Lecture 15: All-Pairs Shortest Paths

Michael Dinitz

October 19, 2021 601.433/633 Introduction to Algorithms

Announcements

- ▶ HW5 due now
- ▶ HW6 due next Thursday
- Mid-Semester feedback on Campuswire!

Setup:

- Directed graph G = (V, E)
- ▶ Length $\ell(x,y)$ on each edge $(x,y) \in E$
- ▶ Length of path P is $\ell(P) = \sum_{(x,y) \in P} \ell(x,y)$
- ► $d(x,y) = \min_{x \to y \text{ paths } P} \ell(P)$

Last time: All distances from source node $\mathbf{v} \in \mathbf{V}$.

Today: Distances between all pairs of nodes!

Setup:

- Directed graph G = (V, E)
- ▶ Length $\ell(x,y)$ on each edge $(x,y) \in E$
- ▶ Length of path P is $\ell(P) = \sum_{(x,y) \in P} \ell(x,y)$
- ► $d(x,y) = \min_{x \to y \text{ paths } P} \ell(P)$

Last time: All distances from source node $\mathbf{v} \in \mathbf{V}$.

Today: Distances between all pairs of nodes!

Obvious solution:

Setup:

- Directed graph G = (V, E)
- ▶ Length $\ell(x,y)$ on each edge $(x,y) \in E$
- ▶ Length of path P is $\ell(P) = \sum_{(x,y) \in P} \ell(x,y)$
- ► $d(x,y) = \min_{x \to y \text{ paths } P} \ell(P)$

Last time: All distances from source node $\mathbf{v} \in \mathbf{V}$.

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each $\mathbf{v} \in \mathbf{V}$

Setup:

- Directed graph G = (V, E)
- ▶ Length $\ell(x,y)$ on each edge $(x,y) \in E$
- ▶ Length of path P is $\ell(P) = \sum_{(x,y) \in P} \ell(x,y)$
- ► $d(x,y) = \min_{x \to y \text{ paths } P} \ell(P)$

Last time: All distances from source node $\mathbf{v} \in \mathbf{V}$.

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each $\mathbf{v} \in \mathbf{V}$

- ▶ No negative weights: \mathbf{n} runs of Dijkstra, time $\mathbf{O}(\mathbf{n}(\mathbf{m} + \mathbf{n} \log \mathbf{n}))$
- Negative weights: \mathbf{n} runs of Bellman-Ford, time $\mathbf{O}(\mathbf{nmn}) = \mathbf{O}(\mathbf{mn}^2)$

Setup:

- Directed graph G = (V, E)
- ▶ Length $\ell(x,y)$ on each edge $(x,y) \in E$
- ▶ Length of path P is $\ell(P) = \sum_{(x,y) \in P} \ell(x,y)$
- $b d(x,y) = \min_{x \to y \text{ paths } P} \ell(P)$

Last time: All distances from source node $\mathbf{v} \in \mathbf{V}$.

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each $\mathbf{v} \in \mathbf{V}$

- ▶ No negative weights: n runs of Dijkstra, time $O(n(m + n \log n))$
- Negative weights: \mathbf{n} runs of Bellman-Ford, time $\mathbf{O}(\mathbf{nmn}) = \mathbf{O}(\mathbf{mn}^2)$

Can we do better? Particularly for negative edge weights?

▶ Main goal today: Negative weights as fast as possible.

Michael Dinitz Lecture 15: APSP October 19, 2021

3 / 13

Floyd-Warshall Algorithm

Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let $V = \{1, 2, ..., n\}$ and $\ell(i, j) = \infty$ if $(i, j) \notin E$

Bellman-Ford subproblems: length of shortest path with at most some number of edges

Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let $V = \{1, 2, ..., n\}$ and $\ell(i, j) = \infty$ if $(i, j) \notin E$

Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:

- ▶ Intuition: "shortest path from **u** to **v** either goes through node **n**, or it doesn't"
 - ▶ If it doesn't: shortest uses only first nodes in $\{1, 2, ..., n-1\}$.
 - If it does: consists of a path P_1 from u to n and a path P_2 from n to v, neither of which uses n (internally).

Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let $V = \{1, 2, ..., n\}$ and $\ell(i, j) = \infty$ if $(i, j) \notin E$

Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:

- ▶ Intuition: "shortest path from **u** to **v** either goes through node **n**, or it doesn't"
 - ▶ If it doesn't: shortest uses only first nodes in $\{1, 2, ..., n-1\}$.
 - If it does: consists of a path P_1 from u to n and a path P_2 from n to v, neither of which uses n (internally).
- Subproblems: shortest path from u to v that only uses nodes in $\{1,2,\ldots k\}$ for all u,v,k.

 $\mathbf{u} \rightarrow \mathbf{v}$ path **P**: "intermediate nodes" are all nodes in **P** other than \mathbf{u}, \mathbf{v} .

 $d^k_{ij} : \text{ distance from } i \text{ to } j \text{ using only } i \rightarrow j \text{ paths with intermediate vertices in } \{1,2,\ldots,k\}.$

- ▶ Goal: compute d_{ii}^k for all $i, j, k \in [n]$.
- ▶ Return \mathbf{d}_{ii}^{n} for all $\mathbf{i}, \mathbf{j} \in \mathbf{V}$.

 $\mathbf{u} \rightarrow \mathbf{v}$ path **P**: "intermediate nodes" are all nodes in **P** other than \mathbf{u}, \mathbf{v} .

 $d^k_{ij} : \text{ distance from } i \text{ to } j \text{ using only } i \to j \text{ paths with intermediate vertices in } \{1,2,\ldots,k\}.$

- ▶ Goal: compute d_{ii}^k for all $i, j, k \in [n]$.
- ▶ Return \mathbf{d}_{ii}^{n} for all $i, j \in \mathbf{V}$.

$$d_{ij}^{k} = \left\{ \begin{array}{c} \text{if } k = 0 \\ \text{if } k \geq 1 \end{array} \right.$$

 $\mathbf{u} \rightarrow \mathbf{v}$ path **P**: "intermediate nodes" are all nodes in **P** other than \mathbf{u}, \mathbf{v} .

 $d^k_{ij} : \text{ distance from } i \text{ to } j \text{ using only } i \to j \text{ paths with intermediate vertices in } \{1,2,\ldots,k\}.$

- ▶ Goal: compute d_{ii}^k for all $i, j, k \in [n]$.
- ▶ Return \mathbf{d}_{ii}^{n} for all $\mathbf{i}, \mathbf{j} \in \mathbf{V}$.

$$d_{ij}^{k} = \begin{cases} \ell(i,j) & \text{if } k = 0 \\ & \text{if } k \ge 1 \end{cases}$$

 $\mathbf{u} \rightarrow \mathbf{v}$ path **P**: "intermediate nodes" are all nodes in **P** other than \mathbf{u}, \mathbf{v} .

 d_{ii}^k : distance from i to j using only $i \rightarrow j$ paths with intermediate vertices in $\{1,2,\ldots,k\}$.

- ▶ Goal: compute d_{ii}^k for all $i, j, k \in [n]$.
- ▶ Return \mathbf{d}_{ii}^{n} for all $\mathbf{i}, \mathbf{j} \in \mathbf{V}$.

$$d_{ij}^k = \begin{cases} \ell(i,j) & \text{if } k = 0 \\ min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & \text{if } k \geq 1 \end{cases}$$

Theorem

For all $i, j, k \in [n]$:

$$\mathbf{d}_{ij}^{k} = \begin{cases} \ell(i,j) & \textit{if } k = 0 \\ min(\mathbf{d}_{ij}^{k-1}, \mathbf{d}_{ik}^{k-1} + \mathbf{d}_{kj}^{k-1}) & \textit{if } k \geq 1 \end{cases}$$

