
601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz
Topic: Shortest Paths Date: 10/14/21

14.1 Introduction

Today we’re going to talk about algorithms for computing shortest paths in graphs. If all edges
have length 1, we saw last class that a BFS computes shortest paths in time O(m + n). But what
if edges have arbitrary edge lengths? Are there still fast algorithms? We’ll see a few different
algorithms for versions of this problem.

Some technicalities. For today, we’ll only be concerned with single-source shortest paths, i.e. we
will try to design algorithms that when given a graph G and a node v, computes the shortest paths
from v to all other nodes. How do we represent this? It’s not hard to see that if w is on the shortest
path from v to u, then the shortest path from v to w must be a prefix of the shortest path from v
to u. This means that the set of shortest paths out of v form a tree, which is usually known as the
shortest-path tree.

This also lets us represent the set of shortest paths compactly. At the completion of the algorithms,
we require that every node u have two pieces of data: its distance from v, and its parent u.parent
in the shortest-path tree.

I’m generally going to think of the graph as being directed, so edges are directed. If the graph is
undirected, we can just turn each edge {x, y} into two edge (x, y) and (y, x), which only increases
the number of edges by a factor of 2. For an edge (x, y), let len(x, y) denote its length. Note that
there might be situations where we want to allow len(x, y) to be negative, while in other situations
it only makes sense to have positive lengths. As we’ll see, there are efficient algorithms that work
even when lengths can be negative, but if we know that lengths are always nonnegative then we
can design even faster algorithms.

Given a path P between two nodes, we will let len(P) =
∑

(x,y)∈P len(x, y) denote the length of
the path. For any two nodes x and y, let d(x, y) denote the length of the shortest path between
them. Since we will have a source v, we will slightly abuse notation and let d(u) = d(v, u) for all
u ∈ V .

14.2 Bellman-Ford

Since we’ve been thinking a lot about dynamic programming, how would we design a dynamic
programming algorithm for this? First, what are the subproblems? To get some intuition, consider
some shortest path from v to u, say the path v = w0, w1, . . . , wk−1, wk = u. It is easy to see that
we have optimal substructure: v = w0, w1, . . . , wk−1 must be a shortest path to wk−1. So our
subproblems should intuitively be defined so as to relate a shortest path to u to the shortest paths
to neighbors of u that uses one less edge.

To make this slightly more formal, let OPT (u, i) denote the shortest path from v to u that uses

1

at most i edges. If no such path exists, then we’ll let OPT (u, i) =∞. For simplicity, let’s assume
that every vertex has a 0-length edge to itself (this is just for simplicity – see the book for a version
that doesn’t make this assumption). Then we have the following optimal substructure theorem.

Theorem 14.2.1

len(OPT (u, k)) =

0 if u = v, k = 0

∞ if u 6= v, k = 0

minw:(w,u)∈E(len(OPT (w, k − 1)) + len(w, u)) otherwise

Proof: If k = 0 then this equation is clearly true by definition. So consider some k ≥ 1, and
consider u ∈ V . For all edges (w, u), note that OPT (w, k − 1) followed by (w, u) is a path from v
to u with at most k edges. Thus

len(OPT (u, k)) ≤ min
w:(w,u)∈E

(len(OPT (w, k − 1) + len(w, u)).

On the other hand, let v = w0, w1, . . . w` = u be OPT (u, k) (so ` ≤ k). Then the prefix of this path
of length `− 1 (i.e., the path w0, w1, . . . , w`−1) is clearly a path with at most k− 1 edges from v to
w`−1, and so by definition has length at least OPT (w`−1, k − 1). Thus

len(OPT (u, k)) ≥ len(OPT (w`−1, k − 1)) + len(w`−1, u)

≥ min
w:(w,u)∈E

(len(OPT (w, k − 1) + len(w, u)).

Hence len(OPT (u, k)) = minw:(w,u)∈E(len(OPT (w, k − 1) + len(w, u)).

