Lecture 14: Single-Source Shortest Paths

Michael Dinitz

October 14, 2021
601.433/633 Introduction to Algorithms

Introduction

Setup:

- Directed graph G = (V, E)
- Length $\ell(\mathbf{x}, \mathbf{y})$ on each edge $(\mathbf{x}, \mathbf{y}) \in \mathbf{E}$ (equivalent: $\ell: \mathbf{E} \rightarrow \mathbb{R}$)
- Length of path \mathbf{P} is $\ell(\mathbf{P})=\sum_{(x, y) \in \mathbf{P}} \ell(\mathbf{x}, \mathbf{y})$
- $\mathbf{d}(\mathbf{x}, \mathrm{y})=\boldsymbol{\operatorname { m i n }}_{\mathrm{x} \rightarrow \mathrm{y} \text { paths }} \mathrm{P} \ell(P)$

Introduction

Setup:

- Directed graph G = (V, E)
- Length $\ell(\mathbf{x}, \mathbf{y})$ on each edge $(\mathbf{x}, \mathbf{y}) \in \mathbf{E}$ (equivalent: $\boldsymbol{\ell}: \mathbf{E} \rightarrow \mathbb{R}$)
- Length of path \mathbf{P} is $\ell(\mathbf{P})=\sum_{(x, y) \in P} \ell(x, y)$
- $\mathbf{d}(\mathbf{x}, \mathrm{y})=\boldsymbol{\operatorname { m i n }}_{\mathrm{x} \rightarrow \mathrm{y} \text { paths }} \mathrm{P} \ell(P)$

Today: source $\mathbf{v} \in \mathbf{V}$, want to compute shortest path from \mathbf{v} to every $\mathbf{u} \in \mathbf{V}$

- $\mathbf{d}(\mathbf{u})=\mathbf{d}(\mathbf{v}, \mathbf{u})$ for all $\mathbf{u} \in V$
- Representation: "shortest path tree" out of \mathbf{v}.
- Often only care about distances - can reconstruct tree from distances.

Bellman-Ford

Dynamic Programming Approach

Subproblems:

- $\mathbf{O P T}(\mathbf{u}, \mathbf{i})$: shortest path from \mathbf{v} to \mathbf{u} that uses at most \mathbf{i} hops (edges)
- If no such path, set to "infinitely long" fake path.
- For simplicity, create loop (edge to and from the same node) at every node, length $\mathbf{0}$

Dynamic Programming Approach

Subproblems:

- $\mathbf{O P T}(\mathbf{u}, \mathbf{i})$: shortest path from \mathbf{v} to \mathbf{u} that uses at most \mathbf{i} hops (edges)
- If no such path, set to "infinitely long" fake path.
- For simplicity, create loop (edge to and from the same node) at every node, length $\mathbf{0}$

Theorem (Optimal Substructure)

$$
\ell(\operatorname{OPT}(\mathbf{u}, \mathbf{k}))= \begin{cases}\mathbf{0} & \text { if } \mathbf{u}=\mathbf{v}, \mathbf{k}=\mathbf{0} \\ \infty & \text { if } \mathbf{u} \neq \mathbf{v}, \mathbf{k}=\mathbf{0} \\ \text { otherwise }\end{cases}
$$

Dynamic Programming Approach

Subproblems:

- $\mathbf{O P T}(\mathbf{u}, \mathbf{i})$: shortest path from \mathbf{v} to \mathbf{u} that uses at most \mathbf{i} hops (edges)
- If no such path, set to "infinitely long" fake path.
- For simplicity, create loop (edge to and from the same node) at every node, length $\mathbf{0}$

Theorem (Optimal Substructure)

$$
\ell(\operatorname{OPT}(\mathbf{u}, \mathbf{k}))= \begin{cases}\mathbf{0} & \text { if } \mathbf{u}=\mathbf{v}, \mathbf{k}=\mathbf{0} \\ \infty & \text { if } \mathbf{u} \neq \mathbf{v}, \mathbf{k}=\mathbf{0} \\ \boldsymbol{\operatorname { m i n }}_{\mathbf{w}:(\mathbf{w}, \mathbf{u}) \in \mathbf{E}}(\ell(\operatorname{OPT}(\mathbf{w}, \mathbf{k}-\mathbf{1}))+\ell(\mathbf{w}, \mathbf{u})) & \text { otherwise }\end{cases}
$$

