, so original shortest path might no longer be shortest path if it has many edges.

Reweighting

Different Approach: Can we "fix" negative weights so Dijkstra from every node works?

- Time would be $\mathbf{O}(\mathbf{n}(\mathbf{m}+\mathbf{n} \log \mathbf{n}))=\mathbf{O}\left(\mathbf{m n}+\mathbf{n}^{\mathbf{2}} \log \mathbf{n}\right)$, better than Floyd-Warshall

First attempt: Let $\boldsymbol{-} \boldsymbol{\alpha}$ be smallest length (most negative). Add $\boldsymbol{\alpha}$ to every edge.

- Does this work? No!
- New length of path \mathbf{P} is $\ell(\mathbf{P})+\boldsymbol{\alpha}|\mathbf{P}|$, so original shortest path might no longer be shortest path if it has many edges.

Some other kind of reweighting? Need new lengths $\hat{\ell}$ such that:

Reweighting

Different Approach: Can we "fix" negative weights so Dijkstra from every node works?

- Time would be $\mathbf{O}(\mathbf{n}(\mathbf{m}+\mathbf{n} \log \mathbf{n}))=\mathbf{O}\left(\mathbf{m n}+\mathbf{n}^{\mathbf{2}} \log \mathbf{n}\right)$, better than Floyd-Warshall

First attempt: Let $\boldsymbol{-} \boldsymbol{\alpha}$ be smallest length (most negative). Add $\boldsymbol{\alpha}$ to every edge.

- Does this work? No!
- New length of path \mathbf{P} is $\ell(\mathbf{P})+\boldsymbol{\alpha}|\mathbf{P}|$, so original shortest path might no longer be shortest path if it has many edges.

Some other kind of reweighting? Need new lengths $\hat{\ell}$ such that:

- Path \mathbf{P} a shortest path under lengths $\boldsymbol{\ell}$ if and only \mathbf{P} a shortest path under lengths $\hat{\ell}$
- $\hat{\ell}(\mathbf{u}, \mathbf{v}) \geq \mathbf{0}$ for all $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$

Vertex Reweighting

Neat observation: put weights at vertices!

- Let $\mathbf{h}: \mathbf{V} \rightarrow \mathbb{R}$ be node weights.
- Let $\ell_{\mathbf{h}}(\mathbf{u}, \mathbf{v})=\ell(\mathbf{u}, \mathbf{v})+\mathbf{h}(\mathbf{u})-\mathbf{h}(\mathbf{v})$

Vertex Reweighting

Neat observation: put weights at vertices!

- Let $\mathbf{h}: \mathbf{V} \rightarrow \mathbb{R}$ be node weights.
- Let $\ell_{\mathbf{h}}(\mathbf{u}, \mathbf{v})=\ell(\mathbf{u}, \mathbf{v})+\mathbf{h}(\mathbf{u})-\mathbf{h}(\mathbf{v})$

Let $\mathbf{P}=\left\langle\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\rangle$ be arbitrary (not necessarily shortest) path.

Vertex Reweighting

Neat observation: put weights at vertices!

- Let $\mathbf{h}: \mathbf{V} \rightarrow \mathbb{R}$ be node weights.
- Let $\ell_{\mathbf{h}}(\mathbf{u}, \mathbf{v})=\ell(\mathbf{u}, \mathbf{v})+\mathbf{h}(\mathbf{u})-\mathbf{h}(\mathbf{v})$

Let $\mathbf{P}=\left\langle\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\rangle$ be arbitrary (not necessarily shortest) path.

$$
\ell_{h}(P)=\sum_{i=0}^{k-1} \ell_{h}\left(v_{i}, v_{i+1}\right)=\sum_{i=0}^{k-1}\left(\ell\left(v_{i}, v_{i+1}\right)+h\left(v_{i}\right)-h\left(v_{i+1}\right)\right)
$$

Vertex Reweighting

Neat observation: put weights at vertices!

- Let $\mathbf{h}: \mathbf{V} \rightarrow \mathbb{R}$ be node weights.
- Let $\ell_{\mathbf{h}}(\mathbf{u}, \mathbf{v})=\ell(\mathbf{u}, \mathbf{v})+\mathbf{h}(\mathbf{u})-\mathbf{h}(\mathbf{v})$

Let $\mathbf{P}=\left\langle\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\rangle$ be arbitrary (not necessarily shortest) path.

$$
\begin{aligned}
\ell_{h}(P) & =\sum_{i=0}^{k-1} \ell_{h}\left(v_{i}, v_{i+1}\right)=\sum_{i=0}^{k-1}\left(\ell\left(v_{i}, v_{i+1}\right)+h\left(v_{i}\right)-h\left(v_{i+1}\right)\right) \\
& =h\left(v_{0}\right)-h\left(v_{k}\right)+\sum_{i=0}^{k-1} \ell\left(v_{i}, v_{i+1}\right)
\end{aligned}
$$

Vertex Reweighting

Neat observation: put weights at vertices!