Now that we have this relationship, it is straightforward to write a bottom-up or top-down dynamic
programming algorithm. For example, consider the following.

f o r (u ∈ V) M[u , 0] = ∞ ;
M [v, 0] = 0 ;

f o r (k = 1 to n− 1) {
f o r (u ∈ V) {

M [u, k] = minw:(w,u)∈E(M [w, k − 1] + len(w, u)) ;

}
}

Once we’ve finished filling in the table, the lengths of the shortest path from v to u is in M [u, n−1].
It is easy to prove that this algorithm is correct by induction.

Theorem 14.2.2 After running the algorithm M [u, k] = len(OPT (u, k)) for all k ≤ n − 1 and
u ∈ V .

Proof: We prove this theorem by induction on k. When k = 0, this is true by construction and
by Theorem 14.2.1. For the inductive step, consider some k ≥ 1. Then

M [u, k] = min
w:(w,u)∈E

(M [w, k − 1]) + len(w, u))

= minw:(w,u)∈E(len(OPT (w, k − 1)) + len(w, u)) = len(OPT (u, k)),

2

where the first equality is from the definition of the algorithm, the second is by induction, and the
third is by Theorem 14.2.1.

The dynamic programming algorithm to compute this table (either top-down or bottom-up) is
known as the Bellman-Ford algorithm. Note that after we have computed this table, we can easily
do a second pass to figure out the parent pointers (we already know the distances).

What is its running time? Since there are Θ(n2) table entries and each entry might (a priori) take
Θ(n) time to compute the appropriate minimum, this gives a total running time of O(n3). It turns
out we can prove something slightly stronger by not considering each table entry in isolation.

Theorem 14.2.3 The running time of Bellman-Ford is O(mn).

Proof: Instead of looking table entry by table entry, let’s look edge by edge. Note that each
iteration of the algorithm considers the length of some edge, so we can bound the total running
time by the number of times that we look at the length of any edge. So how many times is edge
(w, u) considered by the algorithm? Only when computing M [u, k] for some k. Thus for every
possible value of k, each edge is considered once, and thus each iteration of the outer loop takes
only O(m) time. Since k ≤ n− 1, this gives a total running time of O(mn).

14.2.1 Negative Weights and Cycles

In some settings it is very natural to have negative edge lengths. This causes a few issues. First,
what happens if there’s a cycle where the sum of edge lengths along the cycle are negative? Then
shortest paths aren’t even really defined – you can always enter the cycle, go around it as many
times as you want to decrease your length as much as you want, and then go to the destination. So
the length of the shortest path between any two nodes is always −∞. If you restrict your paths to
simple paths (i.e., don’t allow yourself to loop) then in fact the problem becomes NP-hard, which
as we’ll see later means that we don’t expect a fast algorithm to exist.

So there are problems if there are negative cycles. What will Bellman-Ford do? Well, if there are
no negative cycles then after n − 1 iterations we will have found shortest paths. This is because
if there are no negative cycles then any shortest path enters and leaves each node at most once,
and hence has at most n − 1 edges. But if there are negative cycles, then after n − 1 iterations,
further iterations would allow shorter paths. So when we finish Bellman-Ford, we can do one more
iteration, and if anything changes we know there is a negative cycle. So Bellman-Ford can be used
for negative-cycle detection as well.

So let’s suppose there are no negative cycles. Then everything we did for Bellman-Ford still works!
So Bellman-Ford can be used in general when there are negative weights – it can find a negative
cycle of one exists, and if one does not exist then it works correctly even if some weights are
negative.

14.3 Relaxation

One thing which many (though not all) shortest-path algorithms have in common is the notion
of relaxing an edge. Since we require that in the end every node knows its distance from v, let’s
assume that each node u always has an upper bound d̂(u) on its real distance from v (in reality we

3

would store this in some field, so it would be u.d, but let’s stick with math notation). We initialize
d̂(v) to 0, and for every other node x we set d̂(x) =∞.

Relaxing edge (x, y) simply checks if we can decrease d̂(y) by using d̂(x) and len(x, y). We test
whether d̂(x)+ len(x, y) < d̂(y), and if so we update d̂(y) to d̂(x)+ len(x, y) and update y.parent to
x. We do this because it means that our best current guess for the shortest path to y goes through
x. Many shortest-path algorithms use edge relaxations – the main question is what order to relax
edges in.