Theorem

For all $i, j, k \in [n]$:

$$\label{eq:dispersion} \begin{aligned} d_{ij}^k &= \begin{cases} \ell(i,j) & \textit{if } k = 0 \\ min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & \textit{if } k \geq 1 \end{cases} \end{aligned}$$

If
$$k = 0$$
: \checkmark

Theorem

For all $i, j, k \in [n]$:

$$d_{ij}^k = \begin{cases} \ell(i,j) & \text{if } k = 0 \\ \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & \text{if } k \geq 1 \end{cases}$$

If k = 0: \checkmark

If $k \ge 1$: prove \le and \ge

Theorem

For all $i, j, k \in [n]$:

$$d_{ij}^k = \begin{cases} \ell(i,j) & \text{if } k = 0 \\ \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & \text{if } k \geq 1 \end{cases}$$

If k = 0: \checkmark

If $k \ge 1$: prove \le and \ge

≤:

Theorem

For all $i, j, k \in [n]$:

$$d_{ij}^{k} = \begin{cases} \ell(i,j) & \text{if } k = 0 \\ \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & \text{if } k \geq 1 \end{cases}$$

If k = 0: \checkmark

If $k \ge 1$: prove \le and \ge

≤: Two feasible solutions

Theorem

For all $i, j, k \in [n]$:

$$\label{eq:dij} \begin{aligned} d_{ij}^k &= \begin{cases} \ell(i,j) & \text{if } k=0\\ \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & \text{if } k \geq 1 \end{cases} \end{aligned}$$

If k = 0: \checkmark

If $k \ge 1$: prove \le and \ge

≤: Two feasible solutions

 \geq : Let **P** be shortest $i \rightarrow j$ path with all intermediate nodes in [k]

If k not an intermediate node of P:

Theorem

For all $i, j, k \in [n]$:

$$\label{eq:dij} \begin{aligned} d_{ij}^k &= \begin{cases} \ell(i,j) & \text{if } k=0\\ \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & \text{if } k \geq 1 \end{cases} \end{aligned}$$

If $\mathbf{k} = \mathbf{0}$: \checkmark

If $k \ge 1$: prove \le and \ge

≤: Two feasible solutions

 \geq : Let **P** be shortest $\mathbf{i} \rightarrow \mathbf{j}$ path with all intermediate nodes in $[\mathbf{k}]$

▶ If k not an intermediate node of P: P has all intermediate nodes in [k-1] \Longrightarrow $min(d_{ii}^{k-1}, d_{ik}^{k-1} + d_{ki}^{k-1}) \le d_{ii}^{k-1} \le \ell(P) = d_{ii}^{k}$

Theorem

For all $i, j, k \in [n]$:

$$\label{eq:dij} \begin{aligned} d_{ij}^k &= \begin{cases} \ell(i,j) & \text{if } k=0\\ \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & \text{if } k \geq 1 \end{cases} \end{aligned}$$

If k = 0: \checkmark

If $k \ge 1$: prove \le and \ge

≤: Two feasible solutions

 \geq : Let **P** be shortest $\mathbf{i} \rightarrow \mathbf{j}$ path with all intermediate nodes in $[\mathbf{k}]$

- ▶ If k not an intermediate node of P: P has all intermediate nodes in [k-1] \Longrightarrow $min(d_{ii}^{k-1}, d_{ik}^{k-1} + d_{ki}^{k-1}) \le d_{ii}^{k-1} \le \ell(P) = d_{ii}^{k}$
- If k is an intermediate node of P:

Theorem

For all $i, j, k \in [n]$:

$$d_{ij}^{k} = \begin{cases} \ell(i,j) & \text{if } k = 0 \\ \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & \text{if } k \geq 1 \end{cases}$$

If k = 0: \checkmark

If $k \ge 1$: prove \le and \ge

≤: Two feasible solutions

 \geq : Let **P** be shortest $\mathbf{i} \rightarrow \mathbf{j}$ path with all intermediate nodes in $[\mathbf{k}]$

