
Lecture 14: Single-Source Shortest Paths

Michael Dinitz

October 14, 2021
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 14: SSSP October 14, 2021 1 / 17



Introduction

Setup:

▸ Directed graph G = (V,E)
▸ Length `(x,y) on each edge (x,y) ∈ E (equivalent: ` ∶ E→ R)

▸ Length of path P is `(P) = ∑(x,y)∈P `(x,y)
▸ d(x,y) =minx→y paths P `(P)

Today: source v ∈ V, want to compute shortest path from v to every u ∈ V
▸ d(u) = d(v,u) for all u ∈ V
▸ Representation: “shortest path tree” out of v.

▸ Often only care about distances – can reconstruct tree from distances.

Michael Dinitz Lecture 14: SSSP October 14, 2021 2 / 17



Introduction

Setup:

▸ Directed graph G = (V,E)
▸ Length `(x,y) on each edge (x,y) ∈ E (equivalent: ` ∶ E→ R)

▸ Length of path P is `(P) = ∑(x,y)∈P `(x,y)
▸ d(x,y) =minx→y paths P `(P)

Today: source v ∈ V, want to compute shortest path from v to every u ∈ V
▸ d(u) = d(v,u) for all u ∈ V
▸ Representation: “shortest path tree” out of v.

▸ Often only care about distances – can reconstruct tree from distances.

Michael Dinitz Lecture 14: SSSP October 14, 2021 2 / 17



Bellman-Ford

Michael Dinitz Lecture 14: SSSP October 14, 2021 3 / 17



Dynamic Programming Approach

Subproblems:

▸ OPT(u, i): shortest path from v to u that uses at most i hops (edges)

▸ If no such path, set to “infinitely long” fake path.

▸ For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

`(OPT(u,k)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if u = v,k = 0

∞ if u ≠ v,k = 0

minw∶(w,u)∈E(`(OPT(w,k − 1)) + `(w,u))

otherwise

Michael Dinitz Lecture 14: SSSP October 14, 2021 4 / 17



Dynamic Programming Approach

Subproblems:

▸ OPT(u, i): shortest path from v to u that uses at most i hops (edges)

▸ If no such path, set to “infinitely long” fake path.

▸ For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

`(OPT(u,k)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if u = v,k = 0

∞ if u ≠ v,k = 0

minw∶(w,u)∈E(`(OPT(w,k − 1)) + `(w,u))

otherwise

Michael Dinitz Lecture 14: SSSP October 14, 2021 4 / 17



Dynamic Programming Approach

Subproblems:

▸ OPT(u, i): shortest path from v to u that uses at most i hops (edges)

▸ If no such path, set to “infinitely long” fake path.

▸ For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

`(OPT(u,k)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if u = v,k = 0

∞ if u ≠ v,k = 0

minw∶(w,u)∈E(`(OPT(w,k − 1)) + `(w,u)) otherwise

Michael Dinitz Lecture 14: SSSP October 14, 2021 4 / 17



Proof of Optimal Substructure

k = 0 ∶ ✓. So let k ≥ 1.

≤: Let x = argminw∶(w,u)∈E(`(OPT(w,k − 1)) + `(w,u))
Ô⇒ OPT(x,k − 1) ○ (x,u) is a v → u path with at most k edges, length
`(OPT(x,k − 1)) + `(x,u))
Ô⇒ OPT(u,k) ≤minw∶(w,u)∈E(`(OPT(w,k − 1)) + `(w,u))

≥: Let z be node before u in OPT(u,k), and let P′ be the first k − 1 edges of OPT(u,k).
Then

OPT(u,k) = `(P′) + `(z,u) ≥ `(OPT(z,k − 1)) + `(z,u)
≥ min

w∶(w,u)∈E
(`(OPT(w,k − 1)) + `(w,u))

Michael Dinitz Lecture 14: SSSP October 14, 2021 5 / 17



Proof of Optimal Substructure

k = 0 ∶ ✓. So let k ≥ 1.