- Let $\mathbf{h}: \mathbf{V} \rightarrow \mathbb{R}$ be node weights.
- Let $\ell_{\mathbf{h}}(\mathbf{u}, \mathbf{v})=\ell(\mathbf{u}, \mathbf{v})+\mathbf{h}(\mathbf{u})-\mathbf{h}(\mathbf{v})$

Let $\mathbf{P}=\left\langle\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\rangle$ be arbitrary (not necessarily shortest) path.

$$
\begin{aligned}
\ell_{h}(P) & =\sum_{i=0}^{k-1} \ell_{h}\left(v_{i}, v_{i+1}\right)=\sum_{i=0}^{k-1}\left(\ell\left(v_{i}, v_{i+1}\right)+h\left(v_{i}\right)-h\left(v_{i+1}\right)\right) \\
& =h\left(v_{0}\right)-h\left(v_{k}\right)+\sum_{i=0}^{k-1} \ell\left(v_{i}, v_{i+1}\right) \\
& =\ell(P)+h\left(v_{0}\right)-h\left(v_{k}\right)
\end{aligned}
$$

Vertex Reweighting

Neat observation: put weights at vertices!

- Let $\mathbf{h}: \mathbf{V} \rightarrow \mathbb{R}$ be node weights.
- Let $\ell_{\mathbf{h}}(\mathbf{u}, \mathbf{v})=\ell(\mathbf{u}, \mathbf{v})+\mathbf{h}(\mathbf{u})-\mathbf{h}(\mathbf{v})$

Let $\mathbf{P}=\left\langle\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\rangle$ be arbitrary (not necessarily shortest) path.

$$
\begin{aligned}
\ell_{h}(P) & =\sum_{i=0}^{k-1} \ell_{h}\left(v_{i}, v_{i+1}\right)=\sum_{i=0}^{k-1}\left(\ell\left(v_{i}, v_{i+1}\right)+h\left(v_{i}\right)-h\left(v_{i+1}\right)\right) \\
& =h\left(v_{0}\right)-h\left(v_{k}\right)+\sum_{i=0}^{k-1} \ell\left(v_{i}, v_{i+1}\right) \\
& =\ell(P)+h\left(v_{0}\right)-h\left(v_{k}\right)
\end{aligned}
$$

$\mathbf{h}\left(\mathbf{v}_{\mathbf{0}}\right)-\mathbf{h}\left(\mathbf{v}_{\mathbf{k}}\right)$ added to every $\mathbf{v}_{\mathbf{0}} \rightarrow \mathbf{v}_{\mathbf{k}}$ path, so shortest path from $\mathbf{v}_{\mathbf{0}}$ to $\mathbf{v}_{\mathbf{k}}$ still shortest path!

Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?
Add new node \mathbf{s} to graph, edges (\mathbf{s}, \mathbf{v}) for all $\mathbf{v} \in \mathbf{V}$ of length $\mathbf{0}$

Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?
Add new node \mathbf{s} to graph, edges (\mathbf{s}, \mathbf{v}) for all $\mathbf{v} \in \mathbf{V}$ of length $\mathbf{0}$

- Run Bellman-Ford from \mathbf{s}, then for all $\mathbf{u} \in \mathbf{V}$ set $\mathbf{h}(\mathbf{u})$ to be $\mathbf{d}(\mathbf{s}, \mathbf{u})$
- Note $\mathbf{h}(\mathbf{u}) \leq \mathbf{0}$ for all $\mathbf{u} \in \mathbf{V}$

Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?
Add new node \mathbf{s} to graph, edges (\mathbf{s}, \mathbf{v}) for all $\mathbf{v} \in \mathbf{V}$ of length $\mathbf{0}$

- Run Bellman-Ford from \mathbf{s}, then for all $\mathbf{u} \in \mathbf{V}$ set $\mathbf{h}(\mathbf{u})$ to be $\mathbf{d}(\mathbf{s}, \mathbf{u})$
- Note $\mathbf{h}(\mathbf{u}) \leq \mathbf{0}$ for all $\mathbf{u} \in \mathbf{V}$

Want to show that $\ell_{\mathbf{h}}(\mathbf{u}, \mathbf{v}) \geq \mathbf{0}$ for all edges (\mathbf{u}, \mathbf{v}).