Proof of Optimal Substructure

$$
\mathbf{k}=\mathbf{0}: \checkmark . \text { So let } \mathbf{k} \geq \mathbf{1}
$$

Proof of Optimal Substructure

$$
\begin{aligned}
\mathbf{k}= & \mathbf{0}: \checkmark \text {. So let } \mathbf{k} \geq \mathbf{1} . \\
\leq: & \text { Let } \mathbf{x}=\arg \min _{\mathbf{w}:(\mathbf{w}, \mathbf{u}) \in \mathrm{E}}(\ell(\operatorname{OPT}(\mathbf{w}, \mathbf{k}-\mathbf{1}))+\ell(\mathbf{w}, \mathbf{u})) \\
& \Longrightarrow \operatorname{OPT}(\mathbf{x}, \mathbf{k}-\mathbf{1}) \circ(\mathbf{x}, \mathbf{u}) \text { is a } \mathbf{v} \rightarrow \mathbf{u} \text { path with at most } \mathbf{k} \text { edges, length } \\
& \ell(\operatorname{OPT}(\mathbf{x}, \mathbf{k}-\mathbf{1}))+\ell(\mathbf{x}, \mathbf{u})) \\
& \Longrightarrow \operatorname{OPT}(\mathbf{u}, \mathbf{k}) \leq \boldsymbol{\operatorname { m i n }}_{\mathbf{w}:(\mathbf{w}, \mathbf{u}) \in \mathrm{E}}(\ell(\operatorname{OPT}(\mathbf{w}, \mathbf{k}-\mathbf{1}))+\ell(\mathbf{w}, \mathbf{u}))
\end{aligned}
$$

Proof of Optimal Substructure

$$
\begin{aligned}
\mathbf{k} & =\mathbf{0}: \checkmark \text {. So let } \mathbf{k} \geq \mathbf{1} \\
& \leq: \text { Let } \mathbf{x}=\arg \min _{w:(w, u) \in E}(\ell(\operatorname{OPT}(\mathbf{w}, \mathbf{k}-\mathbf{1}))+\ell(\mathbf{w}, \mathbf{u}))
\end{aligned}
$$

$\Longrightarrow \operatorname{OPT}(\mathbf{x}, \mathbf{k}-\mathbf{1}) \circ(\mathbf{x}, \mathbf{u})$ is a $\mathbf{v} \rightarrow \mathbf{u}$ path with at most \mathbf{k} edges, length $\ell(\operatorname{OPT}(\mathrm{x}, \mathrm{k}-1))+\ell(\mathrm{x}, \mathrm{u}))$
$\Longrightarrow \operatorname{OPT}(\mathbf{u}, \mathbf{k}) \leq \min _{\mathrm{w}:(\mathrm{w}, \mathbf{u}) \in \mathrm{E}}(\ell(\operatorname{OPT}(\mathbf{w}, \mathbf{k}-\mathbf{1}))+\ell(\mathbf{w}, \mathbf{u}))$
\geq : Let \mathbf{z} be node before \mathbf{u} in $\operatorname{OPT}(\mathbf{u}, \mathbf{k})$, and let \mathbf{P}^{\prime} be the first $\mathbf{k} \mathbf{- 1}$ edges of $\operatorname{OPT}(\mathbf{u}, \mathbf{k})$. Then

Bellman-Ford Algorithm

Obvious dynamic program!

```
\(\mathbf{M}[\mathbf{u}, \mathbf{0}]=\infty\) for all \(\mathbf{u} \in \mathbf{V}, \mathbf{u} \neq \mathbf{v}\)
\(\mathrm{M}[\mathrm{v}, 0]=0\)
\(\operatorname{for}(\mathbf{k}=1\) to \(\mathbf{n - 1}\)
    for \((\mathbf{u} \in \mathbf{V})\) \{
        \(\mathrm{M}[\mathbf{u}, \mathbf{k}]=\min _{\mathrm{w}:(\mathrm{w}, \mathbf{u}) \in \mathrm{E}}(\mathrm{M}[\mathbf{w}, \mathbf{k}-\mathbf{1}]+\ell(\mathbf{w}, \mathbf{u}))\)
    \}
\}
```