≤: Let x = argminw∶(w,u)∈E(`(OPT(w,k − 1)) + `(w,u))
Ô⇒ OPT(x,k − 1) ○ (x,u) is a v → u path with at most k edges, length
`(OPT(x,k − 1)) + `(x,u))
Ô⇒ OPT(u,k) ≤minw∶(w,u)∈E(`(OPT(w,k − 1)) + `(w,u))

≥: Let z be node before u in OPT(u,k), and let P′ be the first k − 1 edges of OPT(u,k).
Then

OPT(u,k) = `(P′) + `(z,u) ≥ `(OPT(z,k − 1)) + `(z,u)
≥ min

w∶(w,u)∈E
(`(OPT(w,k − 1)) + `(w,u))

Michael Dinitz Lecture 14: SSSP October 14, 2021 5 / 17



Proof of Optimal Substructure

k = 0 ∶ ✓. So let k ≥ 1.

≤: Let x = argminw∶(w,u)∈E(`(OPT(w,k − 1)) + `(w,u))
Ô⇒ OPT(x,k − 1) ○ (x,u) is a v → u path with at most k edges, length
`(OPT(x,k − 1)) + `(x,u))
Ô⇒ OPT(u,k) ≤minw∶(w,u)∈E(`(OPT(w,k − 1)) + `(w,u))

≥: Let z be node before u in OPT(u,k), and let P′ be the first k − 1 edges of OPT(u,k).
Then

OPT(u,k) = `(P′) + `(z,u) ≥ `(OPT(z,k − 1)) + `(z,u)
≥ min

w∶(w,u)∈E
(`(OPT(w,k − 1)) + `(w,u))

Michael Dinitz Lecture 14: SSSP October 14, 2021 5 / 17



Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] =∞ for all u ∈ V,u ≠ v
M[v,0] = 0

for(k = 1 to n − 1) {
for(u ∈ V) {

M[u,k] =minw∶(w,u)∈E(M[w,k − 1] + `(w,u))
}

}

Running Time:

▸ Obvious: O(n3)
▸ Smarter: O(mn)

Michael Dinitz Lecture 14: SSSP October 14, 2021 6 / 17



Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] =∞ for all u ∈ V,u ≠ v
M[v,0] = 0

for(k = 1 to n − 1) {
for(u ∈ V) {

M[u,k] =minw∶(w,u)∈E(M[w,k − 1] + `(w,u))
}

}

Running Time:

▸ Obvious: O(n3)
▸ Smarter: O(mn)

Michael Dinitz Lecture 14: SSSP October 14, 2021 6 / 17



Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] =∞ for all u ∈ V,u ≠ v
M[v,0] = 0

for(k = 1 to n − 1) {
for(u ∈ V) {

M[u,k] =minw∶(w,u)∈E(M[w,k − 1] + `(w,u))
}

}

Running Time:

▸ Obvious: O(n3)

▸ Smarter: O(mn)

Michael Dinitz Lecture 14: SSSP October 14, 2021 6 / 17



Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] =∞ for all u ∈ V,u ≠ v
M[v,0] = 0

for(k = 1 to n − 1) {
for(u ∈ V) {

M[u,k] =minw∶(w,u)∈E(M[w,k − 1] + `(w,u))
}

}

Running Time:

▸ Obvious: O(n3)
▸ Smarter: O(mn)

Michael Dinitz Lecture 14: SSSP October 14, 2021 6 / 17



Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u,k] = `(OPT(u,k)) for all k ≤ n − 1 and u ∈ V.

Proof.

Induction on k. Obviously true for k = 0.

M[u,k] = min
w∶(w,u)∈E

(M[w,k − 1]) + `(w,u)) (algorithm)

=minw∶(w,u)∈E(`(OPT(w,k − 1)) + `(w,u)) (induction)

= `(OPT(u,k)) (optimal substructure)

Michael Dinitz Lecture 14: SSSP October 14, 2021 7 / 17



Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u,k] = `(OPT(u,k)) for all k ≤ n − 1 and u ∈ V.

Proof.

Induction on k. Obviously true for k = 0.

M[u,k] = min
w∶(w,u)∈E

(M[w,k − 1]) + `(w,u)) (algorithm)

=minw∶(w,u)∈E(`(OPT(w,k − 1)) + `(w,u)) (induction)

= `(OPT(u,k)) (optimal substructure)

Michael Dinitz Lecture 14: SSSP October 14, 2021 7 / 17



Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u,k] = `(OPT(u,k)) for all k ≤ n − 1 and u ∈ V.