- Triangle inequality: $\mathbf{h}(\mathbf{v})=\mathbf{d}(\mathbf{s}, \mathbf{v}) \leq \mathbf{d}(\mathbf{s}, \mathbf{u})+\ell(\mathbf{u}, \mathbf{v})=\mathbf{h}(\mathbf{u})+\ell(\mathbf{u}, \mathbf{v})$

Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?
Add new node \mathbf{s} to graph, edges (\mathbf{s}, \mathbf{v}) for all $\mathbf{v} \in \mathbf{V}$ of length $\mathbf{0}$

- Run Bellman-Ford from \mathbf{s}, then for all $\mathbf{u} \in \mathbf{V}$ set $\mathbf{h}(\mathbf{u})$ to be $\mathbf{d}(\mathbf{s}, \mathbf{u})$
- Note $\mathbf{h}(\mathbf{u}) \leq \mathbf{0}$ for all $\mathbf{u} \in \mathbf{V}$

Want to show that $\boldsymbol{\ell}_{\mathbf{h}}(\mathbf{u}, \mathbf{v}) \geq \mathbf{0}$ for all edges (\mathbf{u}, \mathbf{v}).

- Triangle inequality: $\mathbf{h}(\mathbf{v})=\mathbf{d}(\mathbf{s}, \mathbf{v}) \leq \mathbf{d}(\mathbf{s}, \mathbf{u})+\ell(\mathbf{u}, \mathbf{v})=\mathbf{h}(\mathbf{u})+\ell(\mathbf{u}, \mathbf{v})$

$$
\ell_{h}(u, v)=\ell(u, v)+h(u)-h(v) \geq \ell(u, v)+h(u)-(h(u)+\ell(u, v))=0
$$

Johnson's Algorithm

- Add vertex \mathbf{s} to graph, edge (\mathbf{s}, \mathbf{u}) for all $\mathbf{u} \in \mathbf{V}$ with $\ell(\mathbf{s}, \mathbf{u})=\mathbf{0}$
- Run Bellman-Ford from s, set $\mathbf{h}(\mathbf{u})=\mathbf{d}(\mathbf{s}, \mathbf{u})$
- Remove s, run Dijkstra from every node $\mathbf{u} \in \mathbf{V}$ to get $\mathbf{d}_{\mathbf{h}}(\mathbf{u}, \mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$
- If want distances, set $\mathbf{d}(\mathbf{u}, \mathbf{v})=\mathbf{d}_{\mathbf{h}}(\mathbf{u}, \mathbf{v})-\mathbf{h}(\mathbf{u})+\mathbf{h}(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$

Correctness: From previous discussion.

Johnson's Algorithm

- Add vertex \mathbf{s} to graph, edge (\mathbf{s}, \mathbf{u}) for all $\mathbf{u} \in \mathbf{V}$ with $\ell(\mathbf{s}, \mathbf{u})=\mathbf{0}$
- Run Bellman-Ford from s, set $\mathbf{h}(\mathbf{u})=\mathbf{d}(\mathbf{s}, \mathbf{u})$
- Remove s, run Dijkstra from every node $\mathbf{u} \in \mathbf{V}$ to get $\mathbf{d}_{\mathbf{h}}(\mathbf{u}, \mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$
- If want distances, set $\mathbf{d}(\mathbf{u}, \mathbf{v})=\mathbf{d}_{\mathbf{h}}(\mathbf{u}, \mathbf{v})-\mathbf{h}(\mathbf{u})+\mathbf{h}(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$

Correctness: From previous discussion.

Running Time:

Johnson's Algorithm

- Add vertex \mathbf{s} to graph, edge (\mathbf{s}, \mathbf{u}) for all $\mathbf{u} \in \mathbf{V}$ with $\ell(\mathbf{s}, \mathbf{u})=\mathbf{0}$
- Run Bellman-Ford from s, set $\mathbf{h}(\mathbf{u})=\mathbf{d}(\mathbf{s}, \mathbf{u})$
- Remove s, run Dijkstra from every node $\mathbf{u} \in \mathbf{V}$ to get $\mathbf{d}_{\mathbf{h}}(\mathbf{u}, \mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$
- If want distances, set $\mathbf{d}(\mathbf{u}, \mathbf{v})=\mathbf{d}_{\mathbf{h}}(\mathbf{u}, \mathbf{v})-\mathbf{h}(\mathbf{u})+\mathbf{h}(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$

Correctness: From previous discussion.
Running Time: $\mathbf{O}(n)+\mathbf{O}(m n)+\mathbf{O}(n(m+n \log n))=\mathbf{O}\left(m n+n^{2} \log n\right)$