- ▶ If k not an intermediate node of P: P has all intermediate nodes in [k-1] \Longrightarrow $min(d_{ii}^{k-1}, d_{ik}^{k-1} + d_{ki}^{k-1}) \le d_{ii}^{k-1} \le \ell(P) = d_{ii}^{k}$
- ▶ If **k** is an intermediate node of **P**: divide **P** into **P**₁ (subpath from **i** to **k**) and **P**₂ (subpath from **k** to **i**)

$$min(d_{ij}^{k-1},d_{ik}^{k-1}+d_{kj}^{k-1}) \leq d_{ik}^{k-1}+d_{kj}^{k-1} \leq \ell(P_1)+\ell(P_2) = \ell(P) = d_{ij}^k$$

Michael Dinitz Lecture 15: APSP October 19, 2021

7 / 13

Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

```
\begin{split} M[i,j,0] &= \ell(i,j) \text{ for all } i,j \in [n] \\ &\text{for}(k=1 \text{ to } n) \\ &\text{for}(i=1 \text{ to } n) \\ &\text{for}(j=1 \text{ to } n) \\ &M[i,j,k] &= min(M[i,j,k-1],M[i,k,k-1] + M[k,j,k-1]) \end{split}
```

Usually bottom-up, since so simple:

```
\begin{split} M[i,j,0] &= \ell(i,j) \text{ for all } i,j \in [n] \\ &\text{for}(k=1 \text{ to } n) \\ &\text{for}(i=1 \text{ to } n) \\ &\text{for}(j=1 \text{ to } n) \\ &M[i,j,k] &= min(M[i,j,k-1],M[i,k,k-1]+M[k,j,k-1]) \end{split}
```

Correctness: obvious for k = 0. For k > 1:

$$\begin{split} M[i,j,k] &= min(M[i,j,k-1],M[i,k,k-1] + M[k,j,k-1]) \\ &= min(d_{ij}^{k-1},d_{ik}^{k-1}+d_{kj}^{k-1}) \\ &= d_{ij}^k \end{split} \tag{def of algorithm}$$

Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

```
\begin{split} M[i,j,0] &= \ell(i,j) \text{ for all } i,j \in [n] \\ &\text{for}(k=1 \text{ to } n) \\ &\text{for}(i=1 \text{ to } n) \\ &\text{for}(j=1 \text{ to } n) \\ &M[i,j,k] &= min(M[i,j,k-1],M[i,k,k-1] + M[k,j,k-1]) \end{split}
```

Correctness: obvious for k = 0. For $k \ge 1$:

$$\begin{split} M[i,j,k] &= min(M[i,j,k-1],M[i,k,k-1]+M[k,j,k-1]) \\ &= min(d_{ij}^{k-1},d_{ik}^{k-1}+d_{kj}^{k-1}) \\ &= d_{ij}^{k} \end{split} \qquad \text{(induction)}$$

Running Time: $O(n^3)$

9 / 13

Different Approach: Can we "fix" negative weights so Dijkstra from every node works?

► Time would be $O(n(m + n \log n)) = O(mn + n^2 \log n)$, better than Floyd-Warshall

Different Approach: Can we "fix" negative weights so Dijkstra from every node works?

► Time would be $O(n(m + n \log n)) = O(mn + n^2 \log n)$, better than Floyd-Warshall

First attempt: Let $-\alpha$ be smallest length (most negative). Add α to every edge.

Does this work?

Different Approach: Can we "fix" negative weights so Dijkstra from every node works?

► Time would be $O(n(m + n \log n)) = O(mn + n^2 \log n)$, better than Floyd-Warshall

First attempt: Let $-\alpha$ be smallest length (most negative). Add α to every edge.

Does this work? No!

Different Approach: Can we "fix" negative weights so Dijkstra from every node works?