Proof.

Induction on k. Obviously true for k = 0.

M[u,k] = min
w∶(w,u)∈E

(M[w,k − 1]) + `(w,u)) (algorithm)

=minw∶(w,u)∈E(`(OPT(w,k − 1)) + `(w,u)) (induction)

= `(OPT(u,k)) (optimal substructure)

Michael Dinitz Lecture 14: SSSP October 14, 2021 7 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

▸ Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

▸ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Michael Dinitz Lecture 14: SSSP October 14, 2021 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

▸ Negative-weight cycle: not really!

Go around cycle forever, make distances arbitrarily
negative

▸ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Michael Dinitz Lecture 14: SSSP October 14, 2021 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

▸ Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

▸ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Michael Dinitz Lecture 14: SSSP October 14, 2021 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

▸ Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

▸ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Michael Dinitz Lecture 14: SSSP October 14, 2021 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

▸ Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

▸ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle:

One more round of Bellman-Ford!

Michael Dinitz Lecture 14: SSSP October 14, 2021 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

▸ Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

▸ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Michael Dinitz Lecture 14: SSSP October 14, 2021 8 / 17



Relaxations

Common primitive in shortest path algorithms

▸ Reinterpret Bellman-Ford via relaxations

▸ Use relaxations for Dijkstra’s algorithm

d̂(u): upper bound on d(u)
▸ Initially: d̂(v) = 0, d̂(u) =∞ for all u ≠ v

Intuition for relax(x,y): can we improve d̂(y) by going
through x?

relax(x,y) {
if(d̂(y) > d̂(x) + `(x,y)) {

d̂(y) = d̂(x) + `(x,y)
y.parent = x

}
}

Michael Dinitz Lecture 14: SSSP October 14, 2021 9 / 17



Relaxations

Common primitive in shortest path algorithms

▸ Reinterpret Bellman-Ford via relaxations

▸ Use relaxations for Dijkstra’s algorithm

d̂(u): upper bound on d(u)
▸ Initially: d̂(v) = 0, d̂(u) =∞ for all u ≠ v

Intuition for relax(x,y): can we improve d̂(y) by going
through x?

relax(x,y) {
if(d̂(y) > d̂(x) + `(x,y)) {

d̂(y) = d̂(x) + `(x,y)
y.parent = x

}
}

Michael Dinitz Lecture 14: SSSP October 14, 2021 9 / 17



Relaxations

Common primitive in shortest path algorithms

▸ Reinterpret Bellman-Ford via relaxations

▸ Use relaxations for Dijkstra’s algorithm

d̂(u): upper bound on d(u)
▸ Initially: d̂(v) = 0, d̂(u) =∞ for all u ≠ v

Intuition for relax(x,y): can we improve d̂(y) by going
through x?

relax(x,y) {
if(d̂(y) > d̂(x) + `(x,y)) {

d̂(y) = d̂(x) + `(x,y)
y.parent = x

}
}

Michael Dinitz Lecture 14: SSSP October 14, 2021 9 / 17



Relaxations

Common primitive in shortest path algorithms

▸ Reinterpret Bellman-Ford via relaxations

▸ Use relaxations for Dijkstra’s algorithm

d̂(u): upper bound on d(u)
▸ Initially: d̂(v) = 0, d̂(u) =∞ for all u ≠ v

Intuition for relax(x,y): can we improve d̂(y) by going
through x?

relax(x,y) {
if(d̂(y) > d̂(x) + `(x,y)) {

d̂(y) = d̂(x) + `(x,y)
y.parent = x

}
}

Michael Dinitz Lecture 14: SSSP October 14, 2021 9 / 17



Bellman-Ford as Relaxations

for(i = 1 to n) {
foreach(u ∈ V) {

foreach(edge (x,u)) {
relax(x,u)

}
}

}

Not precisely the same: freezing/parallelism

Michael Dinitz Lecture 14: SSSP October 14, 2021 10 / 17



Bellman-Ford as Relaxations

for(i = 1 to n) {
foreach(u ∈ V) {

foreach(edge (x,u)) {
relax(x,u)

}
}

}

Not precisely the same: freezing/parallelism

Michael Dinitz Lecture 14: SSSP October 14, 2021 10 / 17



Dijkstra’s Algorithm

Michael Dinitz Lecture 14: SSSP October 14, 2021 11 / 17



High Level

Intuition: “greedy starting at v”

▸ BFS but with edge lengths: use priority queue (heap) instead of queue!