Bellman-Ford Algorithm

Obvious dynamic program!

```
\(\mathbf{M}[\mathbf{u}, \mathbf{0}]=\infty\) for all \(\mathbf{u} \in \mathbf{V}, \mathbf{u} \neq \mathbf{v}\)
\(\mathrm{M}[\mathrm{v}, 0]=0\)
for \((\mathbf{k}=\mathbf{1}\) to \(\mathbf{n} \mathbf{- 1})\{\)
    for \((\mathbf{u} \in \mathbf{V})\{\)
        \(\mathrm{M}[\mathbf{u}, \mathbf{k}]=\min _{\mathrm{w}:(\mathrm{w}, \mathbf{u}) \in \mathrm{E}}(\mathrm{M}[\mathbf{w}, \mathbf{k}-\mathbf{1}]+\ell(\mathbf{w}, \mathbf{u}))\)
    \}
\}
```


Running Time:

Bellman-Ford Algorithm
Obvious dynamic program!

$$
\begin{aligned}
& \mathbf{M}[\mathbf{u}, \mathbf{0}]=\infty \text { for all } \mathbf{u} \in \mathbf{V}, \mathbf{u} \neq \mathbf{v} \\
& \mathbf{M}[\mathbf{v}, \mathbf{0}]=\mathbf{0} \\
& \text { for }(\mathbf{k}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1})\{ \\
& \quad \text { for }(\mathbf{u} \in \mathbf{V})\{ \\
& \left.\left.\quad \mathbf{M}[\mathbf{u}, \mathbf{k}]=\boldsymbol{m i n}_{\mathbf{w}:(\mathbf{w}, \mathbf{u}) \in \mathrm{E}}(\mathbf{M}[\mathbf{w}, \mathbf{k}-\mathbf{1}]+\ell(\mathbf{w}, \mathbf{u}))\right\} O(m) \text { (assmming m? } \mathbf{n - l}\right\} \\
& \}
\end{aligned}
$$

Running Time:

- Obvious: $\mathbf{O}\left(\mathbf{n}^{3}\right)$

Bellman-Ford Algorithm

Obvious dynamic program!

```
\(\mathbf{M}[\mathbf{u}, \mathbf{0}]=\infty\) for all \(\mathbf{u} \in \mathbf{V}, \mathbf{u} \neq \mathbf{v}\)
\(\mathrm{M}[\mathrm{v}, 0]=0\)
for \((\mathbf{k}=\mathbf{1}\) to \(\mathbf{n} \mathbf{- 1})\{\)
    for \((\mathbf{u} \in \mathbf{V})\{\)
        \(\mathrm{M}[\mathbf{u}, \mathbf{k}]=\min _{\mathrm{w}:(\mathrm{w}, \mathbf{u}) \in \mathrm{E}}(\mathrm{M}[\mathbf{w}, \mathbf{k}-\mathbf{1}]+\ell(\mathbf{w}, \mathbf{u}))\)
    \}
\}
```


Running Time:

- Obvious: $\mathbf{O}\left(\mathbf{n}^{3}\right)$
- Smarter: O(mn)

Bellman-Ford: Correctness

Theorem

After algorithm completes, $\mathbf{M}[\mathbf{u}, \mathbf{k}]=\ell(\mathbf{O P T}(\mathbf{u}, \mathbf{k}))$ for all $\mathbf{k} \leq \mathbf{n}-\mathbf{1}$ and $\mathbf{u} \in \mathbf{V}$.

Bellman-Ford: Correctness

Theorem

After algorithm completes, $\mathbf{M}[\mathbf{u}, \mathbf{k}]=\ell(\mathbf{O P T}(\mathbf{u}, \mathbf{k}))$ for all $\mathbf{k} \leq \mathbf{n - 1}$ and $\mathbf{u} \in \mathbf{V}$.