► Time would be $O(n(m + n \log n)) = O(mn + n^2 \log n)$, better than Floyd-Warshall

First attempt: Let $-\alpha$ be smallest length (most negative). Add α to every edge.

- Does this work? No!
 - New length of path P is $\ell(P) + \alpha |P|$, so original shortest path might no longer be shortest path if it has many edges.

Different Approach: Can we "fix" negative weights so Dijkstra from every node works?

► Time would be $O(n(m + n \log n)) = O(mn + n^2 \log n)$, better than Floyd-Warshall

First attempt: Let $-\alpha$ be smallest length (most negative). Add α to every edge.

- Does this work? No!
 - New length of path P is $\ell(P) + \alpha |P|$, so original shortest path might no longer be shortest path if it has many edges.

200 3 200 100 1-1 00 10 1571

Some other kind of reweighting? Need new lengths $\hat{\ell}$ such that:

Different Approach: Can we "fix" negative weights so Dijkstra from every node works?

► Time would be $O(n(m + n \log n)) = O(mn + n^2 \log n)$, better than Floyd-Warshall

First attempt: Let $-\alpha$ be smallest length (most negative). Add α to every edge.

- Does this work? No!
 - New length of path P is $\ell(P) + \alpha |P|$, so original shortest path might no longer be shortest path if it has many edges.

Some other kind of reweighting? Need new lengths $\hat{\ell}$ such that:

- ullet Path ullet a shortest path under lengths ℓ if and only ullet a shortest path under lengths $\hat{\ell}$
- $\hat{\ell}(u, v) \ge 0$ for all $(u, v) \in E$

Neat observation: put weights at vertices!

- ▶ Let $\mathbf{h}: \mathbf{V} \to \mathbb{R}$ be node weights.
- ▶ Let $\ell_h(u, v) = \ell(u, v) + h(u) h(v)$

Neat observation: put weights at vertices!

- ▶ Let $\mathbf{h}: \mathbf{V} \to \mathbb{R}$ be node weights.
- Let $\ell_h(u, v) = \ell(u, v) + h(u) h(v)$

Let $P = (v_0, v_1, \dots, v_k)$ be arbitrary (not necessarily shortest) path.

Neat observation: put weights at vertices!

- ▶ Let $\mathbf{h}: \mathbf{V} \to \mathbb{R}$ be node weights.
- ▶ Let $\ell_h(u, v) = \ell(u, v) + h(u) h(v)$

Let $P = (v_0, v_1, \dots, v_k)$ be arbitrary (not necessarily shortest) path.

$$\ell_h(P) = \sum_{i=0}^{k-1} \ell_h(v_i, v_{i+1}) = \sum_{i=0}^{k-1} (\ell(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}))$$

Neat observation: put weights at vertices!

- ▶ Let $\mathbf{h}: \mathbf{V} \to \mathbb{R}$ be node weights.
- ► Let $\ell_h(u, v) = \ell(u, v) + h(u) h(v)$

Let $P = (v_0, v_1, \dots, v_k)$ be arbitrary (not necessarily shortest) path.

$$\begin{split} \ell_h(P) &= \sum_{i=0}^{k-1} \ell_h(v_i, v_{i+1}) = \sum_{i=0}^{k-1} \left(\ell(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}) \right) \\ &= h(v_0) - h(v_k) + \sum_{i=0}^{k-1} \ell(v_i, v_{i+1}) \end{split} \tag{telescoping}$$

Neat observation: put weights at vertices!

- ▶ Let $\mathbf{h}: \mathbf{V} \to \mathbb{R}$ be node weights.
- ► Let $\ell_h(u, v) = \ell(u, v) + h(u) h(v)$

Let $P = (v_0, v_1, \dots, v_k)$ be arbitrary (not necessarily shortest) path.

$$\begin{split} \ell_h(P) &= \sum_{i=0}^{k-1} \ell_h(v_i, v_{i+1}) = \sum_{i=0}^{k-1} \left(\ell(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}) \right) \\ &= h(v_0) - h(v_k) + \sum_{i=0}^{k-1} \ell(v_i, v_{i+1}) \\ &= \ell(P) + h(v_0) - h(v_k) \end{split} \tag{telescoping}$$

Neat observation: put weights at vertices!