Pros: faster than Bellman-Ford (super fast with appropriate data structures)

Cons: Doesn’t work with negative edge weights.

Michael Dinitz Lecture 14: SSSP October 14, 2021 12 / 17



Dijkstra’s Algorithm

T = ∅
d̂(v) = 0
d̂(u) =∞ for all u ≠ v

while(not all nodes in T) {
let u be node not in T with minimum d̂(u)
Add u to T
foreach edge (u,x) with x /∈ T {

relax(u,x)
}

}

Michael Dinitz Lecture 14: SSSP October 14, 2021 13 / 17



Dijkstra Example24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.

Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex
in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

Michael Dinitz Lecture 14: SSSP October 14, 2021 14 / 17



Dijkstra Correctness

Theorem

Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T, and

2. d̂(u) = d(u) for every u ∈ T.

Proof. Induction on ∣T∣ (iterations of algorithm)

Base Case: After first iteration (when ∣T∣ = 1), added v to T with d̂(v) = d(v) = 0 ✓

Michael Dinitz Lecture 14: SSSP October 14, 2021 15 / 17



Dijkstra Correctness

Theorem

Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T, and

2. d̂(u) = d(u) for every u ∈ T.

Proof. Induction on ∣T∣ (iterations of algorithm)

Base Case: After first iteration (when ∣T∣ = 1), added v to T with d̂(v) = d(v) = 0 ✓

Michael Dinitz Lecture 14: SSSP October 14, 2021 15 / 17



Dijkstra Correctness

Theorem

Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T, and

2. d̂(u) = d(u) for every u ∈ T.

Proof. Induction on ∣T∣ (iterations of algorithm)

Base Case: After first iteration (when ∣T∣ = 1), added v to T with d̂(v) = d(v) = 0 ✓

Michael Dinitz Lecture 14: SSSP October 14, 2021 15 / 17



Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent

Ô⇒ d̂(u) = d̂(w) + `(w,u) = d(w) + `(w,u) (induction)

▸ Red path P actual shortest path, black path
found by Dijkstra

▸ w′ predecessor of u on P. Can’t be in T.
▸ If it was, would have d̂(w′) = d(w′) by

induction, would have relaxed (w′,u), so
would have w′ = u.parent

▸ x first node of P outside T, previous node y

d̂(x) ≤ d̂(y) + `(y,x) = d(y) + `(y,x) < `(P) = d(u) ≤ d̂(u)

Contradiction! Algorithm would have chosen x next, not u.

Michael Dinitz Lecture 14: SSSP October 14, 2021 16 / 17



Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent

Ô⇒ d̂(u) = d̂(w) + `(w,u) = d(w) + `(w,u) (induction)

▸ Red path P actual shortest path, black path
found by Dijkstra

▸ w′ predecessor of u on P. Can’t be in T.
▸ If it was, would have d̂(w′) = d(w′) by

induction, would have relaxed (w′,u), so
would have w′ = u.parent

▸ x first node of P outside T, previous node y

d̂(x) ≤ d̂(y) + `(y,x) = d(y) + `(y,x) < `(P) = d(u) ≤ d̂(u)

Contradiction! Algorithm would have chosen x next, not u.

Michael Dinitz Lecture 14: SSSP October 14, 2021 16 / 17



Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent

Ô⇒ d̂(u) = d̂(w) + `(w,u) = d(w) + `(w,u) (induction)

▸ Red path P actual shortest path, black path
found by Dijkstra

▸ w′ predecessor of u on P. Can’t be in T.
▸ If it was, would have d̂(w′) = d(w′) by

induction, would have relaxed (w′,u), so
would have w′ = u.parent

▸ x first node of P outside T, previous node y

d̂(x) ≤ d̂(y) + `(y,x) = d(y) + `(y,x) < `(P) = d(u) ≤ d̂(u)

Contradiction! Algorithm would have chosen x next, not u.