Proof.

Induction on \mathbf{k}. Obviously true for $\mathbf{k}=\mathbf{0}$.

Bellman-Ford: Correctness

Theorem

After algorithm completes, $\mathbf{M}[\mathbf{u}, \mathbf{k}]=\ell(\mathbf{O P T}(\mathbf{u}, \mathbf{k}))$ for all $\mathbf{k} \leq \mathbf{n}-\mathbf{1}$ and $\mathbf{u} \in \mathbf{V}$.

Proof.

Induction on \mathbf{k}. Obviously true for $\mathbf{k}=\mathbf{0}$.

$$
\begin{aligned}
M[u, k] & \left.=\min _{w:(w, u) \in E}(M[w, k-1])+\ell(w, u)\right) \\
& =\min _{w:(w, u) \in E}(\ell(\operatorname{OPT}(w, k-1))+\ell(w, u)) \\
& =\ell(\operatorname{OPT}(\mathbf{u}, \mathbf{k}))
\end{aligned}
$$

(algorithm)
(induction)
(optimal substructure)

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

- Negative-weight cycle: not really!

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

- Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily negative

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

- Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily negative
- No negative-weight cycle: everything we did before is fine!

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

- Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily negative
- No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle:

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

- Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily negative
- No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Relaxations

Common primitive in shortest path algorithms

- Reinterpret Bellman-Ford via relaxations
- Use relaxations for Dijkstra's algorithm

Relaxations

Common primitive in shortest path algorithms

- Reinterpret Bellman-Ford via relaxations
- Use relaxations for Dijkstra's algorithm
$\hat{\mathbf{d}}(\mathbf{u})$: upper bound on $\mathbf{d}(\mathbf{u})$
- Initially: $\hat{\mathbf{d}}(\mathbf{v})=\mathbf{0}, \hat{\mathbf{d}}(\mathbf{u})=\infty$ for all $\mathbf{u} \neq \mathbf{v}$

Relaxations

Common primitive in shortest path algorithms

- Reinterpret Bellman-Ford via relaxations
- Use relaxations for Dijkstra's algorithm
$\hat{\mathbf{d}}(\mathbf{u})$: upper bound on $\mathbf{d}(\mathbf{u})$
- Initially: $\hat{\mathbf{d}}(\mathbf{v})=\mathbf{0}, \hat{\mathbf{d}}(\mathbf{u})=\infty$ for all $\mathbf{u} \neq \mathbf{v}$

Intuition for relax (\mathbf{x}, \mathbf{y}) : can we improve $\hat{\mathbf{d}}(\mathbf{y})$ by going through x ?

Relaxations

Common primitive in shortest path algorithms

- Reinterpret Bellman-Ford via relaxations
- Use relaxations for Dijkstra's algorithm
$\hat{\mathbf{d}}(\mathbf{u})$: upper bound on $\mathbf{d}(\mathbf{u})$
- Initially: $\hat{\mathbf{d}}(\mathbf{v})=\mathbf{0}, \hat{\mathbf{d}}(\mathbf{u})=\infty$ for all $\mathbf{u} \neq \mathbf{v}$

Intuition for relax (\mathbf{x}, \mathbf{y}) : can we improve $\hat{\mathbf{d}}(\mathbf{y})$ by going

```
relax(x,y) {
    if(\hat{d}(y)>\hat{\mathbf{d}}(\mathbf{x})+\ell(x,y)){
        d}(y)=\hat{\mathbf{d}}(\textrm{x})+\ell(x,y
        y.parent = x
    }
}
``` through x ?

\section*{Bellman-Ford as Relaxations}
```

for(i=1 to n) {
foreach(u \in V ) {
foreach(edge (x,u)) {
relax(x,u)
}
}
}

```

\section*{Bellman-Ford as Relaxations}
```

for(i=1 to n) {
foreach(\mathbf{u}\in\mathbf{V}) {
foreach(edge (x,u)) {
relax(x,u)
}
}
}

```

Not precisely the same: freezing/parallelism

\section*{Dijkstra's Algorithm}

\section*{High Level}

Intuition: "greedy starting at v"
- BFS but with edge lengths: use priority queue (heap) instead of queue!