In pseudocode, relaxations look like the following.

r e l a x (x, y) {
i f (d̂(y) > d̂(x) + len(x, y)) {
d̂(y) = d̂(x) + len(x, y)
y . parent = x

}
}

14.3.1 Bellman-Ford As Relaxations

It turns out that Bellman-Ford can be rewritten in terms of relaxations in a very easy way. We
just iterate over all vertices, relaxing each edge incident on the vertex. We do this n times.

The pseudocode is the following:

f o r (i = 1 to n) {
f o r each (u ∈ V } {

f o r each edge (x, u) , r e l a x (x, u)
}

}

It is straightforward to see that this is equivalent to the DP version. Each i in the for loop is like a
value of k in the DP, and then for some i when we consider a particular u, relaxing all of the edges
coming into u is like taking the min in the DP. There is one subtlety: when we relax an edge, do we
use the new distance bounds on later relaxations from the same iterations or not? In other words,
when we relax do we compute a new distance estimate d′(u) for all u, and only at the end of the
iteration copy the value into d̂? This “freezing” of distance values is what actually corresponds to
the DP, since in the DP when we consider some value k we only depend on the values computed
for k − 1, not whatever values for k might have already been inserted in the table.

On the one hand, doing this “freezing” cannot help our estimate – doing a real relaxation can be
much better in some cases, and is never worse. On the other hand, freezing the values during a
single iteration has a few benefits. First, one reason Bellman-Ford is used quite a bit in practice is
that it is highly distributed/parallel – each node can relax all of its own edges in parallel, or even
more extremely each edge can be relaxed in parallel. If we’re in such a situation, then we don’t
want these parallel computations to interact with each other by trying to simultaneously write to
shared memory or anything like that. So instead we freeze the distance estimates, do the parallel

4

relaxations, and then update all of the estimates by letting d̂(u) be the minimum of the estimates
computed by relaxations of edges going into u.

Since this algorithm is exactly like the DP, we do not need to prove correctness again. However,
we will do so for completeness (and since this is the way the book writes it). We will assume, like
in the DP, that we freeze the d̂ values in each iteration.

Theorem 14.3.1 After k iterations, every node knows the shortest path from v that uses at most
k edges and the distance of this path.

Proof: We prove this by induction on the number of iterations. After the first iteration, the only
nodes whose distance estimate is noninfinite are exactly the nodes with a path of length 1 from v.
And clearly when we relax those edges, the distance estimates become exactly the length of those
edges.

So now we have to prove the inductive case. Consider iteration k, and suppose that the theorem is
true for all k′ < k. Let u ∈ V be an arbitrary node for which there exists a path from v to u with
at most k edges. Let w be the node immediately before u on this path. So the shortest path with
at most k edges from v to u consists of a shortest path from v to w with at most k − 1 edges, and
then the edge (w, u). By induction, before the kth iteration starts the node w knows its distance
from v along this path. So when we relax the edge (w, u) we get a distance estimate for u which
exactly corresponds to this path. Since this is the shortest possible path of this form, this is the
estimate which we will end up with at the end of the iteration.

Note that this proof crucially used the fact that distance estimates are frozen. Otherwise, we would
only be able to prove that after k iterations, every node u knows a path from v that is no longer
than the shortest path from v to u using at most k edges (which is enough to prove correctness of
the algorithm, but is not the theorem we were trying to prove).

In any case, this theorem implies that after n iterations, every nodes knows the actual shortest
path from v.

14.4 Dijkstra’s Algorithm

Probably the most famous shortest-path algorithm is Dijkstra’s algorithm. As we’ll see, it is faster
than Bellman-Ford, but has the drawback that is does not work if there are edges of negative length
(even if there are no negative-weight cycles).

Dijkstra’s algorithm can be thought of as a greedy algorithm, which is a paradigm that we’ll talk
more about later. The algorithm itself is pretty simple. For every node we maintain a distance
guess d̂(u), like in Bellman-Ford. We initialize d̂(v) to 0, and for all other u we initialize d̂(u) to
∞. We will also maintain a tree T which starts out empty (T will be the shortest-path tree in the
end).