Michael Dinitz Lecture 14: SSSP October 14, 2021 16 / 17



Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent

Ô⇒ d̂(u) = d̂(w) + `(w,u) = d(w) + `(w,u) (induction)

▸ Red path P actual shortest path, black path
found by Dijkstra

▸ w′ predecessor of u on P. Can’t be in T.
▸ If it was, would have d̂(w′) = d(w′) by

induction, would have relaxed (w′,u), so
would have w′ = u.parent

▸ x first node of P outside T, previous node y

d̂(x) ≤ d̂(y) + `(y,x) = d(y) + `(y,x) < `(P) = d(u) ≤ d̂(u)

Contradiction! Algorithm would have chosen x next, not u.

Michael Dinitz Lecture 14: SSSP October 14, 2021 16 / 17



Running Time

Algorithm needs to:

▸ Select node with minimum d̂ value n times

▸ Decrease a d̂ value at most once per relaxation Ô⇒ ≤m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time
Ô⇒ O(n2 +m) = O(n2) total.

Keep d̂ values in a heap!

▸ Insert n times

▸ Extract-Min n times

▸ Decrease-Key m times

Binary heap: O(log n) per operation (amortized)
Ô⇒ O((m + n) log n) running time.

Fibonacci Heap:

▸ Insert, Decrease-Key O(1) amortized

▸ Extract-Min O(log n) amortized

Ô⇒ O(m + n log n) running time

Michael Dinitz Lecture 14: SSSP October 14, 2021 17 / 17



Running Time

Algorithm needs to:

▸ Select node with minimum d̂ value n times

▸ Decrease a d̂ value at most once per relaxation Ô⇒ ≤m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time
Ô⇒ O(n2 +m) = O(n2) total.

Keep d̂ values in a heap!

▸ Insert n times

▸ Extract-Min n times

▸ Decrease-Key m times

Binary heap: O(log n) per operation (amortized)
Ô⇒ O((m + n) log n) running time.

Fibonacci Heap:

▸ Insert, Decrease-Key O(1) amortized

▸ Extract-Min O(log n) amortized

Ô⇒ O(m + n log n) running time

Michael Dinitz Lecture 14: SSSP October 14, 2021 17 / 17



Running Time

Algorithm needs to:

▸ Select node with minimum d̂ value n times

▸ Decrease a d̂ value at most once per relaxation Ô⇒ ≤m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time
Ô⇒ O(n2 +m) = O(n2) total.

Keep d̂ values in a heap!

▸ Insert n times

▸ Extract-Min n times

▸ Decrease-Key m times

Binary heap: O(log n) per operation (amortized)
Ô⇒ O((m + n) log n) running time.

Fibonacci Heap:

▸ Insert, Decrease-Key O(1) amortized

▸ Extract-Min O(log n) amortized

Ô⇒ O(m + n log n) running time

Michael Dinitz Lecture 14: SSSP October 14, 2021 17 / 17



Running Time

Algorithm needs to:

▸ Select node with minimum d̂ value n times

▸ Decrease a d̂ value at most once per relaxation Ô⇒ ≤m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time
Ô⇒ O(n2 +m) = O(n2) total.

Keep d̂ values in a heap!

▸ Insert n times

▸ Extract-Min n times

▸ Decrease-Key m times

Binary heap: O(log n) per operation (amortized)
Ô⇒ O((m + n) log n) running time.

Fibonacci Heap:

▸ Insert, Decrease-Key O(1) amortized

▸ Extract-Min O(log n) amortized

Ô⇒ O(m + n log n) running time

Michael Dinitz Lecture 14: SSSP October 14, 2021 17 / 17



Running Time

Algorithm needs to:

▸ Select node with minimum d̂ value n times

▸ Decrease a d̂ value at most once per relaxation Ô⇒ ≤m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time
Ô⇒ O(n2 +m) = O(n2) total.

Keep d̂ values in a heap!

▸ Insert n times

▸ Extract-Min n times

▸ Decrease-Key m times

Binary heap: O(log n) per operation (amortized)
Ô⇒ O((m + n) log n) running time.

Fibonacci Heap:

▸ Insert, Decrease-Key O(1) amortized

▸ Extract-Min O(log n) amortized

Ô⇒ O(m + n log n) running time

Michael Dinitz Lecture 14: SSSP October 14, 2021 17 / 17