Pros: faster than Bellman-Ford (super fast with appropriate data structures)
Cons: Doesn't work with negative edge weights.

\section*{Dijkstra's Algorithm}
```

T=\varnothing
d(v)=0
d}(\mathbf{u})=\infty\mathrm{ for all }\mathbf{u}\not=\mathbf{v
while(not all nodes in T) {
let u}\mathrm{ be node not in T with minimum {}\mathbf{d}(\mathbf{u}
Add u to T
foreach edge (u,x) with }\mathbf{x}\not=\mathbf{T}
relax(u,x)
}
}

```

\section*{Dijkstra Example}

(a)

(b)

(c)

\section*{Dijkstra Correctness}

\section*{Theorem}

Throughout the algorithm:
1. \(\mathbf{T}\) is a shortest-path tree from \(\mathbf{v}\) to the nodes in \(\mathbf{T}\), and
2. \(\hat{\mathbf{d}}(\mathbf{u})=\mathbf{d}(\mathbf{u})\) for every \(\mathbf{u} \in \mathbf{T}\).

\section*{Dijkstra Correctness}

\section*{Theorem}

Throughout the algorithm:
1. \(\mathbf{T}\) is a shortest-path tree from \(\mathbf{v}\) to the nodes in \(\mathbf{T}\), and
2. \(\hat{\mathbf{d}}(\mathbf{u})=\mathbf{d}(\mathbf{u})\) for every \(\mathbf{u} \in \mathbf{T}\).

Proof. Induction on \(|\mathbf{T}|\) (iterations of algorithm)

\section*{Dijkstra Correctness}

\section*{Theorem}

Throughout the algorithm:
1. \(\mathbf{T}\) is a shortest-path tree from \(\mathbf{v}\) to the nodes in \(\mathbf{T}\), and
2. \(\hat{\mathbf{d}}(\mathbf{u})=\mathbf{d}(\mathbf{u})\) for every \(\mathbf{u} \in \mathbf{T}\).

Proof. Induction on \(|\mathbf{T}|\) (iterations of algorithm)
Base Case: After first iteration (when \(|\mathbf{T}|=\mathbf{1}\)), added \(\mathbf{v}\) to \(\mathbf{T}\) with \(\hat{\mathbf{d}}(\mathbf{v})=\mathbf{d}(\mathbf{v})=\mathbf{0} \checkmark\)

\section*{Correctness: Inductive Step (Sketch)}

Consider iteration when \(\mathbf{u}\) added to \(\mathbf{T}\), let \(\mathbf{w}=\mathbf{u}\).parent
\(\Longrightarrow \hat{\mathbf{d}}(\mathbf{u})=\hat{\mathbf{d}}(\mathbf{w})+\ell(\mathbf{w}, \mathbf{u})=\mathbf{d}(\mathbf{w})+\ell(\mathbf{w}, \mathbf{u})\) (induction)
ind-cticn

\section*{Correctness: Inductive Step (Sketch)}

Consider iteration when \(\mathbf{u}\) added to \(\mathbf{T}\), let \(\mathbf{w}=\mathbf{u}\).parent
\[
\Longrightarrow \hat{\mathbf{d}}(\mathbf{u})=\hat{\mathbf{d}}(\mathbf{w})+\ell(\mathbf{w}, \mathbf{u})=\mathbf{d}(\mathbf{w})+\ell(\mathbf{w}, \mathbf{u}) \text { (induction) }
\]
- Red path P actual shortest path, black path found by Dijkstra
- \(\mathbf{w}^{\prime}\) predecessor of \(\mathbf{u}\) on \(\mathbf{P}\). Can't be in \(\mathbf{T}\).
- If it was, would have \(\hat{\mathbf{d}}\left(\boldsymbol{w}^{\prime}\right)=\mathbf{d}\left(\mathbf{w}^{\prime}\right)\) by induction, would have relaxed (\(\mathbf{w}^{\prime}, \mathbf{u}\)), so would have \(\mathbf{w}^{\prime}=\mathbf{u}\). parent
- \(\mathbf{x}\) first node of \(\mathbf{P}\) outside \(\mathbf{T}\), previous node \(\mathbf{y}\)