We then do the following: until T contains all of the nodes, we choose the node u with smallest
d̂(u) and add it to the tree (using whichever edge caused the distance estimate). We then relax all
edges between u and non-tree nodes. In pseudocode, this looks something like the following.

T = ∅

5

d̂(v) = 0

f o r a l l u 6= v, d̂(u) =∞
whi le (not a l l nodes in T) {

l e t u be node not in T with minimum d̂(u)
Add u to T
f o r each edge (u, x) with x 6∈ T

r e l a x (u , x)
}

Before we analyze the running time, let’s prove correctness. We will do this inductively. In what
follows, we will think of T not just as a collection of nodes, but as a tree defined by the parent
pointers set when edges are relaxed.

Theorem 14.4.1 Throughout the algorithm, T is a shortest-path tree from v to the nodes in T ,
and for every node u in T we have that d̂(u) = d(u) (i.e., the distance estimate of every node in T
is equal to their actual shortest path from v).

Proof: In the first step, v is added to the tree with d̂(v) = 0, so by definition the theorem is true
at that time.

To prove the inductive step, suppose that it is true at some point and we have tree T . Let u be
the next vertex that we add, and suppose we add it using edge (w, u). By induction we know that
d̂(w) = d(w), so when we add u we have d̂(u) = d(w) + len(w, u).

Suppose that this path to u (through the tree to w, then to u) is not the shortest-path. So there is
some other path P which has length less than d̂(u). First, note that the last node w′ on this path
cannot already be in T : if it were, then by induction d̂(w′) = d(w′) and we would have relaxed the
edge (w′, u), so d̂(u) would equal d̂(w′) + len(w′, u). This would be a contradiction, since we know
that d̂(u) = d(w) + len(w, u) > d(w′) + len(w′, u).

So suppose that w′ is not in T . Then let x be the first node in P not in T (this might be w′, but
might not be), and let y be the node just before x (so y ∈ T). Then when we added y to T we
relaxed the edge (y, x), so d̂(x) is at most d̂(y) + len(y, x) = d(y) + len(y, x). Since we’re assuming
that x is on the real shortest path to u and that this path goes through y, so in fact we know that
d̂(x) = d(x) < d(u) ≤ d̂(u). This gives a contradiction, since the algorithm would not pick u to be
the next node added but would instead pick x.

It’s a good exercise to see where this proof used the fact that all weights are nonnegative. These
proofs are also done in more detail in the book.

14.4.1 Running Time

Interestingly, the running time of this algorithm depends heavily on the data structures that we
use (which is I think the first time that we’ve seen this happen).

What are the operations done by this algorithm? We have to be able to select the node with
minimum d̂, and we have to do this n times. Every edge also gets relaxed once, so we have to
(possibly) decrease values of d̂ a total of m times.

6

If we simply keep d̂(u) with the node u, and keep the adjacency list representation in an arbitrary
order, the first kind of operation takes time Θ(n) and relaxing the edges takes time O(1) per
relaxation, so the total running time is O(n2 + m) = O(n2).

But what kind of data structure lets us quickly find the minimum of a set of values, and also
decrease values in the set? A heap! We just need a heap that let’s us do Insert, Extract-Min, and
Decrease-Key quickly. If we use a binary heap, we pay O(log n) for all of those operations. Thus the
total running time becomes O(m log n + n log n) = O(m log n) (assuming the graph is connected).

There’s no point in moving to a binomial heap, since we don’t care in this context about Meld.
But there are fancier heaps that can decrease the running time further. The famous example (and
currently the best known in this context) is a Fibonacci heap. Fibonacci heaps only take O(1) time
(amortized) for Decrease-Key and Insert, and Extract-Min only takes time O(log n) (amortized).
So the total running time if we use Fibonacci heaps is only O(m + n log n)!

Note that the amortized guarantee is enough for us here, since we’re only concerned about the total
running time of a sequence of operations (exactly the context where amortization works).

7

	Introduction
	Bellman-Ford
	Negative Weights and Cycles

	Relaxation
	Bellman-Ford As Relaxations

	Dijkstra's Algorithm
	Running Time