- ▶ Let $\mathbf{h}: \mathbf{V} \to \mathbb{R}$ be node weights.
- Let $\ell_h(u, v) = \ell(u, v) + h(u) h(v)$

Let $P = (v_0, v_1, \dots, v_k)$ be arbitrary (not necessarily shortest) path.

$$\begin{split} \ell_h(P) &= \sum_{i=0}^{k-1} \ell_h(v_i, v_{i+1}) = \sum_{i=0}^{k-1} \left(\ell(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}) \right) \\ &= h(v_0) - h(v_k) + \sum_{i=0}^{k-1} \ell(v_i, v_{i+1}) \\ &= \ell(P) + h(v_0) - h(v_k) \end{split} \tag{telescoping}$$

 $h(v_0) - h(v_k)$ added to every $v_0 \rightarrow v_k$ path, so shortest path from v_0 to v_k still shortest path!

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all $v \in V$ of length 0

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all $v \in V$ of length 0

- ▶ Run Bellman-Ford from s, then for all $u \in V$ set h(u) to be d(s, u)
- ▶ Note $h(u) \le 0$ for all $u \in V$

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all $v \in V$ of length 0

- ▶ Run Bellman-Ford from s, then for all $u \in V$ set h(u) to be d(s, u)
- ▶ Note $h(u) \le 0$ for all $u \in V$

Want to show that $\ell_h(u, v) \ge 0$ for all edges (u, v).

► Triangle inequality: $h(v) = d(s, v) \le d(s, u) + \ell(u, v) = h(u) + \ell(u, v)$

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all $v \in V$ of length 0

- ▶ Run Bellman-Ford from s, then for all $u \in V$ set h(u) to be d(s, u)
- ▶ Note $h(u) \le 0$ for all $u \in V$

Want to show that $\ell_h(u, v) \ge 0$ for all edges (u, v).

► Triangle inequality: $h(v) = d(s, v) \le d(s, u) + \ell(u, v) = h(u) + \ell(u, v)$

$$\ell_h(u,v) = \ell(u,v) + h(u) - h(v) \ge \ell(u,v) + h(u) - (h(u) + \ell(u,v)) = 0$$

- Add vertex s to graph, edge (s, u) for all $u \in V$ with $\ell(s, u) = 0$
- Run Bellman-Ford from s, set h(u) = d(s, u)
- Remove s, run Dijkstra from every node $u \in V$ to get $d_h(u, v)$ for all $u, v \in V$
- If want distances, set $d(u,v) = d_h(u,v) h(u) + h(v)$ for all $u,v \in V$

Correctness: From previous discussion.

- ▶ Add vertex **s** to graph, edge (s, u) for all $u \in V$ with $\ell(s, u) = 0$
- ▶ Run Bellman-Ford from s, set h(u) = d(s, u)
- ▶ Remove s, run Dijkstra from every node $u \in V$ to get $d_h(u, v)$ for all $u, v \in V$
- If want distances, set $d(u, v) = d_h(u, v) h(u) + h(v)$ for all $u, v \in V$

Correctness: From previous discussion.

Running Time:

- ▶ Add vertex **s** to graph, edge (s, u) for all $u \in V$ with $\ell(s, u) = 0$
- Run Bellman-Ford from s, set h(u) = d(s, u)
- ▶ Remove s, run Dijkstra from every node $u \in V$ to get $d_h(u, v)$ for all $u, v \in V$
- If want distances, set $d(u, v) = d_h(u, v) h(u) + h(v)$ for all $u, v \in V$

Correctness: From previous discussion.

Running Time: $O(n) + O(mn) + O(n(m + n \log n)) = O(mn + n^2 \log n)$