\section*{Correctness: Inductive Step (Sketch)}

Consider iteration when \(\mathbf{u}\) added to \(\mathbf{T}\), let \(\mathbf{w}=\mathbf{u}\).parent
\[
\Longrightarrow \hat{\mathbf{d}}(\mathbf{u})=\hat{\mathbf{d}}(\mathbf{w})+\ell(\mathbf{w}, \mathbf{u})=\mathbf{d}(\mathbf{w})+\ell(\mathbf{w}, \mathbf{u}) \text { (induction) }
\]
- Red path P actual shortest path, black path found by Dijkstra
- \(\mathbf{w}^{\prime}\) predecessor of \(\mathbf{u}\) on \(\mathbf{P}\). Can't be in \(\mathbf{T}\).
- If it was, would have \(\hat{\mathbf{d}}\left(\boldsymbol{w}^{\prime}\right)=\mathbf{d}\left(\mathbf{w}^{\prime}\right)\) by induction, would have relaxed (\(\mathbf{w}^{\prime}, \mathbf{u}\)), so would have \(\mathbf{w}^{\prime}=\mathbf{u}\). parent
- \(\mathbf{x}\) first node of \(\mathbf{P}\) outside \(\mathbf{T}\), previous node \(\mathbf{y}\)
\[
\begin{aligned}
& \hat{\mathbf{d}}(\mathbf{x}) \leq \hat{\mathbf{d}}(\mathbf{y})+\ell(\mathbf{y}, \mathbf{x})=\mathbf{d}(\mathbf{y})+\ell(\mathbf{y}, \mathbf{x})<\ell(P)=\mathbf{d}(\mathbf{u}) \leq \hat{\mathbf{d}}(\mathbf{u}) \\
& \quad \text { remode }(y, x) \text { ind-ction }
\end{aligned}
\]

\section*{Correctness: Inductive Step (Sketch)}

Consider iteration when \(\mathbf{u}\) added to \(\mathbf{T}\), let \(\mathbf{w}=\mathbf{u}\). parent
\[
\Longrightarrow \hat{\mathbf{d}}(\mathbf{u})=\hat{\mathbf{d}}(\mathbf{w})+\ell(\mathbf{w}, \mathbf{u})=\mathbf{d}(\mathbf{w})+\ell(\mathbf{w}, \mathbf{u}) \text { (induction) }
\]
- Red path P actual shortest path, black path found by Dijkstra
- \(\mathbf{w}^{\prime}\) predecessor of \(\mathbf{u}\) on \(\mathbf{P}\). Can't be in \(\mathbf{T}\).
- If it was, would have \(\hat{\mathbf{d}}\left(\boldsymbol{w}^{\prime}\right)=\mathbf{d}\left(\mathbf{w}^{\prime}\right)\) by induction, would have relaxed (\(\mathbf{w}^{\prime}, \mathbf{u}\)), so would have \(\mathbf{w}^{\prime}=\mathbf{u}\). parent
- \(\mathbf{x}\) first node of \(\mathbf{P}\) outside \(\mathbf{T}\), previous node \(\mathbf{y}\)
\[
\hat{d}(x) \leq \hat{d}(y)+\ell(y, x)=\mathbf{d}(y)+\ell(y, x)<\ell(P)=\mathbf{d}(u) \leq \hat{d}(u)
\]

Contradiction! Algorithm would have chosen \(\mathbf{x}\) next, not \(\mathbf{u}\).

\section*{Running Time}

Algorithm needs to:
- Select node with minimum \(\hat{\mathbf{d}}\) value \(\mathbf{n}\) times
- Decrease a \(\hat{\mathbf{d}}\) value at most once per relaxation \(\Longrightarrow \leq \boldsymbol{m}\) times.

\section*{Running Time}

Algorithm needs to:
- Select node with minimum \(\hat{\mathbf{d}}\) value \(\mathbf{n}\) times
- Decrease a \(\hat{\mathbf{d}}\) value at most once per relaxation \(\Longrightarrow \leq \mathbf{m}\) times.

Nothing fancy, keep \(\hat{\mathbf{d}}(\mathbf{u})\) in adjacency list: selecting min \(\hat{\mathbf{d}}\) value takes \(\mathbf{O}(\mathbf{n})\) time \(\Longrightarrow \mathbf{O}\left(\mathrm{n}^{2}+\mathbf{m}\right)=\mathbf{O}\left(\mathrm{n}^{2}\right)\) total.

\section*{Running Time}

Algorithm needs to:
- Select node with minimum \(\hat{\mathbf{d}}\) value \(\mathbf{n}\) times
- Decrease a \(\hat{\mathbf{d}}\) value at most once per relaxation \(\Longrightarrow \leq \mathbf{m}\) times.

Nothing fancy, keep \(\hat{\mathbf{d}}(\mathbf{u})\) in adjacency list: selecting min \(\hat{\mathbf{d}}\) value takes \(\mathbf{O}(\mathbf{n})\) time \(\Longrightarrow \mathbf{O}\left(\mathbf{n}^{2}+\mathbf{m}\right)=\mathbf{O}\left(\mathrm{n}^{2}\right)\) total.

Keep \(\hat{\mathbf{d}}\) values in a heap!
- Insert n times
- Extract-Min n times
- Decrease-Key m times

\section*{Running Time}

Algorithm needs to:
- Select node with minimum \(\hat{\mathbf{d}}\) value \(\mathbf{n}\) times
- Decrease a \(\hat{\mathbf{d}}\) value at most once per relaxation \(\Longrightarrow \leq \mathbf{m}\) times.

Nothing fancy, keep \(\hat{\mathbf{d}}(\mathbf{u})\) in adjacency list: selecting min \(\hat{\mathbf{d}}\) value takes \(\mathbf{O}(\mathbf{n})\) time \(\Longrightarrow \mathbf{O}\left(\mathbf{n}^{2}+\mathbf{m}\right)=\mathbf{O}\left(\mathrm{n}^{2}\right)\) total.

Keep \(\hat{\mathbf{d}}\) values in a heap!
- Insert \(\mathbf{n}\) times
- Extract-Min n times
- Decrease-Key m times

Binary heap: \(\mathbf{O}(\log \mathbf{n})\) per operation (amortized) \(\Longrightarrow \mathbf{O}((\mathbf{m}+\mathbf{n}) \log n)\) running time.

\section*{Running Time}

Algorithm needs to:
- Select node with minimum \(\hat{\mathbf{d}}\) value \(\mathbf{n}\) times
- Decrease a \(\hat{\mathbf{d}}\) value at most once per relaxation \(\Longrightarrow \leq \mathbf{m}\) times.

Nothing fancy, keep \(\hat{\mathbf{d}}(\mathbf{u})\) in adjacency list: selecting min \(\hat{\mathbf{d}}\) value takes \(\mathbf{O}(\mathbf{n})\) time \(\Longrightarrow \mathbf{O}\left(\mathbf{n}^{2}+\mathbf{m}\right)=\mathbf{O}\left(\mathbf{n}^{2}\right)\) total.

Keep \(\hat{\mathbf{d}}\) values in a heap!
- Insert \(\mathbf{n}\) times
- Extract-Min n times
- Decrease-Key m times

Binary heap: \(\mathbf{O}(\log \mathbf{n})\) per operation (amortized) \(\Longrightarrow \mathbf{O}((\mathbf{m}+\mathbf{n}) \log n)\) running time.

Fibonacci Heap:
- Insert, Decrease-Key O(1) amortized
- Extract-Min \(\mathbf{O}(\log n)\) amortized
\(\Longrightarrow \mathbf{O}(\mathbf{m}+\mathbf{n} \log n)\) running time```

